Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in optical metalenses

Abstract

Optical metalenses—two-dimensional arrays of submicrometre scatterers that collectively focus light—have experienced growing research interest in recent years as they can realize conventional optical elements while offering novel functionalities. Their progress is driven by the need for low-cost, high-performance miniaturized optical systems and is supported by advances in nanofabrication and computational tools and techniques. Here we review the main capabilities offered by metalenses, such as their multifunctionality and their ability to efficiently focus light to subwavelength spots. We discuss how these characteristics enable new applications and provide an overview of the current state of the art of optical metasystems. We conclude by discussing the outstanding challenges in the field and highlighting application areas where metalenses could have a substantial impact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multifunctional metalenses.
Fig. 2: Optical metasystems.
Fig. 3: Metalens-based polarization imagers.
Fig. 4: Metalens applications in microscopy.
Fig. 5: Metalens applications in computational imaging.
Fig. 6: Metalens applications in virtual reality and quantum optical systems.

Similar content being viewed by others

References

  1. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    ADS  Google Scholar 

  2. Monticone, F., Estakhri, N. M. & Alù, A. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 110, 203903 (2013).

    ADS  Google Scholar 

  3. Arbabi, A. & Faraon, A. Fundamental limits of ultrathin metasurfaces. Sci. Rep. 7, 43722 (2017).

    ADS  Google Scholar 

  4. Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

    Google Scholar 

  5. Gigli, C. et al. Fundamental limitations of Huygens’ metasurfaces for optical beam shaping. Laser Photon. Rev. 15, 2000448 (2021).

    ADS  Google Scholar 

  6. Skarda, J. et al. Low-overhead distribution strategy for simulation and optimization of large-area metasurfaces. npj Comput. Mater. 8, 1–6 (2022).

    Google Scholar 

  7. Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

    Google Scholar 

  8. Kamali, S. M., Arbabi, E., Arbabi, A. & Faraon, A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 7, 1041–1068 (2018).

    Google Scholar 

  9. Tseng, M. L. et al. Metalenses: advances and applications. Adv. Opt. Mater. 6, 1800554 (2018).

    Google Scholar 

  10. Li, B., Piyawattanametha, W. & Qiu, Z. Metalens-based miniaturized optical systems. Micromachines 10, 310 (2019).

    Google Scholar 

  11. Zou, X. et al. Imaging based on metalenses. PhotoniX 1, 2 (2020).

    Google Scholar 

  12. Kim, S.-J. et al. Dielectric metalens: properties and three-dimensional imaging applications. Sensors 21, 4584 (2021).

    ADS  Google Scholar 

  13. Pan, M. et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci. Appl. 11, 195 (2022).

    ADS  Google Scholar 

  14. Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081–1083 (1998).

    ADS  Google Scholar 

  15. Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

    ADS  Google Scholar 

  16. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    ADS  Google Scholar 

  17. Lalanne, P. & Chavel, P. Metalenses at visible wavelengths: an historical fresco. Laser Photon. Rev. 11, 101130F (2017).

    Google Scholar 

  18. Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).

    ADS  Google Scholar 

  19. McClung, A., Mansouree, M., Samudrala, S. & Arbabi, A. Properties of ideal flat metalenses. In Conference on Lasers and Electro-Optics FM1R.1 (Optical Society of America, 2020); https://doi.org/10.1364/CLEO_QELS.2020.FM1R.1

  20. Aieta, F., Genevet, P., Kats, M. & Capasso, F. Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express 21, 31530 (2013).

    ADS  Google Scholar 

  21. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016).

    ADS  Google Scholar 

  22. Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016).

    ADS  Google Scholar 

  23. Engelberg, J. & Levy, U. Achromatic flat lens performance limits. Optica 8, 834–845 (2021).

    ADS  Google Scholar 

  24. McClung, A., Mansouree, M. & Arbabi, A. At-will chromatic dispersion by prescribing light trajectories with cascaded metasurfaces. Light Sci. Appl. 9, 93 (2020).

    ADS  Google Scholar 

  25. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Dispersionless metasurfaces using dispersive meta-atoms. In Conference on Lasers and Electro-Optics FM2D.4 (Optical Society of America, 2016); https://doi.org/10.1364/CLEO_QELS.2016.FM2D.4

  26. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017).

    ADS  Google Scholar 

  27. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    ADS  Google Scholar 

  28. Shrestha, S., Overvig, A. C., Lu, M., Stein, A. & Yu, N. Broadband achromatic dielectric metalenses. Light Sci. Appl. 7, 85 (2018).

    ADS  Google Scholar 

  29. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    ADS  Google Scholar 

  30. Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).

    ADS  Google Scholar 

  31. Presutti, F. & Monticone, F. Focusing on bandwidth: achromatic metalens limits. Optica 7, 624–631 (2020).

    ADS  Google Scholar 

  32. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    ADS  Google Scholar 

  33. Mirzapourbeinekalaye, B., McClung, A. & Arbabi, A. General lossless polarization and phase transformation using bilayer metasurfaces. Adv. Opt. Mater. 10, 2102591 (2022).

    Google Scholar 

  34. Lin, R. & Li, X. Multifocal metalens based on multilayer Pancharatnam–Berry phase elements architecture. Opt. Lett. 44, 2819–2822 (2019).

    ADS  Google Scholar 

  35. Wang, E. W., Phan, T., Yu, S. J., Dhuey, S. & Fan, J. A. Dynamic circular birefringence response with fractured geometric phase metasurface systems. Proc. Natl Acad. Sci. USA 119, e2122085119 (2022).

    Google Scholar 

  36. Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    ADS  Google Scholar 

  37. Li, H. et al. Bandpass-filter-integrated multiwavelength achromatic metalens. Photon. Res 9, 1384–1390 (2021).

    Google Scholar 

  38. Li, Z. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021).

    ADS  Google Scholar 

  39. Feng, W. et al. RGB achromatic metalens doublet for digital imaging. Nano Lett. 22, 3969–3975 (2022).

    ADS  Google Scholar 

  40. Li, Z. et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun. 13, 2409 (2022).

    ADS  Google Scholar 

  41. Avayu, O., Almeida, E., Prior, Y. & Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017).

    ADS  Google Scholar 

  42. Mansouree, M. et al. Multifunctional 2.5D metastructures enabled by adjoint optimization. Optica 7, 77–84 (2020).

    ADS  Google Scholar 

  43. Zhou, Y. et al. Multifunctional metaoptics based on bilayer metasurfaces. Light Sci. Appl. 8, 80 (2019).

    ADS  Google Scholar 

  44. Zhang, X. et al. Metasurface-based broadband hologram with high tolerance to fabrication errors. Sci. Rep. 6, 19856 (2016).

    ADS  Google Scholar 

  45. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength metasurfaces through spatial multiplexing. Sci. Rep. 6, 32803 (2016).

    ADS  Google Scholar 

  46. Lin, D. et al. Photonic multitasking interleaved Si nanoantenna phased array. Nano Lett. 16, 7671–7676 (2016).

    ADS  Google Scholar 

  47. Elhanan, M. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).

    Google Scholar 

  48. Kamali, S. M. et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X 7, 041056 (2017).

    Google Scholar 

  49. Wan, S. et al. Angular-multiplexing metasurface: building up independent-encoded amplitude/phase dictionary for angular illumination. Adv. Opt. Mater. 9, 2101547 (2021).

    Google Scholar 

  50. Zhang, X. et al. Controlling angular dispersions in optical metasurfaces. Light Sci. Appl. 9, 76 (2020).

    ADS  Google Scholar 

  51. Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  52. Guo, C., Wang, H. & Fan, S. Squeeze free space with nonlocal flat optics. Optica 7, 1133–1138 (2020).

    ADS  Google Scholar 

  53. Zhou, Y., Zheng, H., Kravchenko, I. I. & Valentine, J. Flat optics for image differentiation. Nat. Photon. 14, 316–323 (2020).

    ADS  Google Scholar 

  54. Groever, B., Chen, W. T. & Capasso, F. Meta-lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017).

    ADS  Google Scholar 

  55. Shalaginov, M. Y. et al. Single-element diffraction-limited fisheye metalens. Nano Lett. 20, 7429–7437 (2020).

    ADS  Google Scholar 

  56. McClung, A., Samudrala, S., Torfeh, M., Mansouree, M. & Arbabi, A. Snapshot spectral imaging with parallel metasystems. Sci. Adv. 6, 7646–7664 (2020).

    ADS  Google Scholar 

  57. Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).

    ADS  Google Scholar 

  58. Faraji-Dana, M. S. et al. Compact folded metasurface spectrometer. Nat. Commun. 9, 4196 (2018).

    ADS  Google Scholar 

  59. Faraji-Dana, M. et al. Hyperspectral imager with folded metasurface optics. ACS Photon. 6, 2161–2167 (2019).

    Google Scholar 

  60. Oh, J. et al. Adjoint-optimized metasurfaces for compact mode-division multiplexing. ACS Photon. 9, 929–937 (2022).

    Google Scholar 

  61. Arbabi, E., Kamali, S. M., Arbabi, A. & Faraon, A. Full Stokes imaging polarimetry using dielectric metasurfaces. ACS Photon. 5, 3132–3140 (2018).

    Google Scholar 

  62. Gruev, V., Perkins, R. & York, T. CCD polarization imaging sensor with aluminum nanowire optical filters. Opt. Express 18, 19087–19094 (2010).

    ADS  Google Scholar 

  63. Ren, Y. et al. Full-Stokes polarimetry for visible light enabled by an all-dielectric metasurface. Adv. Photon. Res. 3, 2100373 (2022).

    Google Scholar 

  64. Yang, Z. et al. Generalized Hartmann–Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun. 9, 4607 (2018).

    ADS  Google Scholar 

  65. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 364, eaax1839 (2019).

    ADS  Google Scholar 

  66. Rubin, N. A. et al. Imaging polarimetry through metasurface polarization gratings. Opt. Express 30, 9389–9412 (2022).

    ADS  Google Scholar 

  67. Shi, F., Wen, J. & Lei, D. High-efficiency, large-area lattice light-sheet generation by dielectric metasurfaces. Nanophotonics 9, 4043–4051 (2020).

    Google Scholar 

  68. Luo, Y. et al. Meta-lens light-sheet fluorescence microscopy for in vivo imaging. Nanophotonics 11, 1949–1959 (2022).

    Google Scholar 

  69. Pahlevaninezhad, M. et al. Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions. Nat. Photon. 16, 203–211 (2022).

    ADS  Google Scholar 

  70. Jang, M. et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photon. 12, 84–90 (2018).

    ADS  Google Scholar 

  71. Arbabi, E. et al. Two-photon microscopy with a double-wavelength metasurface objective lens. Nano Lett. 18, 4943–4948 (2018).

    ADS  Google Scholar 

  72. Backlund, M. P. et al. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask. Nat. Photon. 10, 459–462 (2016).

    ADS  Google Scholar 

  73. Kwon, H., Arbabi, E., Kamali, S. M., Faraji-Dana, M. & Faraon, A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photon. 14, 109–114 (2020).

    ADS  Google Scholar 

  74. Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photon. 12, 540–547 (2018).

    ADS  Google Scholar 

  75. Tucker, S. C., Thomas Cathey, W. & Dowski, E. R. Extended depth of field and aberration control for inexpensive digital microscope systems. Opt. Express 4, 467–474 (1999).

    ADS  Google Scholar 

  76. Colburn, S., Zhan, A. & Majumdar, A. Metasurface optics for full-color computational imaging. Sci. Adv. 4, eaar2114 (2018).

    ADS  Google Scholar 

  77. Huang, L., Whitehead, J., Colburn, S., Majumdar, A. & Majumdar, A. Design and analysis of extended depth of focus metalenses for achromatic computational imaging. Photon. Res 8, 1613–1623 (2020).

    Google Scholar 

  78. Bayati, E. et al. Inverse designed extended depth of focus meta-optics for broadband imaging in the visible. Nanophotonics 11, 2531–2540 (2022).

    Google Scholar 

  79. Tseng, E. et al. Neural nano-optics for high-quality thin lens imaging. Nat. Commun. 12, 6493 (2021).

    ADS  Google Scholar 

  80. Kwon, H., Arbabi, E., Kamali, S. M., Faraji-Dana, M. & Faraon, A. Computational complex optical field imaging using a designed metasurface diffuser. Optica 5, 924–931 (2018).

    ADS  Google Scholar 

  81. Guo, Q. et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl Acad. Sci. USA 116, 22959–22965 (2019).

    ADS  Google Scholar 

  82. Fan, Q. et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nat. Commun. 13, 2130 (2022).

    ADS  Google Scholar 

  83. Zhao, F. et al. Synthetic aperture metalens. Photon. Res 9, 2388–2397 (2021).

    Google Scholar 

  84. Subbarao, M. & Surya, G. Depth from defocus: a spatial domain approach. Int. J. Comput. Vis. 13, 271–294 (1994).

    Google Scholar 

  85. Colburn, S. & Majumdar, A. Metasurface generation of paired accelerating and rotating optical beams for passive ranging and scene reconstruction. ACS Photon. 7, 1529–1536 (2020).

    Google Scholar 

  86. Tan, S., Yang, F., Boominathan, V., Veeraraghavan, A. & Naik, G. V. 3D imaging using extreme dispersion in optical metasurfaces. ACS Photon. 8, 1421–1429 (2021).

    Google Scholar 

  87. Lee, G. Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018).

    ADS  Google Scholar 

  88. Hsu, T.-W., Zhu, W., Thiele, T., Brown, M. O., Papp, S. B., Agrawal, A. & Regal, C. A. Single-atom trapping in a metasurface-lens optical tweezer. PRX Quantum 3, 30316 (2022).

    Google Scholar 

  89. Huang, T. Y. et al. A monolithic immersion metalens for imaging solid-state quantum emitters. Nat. Commun. 10, 2392 (2019).

    ADS  Google Scholar 

  90. Li, L. et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science 368, 1487–1490 (2020).

    ADS  Google Scholar 

  91. Hu, T. et al. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express 26, 19548–19554 (2018).

    ADS  Google Scholar 

  92. Park, J. S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 19, 8673–8682 (2019).

    ADS  Google Scholar 

  93. Liao, W.-P. et al. I-line photolithographic metalenses enabled by distributed optical proximity correction with a deep-learning model. Opt. Express 30, 21184–21194 (2022).

    ADS  Google Scholar 

  94. Zhang, L. et al. High-efficiency, 80-mm aperture metalens telescope. Preprint at https://arxiv.org/abs/2205.12739 (2022).

  95. Quaade, U. et al. Highly efficient metalenses for imaging applications at infrared wavelengths. Proc. SPIE PC12010, PC1201012 (2022).

  96. Einck, V. J. et al. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photon. 8, 2400–2409 (2021).

    Google Scholar 

  97. Metalenz and STMicroelectronics deliver world’s first optical metasurface technology for consumer electronics devices. ST (9 Jun 2022); https://newsroom.st.com/media-center/press-item.html/t4458.html

  98. Xing, L. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  99. Mansouree, M., McClung, A., Samudrala, S. & Arbabi, A. Large-scale parametrized metasurface design using adjoint optimization. ACS Photon. 17, 19 (2021).

    Google Scholar 

  100. Jiang, J. & Fan, J. A. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett. 19, 5366–5372 (2019).

    ADS  Google Scholar 

  101. Hughes, T. W., Minkov, M., Liu, V., Yu, Z. & Fan, S. A perspective on the pathway toward full wave simulation of large area metalenses. Appl. Phys. Lett. 119, 150502 (2021).

    ADS  Google Scholar 

  102. Chung, H., Chung, H., Miller, O. D. & Miller, O. D. High-NA achromatic metalenses by inverse design. Opt. Express 28, 6945–6965 (2020).

    ADS  Google Scholar 

  103. Lin, Z. et al. End-to-end metasurface inverse design for single-shot multi-channel imaging. Opt. Express 30, 28358–28370 (2022).

    ADS  Google Scholar 

  104. Huang, L., Colburn, S., Zhan, A. & Majumdar, A. Full-color metaoptical imaging in visible light. Adv. Photon. Res. 3, 2100265 (2022).

    Google Scholar 

Download references

Acknowledgements

A.A. acknowledges support from Manning/IALS innovation grant. A.F. acknowledges support from Caltech via the Rothenberg Innovation Initiative (RI2) and Clinard Innovation Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Arbabi or Andrei Faraon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Arka Majumdar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbabi, A., Faraon, A. Advances in optical metalenses. Nat. Photon. 17, 16–25 (2023). https://doi.org/10.1038/s41566-022-01108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01108-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing