Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interlinking spatial dimensions and kinetic processes in dissipative materials to create synthetic systems with lifelike functionality

Abstract

Biological systems spontaneously convert energy input into the actions necessary to survive. Motivated by the efficacy of these processes, researchers aim to forge materials systems that exhibit the self-sustained and autonomous functionality found in nature. Success in this effort will require synthetic analogues of the following: a metabolism to generate energy, a vasculature to transport energy and materials, a nervous system to transmit ‘commands’, a musculoskeletal system to translate commands into physical action, regulatory networks to monitor the entire enterprise, and a mechanism to convert ‘nutrients’ into growing materials. Design rules must interconnect the material’s structural and kinetic properties over ranges of length (that can vary from the nano- to mesoscale) and timescales to enable local energy dissipations to power global functionality. Moreover, by harnessing dynamic interactions intrinsic to the material, the system itself can perform the work needed for its own functionality. Here, we assess the advances and challenges in dissipative materials design and at the same time aim to spur developments in next-generation functional, ‘living’ materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic metabolisms that harness chemical energy to produce mechanical actions.
Fig. 2: Synthetic vasculatures.
Fig. 3: Transmission of impulses within biomimetic nervous systems.
Fig. 4: Materials systems controlled by the feedback loops.
Fig. 5: Growing polymeric materials.
Fig. 6: Materials as machines.

Similar content being viewed by others

References

  1. Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    CAS  ADS  Google Scholar 

  2. Balzani, V., Credi, A., Raymo, F. & Stoddart, J. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    CAS  ADS  Google Scholar 

  3. Feringa, B. L., van Delden, R. A., Koumura, N. & Geertsema, E. M. Chiroptical molecular switches. Chem. Rev. 100, 1789–1816 (2000).

    CAS  PubMed  Google Scholar 

  4. Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    CAS  PubMed  Google Scholar 

  5. Shirai, Y., Osgood, A. J., Zhao, Y., Kelly, K. F. & Tour, J. M. Directional control in thermally driven single-molecule nanocars. Nano Lett. 5, 2330–2334 (2005).

    CAS  PubMed  ADS  Google Scholar 

  6. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    CAS  PubMed  ADS  Google Scholar 

  7. Samudra, S. et al. Self-powered enzyme micropumps. Nat. Chem. 6, 415–422 (2014).

    Google Scholar 

  8. Balazs, A. C., Fischer, P. & Sen, A. Intelligent nano/micromotors: using free energy to fabricate organized systems driven far from equilibrium. Acc. Chem. Res. 51, 2979 (2018).

    CAS  PubMed  Google Scholar 

  9. Karshalev, E., Esteban-Fernandez de Avila, B. & Wang, J. Micromotors for ‘chemistry-on-the-fly’. J. Am. Chem. Soc. 140, 3810–3820 (2018).

    CAS  PubMed  Google Scholar 

  10. Fernández‐Medina, M., Ramos‐Docampo, M. A., Hovorka, O., Salgueiriño, V. & Städler, B. Recent advances in nano‐ and micromotors. Adv. Funct. Mater. 30, 1908283 (2020).

    Google Scholar 

  11. Walther, A. Viewpoint: From responsive to adaptive and interactive materials and materials systems: a roadmap. Adv. Mater. 32, 1905111 (2019).

    ADS  Google Scholar 

  12. Cafferty, B. J. et al. Robustness, entrainment, and hybridization in dissipative molecular networks, and the origin of life. J. Am. Chem. Soc. 141, 8289–8295 (2019).

    CAS  PubMed  Google Scholar 

  13. Semenov, S. N. et al. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature 537, 656–660 (2016).

    CAS  PubMed  ADS  Google Scholar 

  14. Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17, 371–382 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shum, H. & Balazs, A. C. Synthetic quorum sensing in model microcapsule colonies. Proc. Natl Acad. Sci. USA 114, 8475–8480 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Kondepudi, D. & Prigogine, I. Modern Thermodynamics: from Heat Engines to Dissipative Structures (Wiley, 2014).

  17. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952).

    MathSciNet  ADS  Google Scholar 

  18. Eckert, K., Bestehorn, M. & Thess, A. Square cells in surface-tension-driven Bénard convection: experiment and theory. J. Fluid Mech. 356, 155–197 (1998).

    MathSciNet  CAS  ADS  Google Scholar 

  19. Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Chiu, D. T. et al. Chemical transformations in individual ultrasmall biomimetic containers. Science 283, 1892–1895 (1999).

    CAS  PubMed  ADS  Google Scholar 

  21. Tu, B. P., Kudlicki, A., Rowicka, M. & McKnight, S. L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310, 1152–1158 (2005).

    CAS  PubMed  ADS  Google Scholar 

  22. Balazs, A., C. et al. Designing Biomimetic, Dissipative Material Systems (US Department of Energy Office of Scientific and Technical Information, 2016).

  23. Eder, M., Amini, S. & Fratzl, P. Biological composites—complex structures for functional diversity. Science 362, 543–547 (2018).

    CAS  PubMed  ADS  Google Scholar 

  24. Oxman, N. Material-Based Design Computation. PhD thesis, Massachusetts Institute of Technology (2010).

  25. Costa, J., Bader, C., Sharma, S., Xu, J. & Oxman, N. Spinning smooth and striated: integrated design and digital fabrication of bio-homeomorphic structures across scales. In Proc. IASS Annual Symposia, IASS 2018 Boston Symposium: Reimagining Material and Design (International Association for Shell and Spatial Structures (IASS), 2018).

  26. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    CAS  PubMed  ADS  Google Scholar 

  27. Trudy, R. L. Designing soft robots as robotic materials. Acc. Mater. Res. 2, 854–857 (2021).

    Google Scholar 

  28. Yasa, O. et al. An overview of soft robotics. Annu. Rev. Control Robot. Auton. Syst. 6, 1–29 (2023).

    Google Scholar 

  29. Roy, D., Cambre, J. N. & Sumerlin, B. S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35, 278–301 (2010).

    CAS  Google Scholar 

  30. McCracken, J. M., Donovan, B. R. & White, T. J. Materials as machines. Adv. Mater. 32, 1906564 (2020).

    CAS  Google Scholar 

  31. Liu, X. et al. Recent advances in stimuli‐responsive shape‐morphing hydrogels. Adv. Funct. Mater. 32, 2203323 (2022).

    CAS  Google Scholar 

  32. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    PubMed  ADS  Google Scholar 

  33. Liu, J., Gao, Y., Lee, Y.-J. & Yang, S. Responsive and foldable soft materials. Trends Chem. 2, 107–122 (2020).

    CAS  Google Scholar 

  34. Kang, M. Sublime Dreams of Living Machines: the Automaton in the European Imagination (Harvard University Press, 2011).

  35. Yoshida, R. & Ueki, T. Evolution of self-oscillating polymer gels as autonomous polymer systems. NPG Asia Mater. 6, e107 (2014).

    CAS  Google Scholar 

  36. van Roekel, H. W. H. et al. Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach. Chem. Soc. Rev. 44, 7465–7483 (2015).

    PubMed  Google Scholar 

  37. Semenov, S. N. et al. Rational design of functional and tunable oscillating enzymatic networks. Nat. Chem. 7, 160–165 (2015).

    CAS  PubMed  Google Scholar 

  38. Wong, A. S. Y. & Huck, W. T. S. Grip on complexity in chemical reaction networks. Beilstein J. Org. Chem. 13, 1486–1497 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fusi, G., Del Giudice, D., Skarsetz, O., Di Stefano, S. & Walther, A. Autonomous soft robots empowered by chemical reaction networks. Adv. Mater. 35, 2209870 (2023).

    CAS  Google Scholar 

  40. Grzybowski, B. & Huck, W. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016).

    CAS  PubMed  ADS  Google Scholar 

  41. Baytekin, B., Cezan, S. D., Baytekin, H. T. & Grzybowski, B. A. Artificial heliotropism and nyctinasty based on optomechanical feedback and no electronics. Soft Robot. 5, 93–98 (2018).

    PubMed  Google Scholar 

  42. Sharma, C. & Walther, A. Self-regulating colloidal co-assemblies that accelerate their own destruction via chemo-structural feedback. Angew. Chem. Int. Ed. 61, e2022015 (2022).

    Google Scholar 

  43. Morim, D. R. et al. Opto-chemo-mechanical transduction in photoresponsive gels elicits switchable self-trapped beams with remote interactions. Proc. Natl Acad. Sci. USA 117, 3953–3959 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  PubMed  ADS  Google Scholar 

  45. Shklyaev, O. E. & Balazs, A. C. Lifelike behavior of chemically oscillating mobile capsules. Matter 5, 3464–3484 (2022).

    CAS  Google Scholar 

  46. He, X. et al. Creating homeostasis in synthetic materials via self-regulating chemo-mechano-chemical systems with built-in feedback loops. Nature 487, 214–218 (2012).

    CAS  PubMed  ADS  Google Scholar 

  47. Yuan, P. et al. A programmable soft chemomechanical actuator exploiting a catalyzed photochemical water-oxidation reaction. Soft Matter 13, 7312–7317 (2017).

    CAS  PubMed  ADS  Google Scholar 

  48. Grinthala, A. & Aizenberg, J. Adaptive all the way down: building responsive materials from hierarchies of chemomechanical feedback. Chem. Soc. Rev. 42, 7072–7085 (2013).

    Google Scholar 

  49. Ma, X. et al. Reversed Janus micro/nanomotors with internal chemical engine. ACS Nano 10, 8751–8759 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu, L., Wang, A., Li, X. & Oh, K. W. Passive micropumping in microfluidics for point-of-care testing. Biomicrofluidics 14, 031503 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yuan, H., Liu, X., Wang, L. & Ma, X. Fundamentals and applications of enzyme powered micro/nano-motors. Bioact. Mater. 6, 1727–1749 (2021).

    CAS  PubMed  Google Scholar 

  52. Ortiz-Rivera, I., Shum, H., Agrawal, A., Sen, A. & Balazs, A. C. Convective flow reversal in self-powered enzyme micropumps. Proc. Natl Acad. Sci. USA 113, 2585–2590 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Valdez, L., Shum, H., Ortiz-Rivera, I., Balazs, A. C. & Sen, A. Solutal and thermal buoyancy effects in self-powered phosphatase micropumps. Soft Matter 13, 2800–2807 (2017).

    CAS  PubMed  ADS  Google Scholar 

  54. Shklyaev, O. E., Shum, H., Sen, A. & Balazs, A. C. Harnessing surface-bound enzymatic reactions to organize microcapsules in solution. Sci. Adv. 2, e1501835 (2016).

    PubMed  PubMed Central  ADS  Google Scholar 

  55. Laskar, A., Shklyaev, O. E. & Balazs, A. C. Designing self-propelled, chemically active sheets: wrappers, flappers and creepers. Sci. Adv. 4, eaav1745 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Manna, R. K., Shklyaev, O. E., Stone, H. A. & Balazs, A. C. Chemically controlled shape-morphing of elastic sheets. Mater. Horiz. 7, 2314–2327 (2020).

    CAS  Google Scholar 

  57. Manna, R. K., Shklyaev, O. E. & Balazs, A. C. Chemically driven multimodal locomotion of active, flexible sheets. Langmuir 39, 780–789 (2023).

    CAS  PubMed  Google Scholar 

  58. Laskar, A., Manna, R. K., Shklyaev, O. E. & Balazs, A. C. Computer modeling reveals modalities to actuate mutable, active matter. Nat. Commun. 13, 2689 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Mathesh, M., Bhattarai, E. & Yang, W. 2D active nanobots based on soft nanoarchitectonics powered by an ultralow fuel concentration. Angew. Chem. Int. Ed. 61, e202113801 (2021).

    Google Scholar 

  60. Kinstlinger, I. S. & Miller, J. S. 3D-printed fluidic networks as vasculature for engineered tissue. Lab Chip 16, 2025–2043 (2016).

    CAS  PubMed  Google Scholar 

  61. Yang, C., Yu, Y., Wang, X., Wang, Q. & Shang, L. Cellular fluidic-based vascular networks for tissue engineering. Eng. Regen. 2, 171–174 (2021).

    Google Scholar 

  62. Wu, W. et al. Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter 6, 739–742 (2010).

    CAS  ADS  Google Scholar 

  63. O’Connor, C., Brady, E., Zheng, Y., Moore, E. & Stevens, K. R. Engineering the multiscale complexity of vascular networks. Nat. Rev. Mater. 7, 702–716 (2022).

    PubMed  PubMed Central  ADS  Google Scholar 

  64. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    CAS  PubMed  ADS  Google Scholar 

  65. Taylor, J. M. et al. Biomimetic and biologically compliant soft architectures via 3D and 4D assembly methods: a perspective. Adv. Mater. 34, 2108391 (2022).

    CAS  Google Scholar 

  66. Truby, R. L. et al. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30, 1706383 (2018).

    Google Scholar 

  67. Valentine, A. D. et al. Hybrid 3D printing of soft electronics. Adv. Mater. 29, 1703817 (2017).

    Google Scholar 

  68. Maiti, S., Shklyaev, O. E., Balazs, A. C. & Sen, A. Self-organization of fluids in a multi-enzymatic pump system. Langmuir 35, 3724–3732 (2019).

    CAS  PubMed  Google Scholar 

  69. Qian, S., Wang, X. & Yan, W. Piezoelectric fibers for flexible and wearable electronics. Front. Optoelectron. 16, 3 (2023).

    PubMed  PubMed Central  Google Scholar 

  70. Ning, X. et al. Mechanically active materials in three-dimensional mesostructures. Sci. Adv. 4, eaat8313 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  71. Ni, X. et al. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nat. Commun. 13, 5576 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Kim, Y., van den Berg, J. & Crosby, A. J. Autonomous snapping and jumping polymer gels. Nat. Mater. 20, 1695–1701 (2021).

    CAS  PubMed  ADS  Google Scholar 

  73. Zhang, H. et al. Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction. Nat. Nanotechnol. 17, 1303–1310 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  74. Li, S. et al. Self-regulated non-reciprocal motions in single-material microstructures. Nature 605, 76–83 (2022).

    CAS  PubMed  ADS  Google Scholar 

  75. Eckstein, T. F., Vidal-Henriquez, E., Bae, A. J. & Gholami, J. Spatial heterogeneities shape the collective behavior of signaling amoeboid cells. Sci. Signal. 13, eaaz3975 (2020).

    CAS  PubMed  Google Scholar 

  76. Singer, G., Araki, T. & Weijer, C. J. Oscillatory cAMP cell–cell signalling persists during multicellular Dictyostelium development. Commun. Biol. 2, 139 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. Kim, Y. K., Wang, X., Mondkar, P., Bukusoglu, E. & Abbott, N. L. Self-reporting and self-regulating liquid crystals. Nature 557, 539–544 (2018).

    CAS  PubMed  ADS  Google Scholar 

  78. Chen, M. et al. Living additive manufacturing: transformation of parent gels into diversely functionalized daughter gels made possible by visible light photo-redox catalysis. ACS Cent. Sci. 3, 124–134 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  79. Singh, A., Kuksenok, O., Johnson, J. A. & Balazs, A. C. Photo-regeneration of severed gel with iniferter-mediated photo-growth. Soft Matter 13, 1978–1987 (2017).

    CAS  PubMed  ADS  Google Scholar 

  80. Beziau, A. et al. Photoactivated structurally tailored and engineered macromolecular (STEM) gels as precursors for materials with spatially differentiated mechanical properties. Polymer 126, 224–230 (2017).

    CAS  Google Scholar 

  81. Cuthbert, J. et al. Transformable materials: structurally tailored and engineered macromolecular (STEM) gels by controlled radical polymerization. Macromolecules 51, 3808–3817 (2018).

    CAS  ADS  Google Scholar 

  82. Xue, L. et al. Light-regulated growth from dynamic swollen substrates for making rough surfaces. Nat. Commun. 11, 963 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Xiong, X., Wang, S., Xue, L., Wang, H. & Cui, J. Growing strategy for postmodifying cross-linked polymers’ bulky size, shape, and mechanical properties. ACS Appl. Mater. Interfaces 14, 8473–8481 (2022).

    CAS  PubMed  Google Scholar 

  84. Chatterjee, R. et al. Controllable growth of interpenetrating or random copolymer networks. Soft Matter 17, 7177–7187 (2021).

    CAS  PubMed  ADS  Google Scholar 

  85. Matsuda, T., Kawakami, R., Namba, R., Nakajima, T. & Gong, J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363, 504–508 (2019).

    CAS  PubMed  ADS  Google Scholar 

  86. Dou, Y., Dhatt-Gauthier, K. & Bishop, K. J. M. Thermodynamic costs of dynamic function in active soft matter. Curr. Opin. Solid State Mater. Sci. 23, 28–40 (2019).

    CAS  ADS  Google Scholar 

  87. Chen, L. et al. The energy flow and mechanical modeling of soft chemo-mechanical machines. J. Appl. Phys. 124, 165111 (2018).

    ADS  Google Scholar 

  88. Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  89. Ford, M. J., Ohm, Y., Chin, K. & Majidi, C. Composites of functional polymers: toward physical intelligence using flexible and soft materials. J. Mater. Res. 37, 2–24 (2022).

    CAS  ADS  Google Scholar 

  90. Bensaude-Vincent, B. Materials as Machines 101–111 (Boston Studies in the Philosophy and History of Science Vol. 274, Springer, 2010).

  91. Sitti, M. Physical intelligence as a new paradigm. Extreme Mech. Lett. 46, 101340 (2021).

    PubMed  PubMed Central  Google Scholar 

  92. Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).

    CAS  PubMed  ADS  Google Scholar 

  93. McEvoy, M. A. & Correll, N. Materials science. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    CAS  PubMed  Google Scholar 

  94. Bénazet, J.-D. & Zeller, R. Vertebrate limb development: moving from classical morphogen gradients to an integrated 4-dimensional patterning system. Cold Spring Harb. Perspect. Biol. 1, 001339 (2009).

    Google Scholar 

  95. Cazimoglu, I., Booth, M. J. & Bayley, H. A lipid-based droplet processor for parallel chemical signals. ACS Nano 15, 20214–20224 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, J. et al. Light-powered, fuel-free oscillation, migration, and reversible manipulation of multiple cargo types by micromotor swarms. ACS Nano 17, 251–262 (2022).

    PubMed  Google Scholar 

  97. Manna, R. K., Laskar, A., Shklyaev, O. E. & Balazs, A. C. Harnessing the power of chemically active sheets in solution. Nat. Rev. Phys. 4, 125–137 (2022).

    Google Scholar 

  98. Elani, Y., Law, R. & Ces, O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat. Commun. 5, 5305 (2014).

    CAS  PubMed  ADS  Google Scholar 

  99. Fang, Y., Yashin, V. V., Levitan, S. P. & Balazs, A. C. Pattern recognition with ‘materials that compute’. Sci. Adv. 2, E1601114 (2016).

    PubMed  PubMed Central  ADS  Google Scholar 

  100. Fang, Y., Yashin, V. V., Levitan, S. P. & Balazs, A. C. Designing self-powered materials systems that perform pattern recognition. Chem. Commun. 53, 7692–7706 (2017).

    CAS  Google Scholar 

  101. Jing, L., Li, K., Yang, H. & Chen, P.-Y. Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Mater. Horiz. 7, 54–70 (2020).

    CAS  Google Scholar 

  102. Buckner, T. L., Bilodeau, R. A., Kim, S. Y. & Kramer-Bottiglio, R. Roboticizing fabric by integrating functional fibers. Proc. Natl Acad. Sci. USA 17, 25360–25369 (2020).

    ADS  Google Scholar 

  103. Hassani, F. A. et al. Smart materials for smart healthcare—moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater. 1, 92–124 (2020).

    Google Scholar 

  104. Cui, H. et al. Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science 376, 1287–1293 (2022).

    CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

A.C.B. thanks the US Department of Energy, Office of Science, Office of Basic Energy Sciences for DOE grant number DE-SC0012348.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna C. Balazs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Andreas Walther and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shklyaev, O.E., Balazs, A.C. Interlinking spatial dimensions and kinetic processes in dissipative materials to create synthetic systems with lifelike functionality. Nat. Nanotechnol. 19, 146–159 (2024). https://doi.org/10.1038/s41565-023-01530-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01530-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing