Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Nanotechnology for coral reef conservation, restoration and rehabilitation

The mounting environmental pressure on coral reefs calls for a rapid push towards innovative actions. Nanotechnology could help understand and protect present-day reefs to ensure their survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the coral holobiont partners, the existing nanotechnologies applied to reef-building corals, and promising applications to develop in the near future.

Adapted from an original figure by Hollie Putnam and Emma Strand

References

  1. Reich, H. G., Camp, E. F., Roger, L. M. & Putnam, H. M. Biol. Rev. https://doi.org/10.1111/brv.12922 (2022).

    Article  Google Scholar 

  2. Hughes, T. et al. Nature 546, 82–90 (2017).

    Article  CAS  Google Scholar 

  3. IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  4. Tresguerres, M. et al. J. Exp. Zool. 333, 449–465 (2020).

    Article  CAS  Google Scholar 

  5. Ahmerkamp, S. et al. Cell Rep. Methods 2, 100216 (2022).

    Article  CAS  Google Scholar 

  6. Motone, K. et al. Mar. Biotechnol. 20, 542–548 (2018).

    Article  CAS  Google Scholar 

  7. Roger, L. M., Russo, J. A., Jinkerson, R. E., Giraldo, J. P. & Lewinski, N. A. Front. Mar. Sci. 9, 1435 (2022).

    Article  Google Scholar 

  8. DeMerlis, A. et al. Coral Reefs 41, 435–445 (2022).

    Article  Google Scholar 

  9. Hoog Antink, M. M. et al. Ceram. Int. 44, 16561–16571 (2018).

    Article  CAS  Google Scholar 

  10. Luo, C. et al. ACS Appl. Bio Mater. 3, 1481–1495 (2020).

    Article  CAS  Google Scholar 

  11. Ge, L. et al. Colloids Surf. A Physicochem. Eng. Asp. 628, 127337 (2021).

    Article  CAS  Google Scholar 

  12. Roepke, L. K. et al. Sci. Rep. 12, 15935 (2022).

    Article  CAS  Google Scholar 

  13. Cirino, L. et al. Sci. Rep. 9, 18851 (2019).

    Article  CAS  Google Scholar 

  14. Cirino, L. et al. Cryobiology 98, 80–86 (2021).

    Article  CAS  Google Scholar 

  15. Moros, M. et al. MRS Commun. 8, 918–925 (2018).

    Article  CAS  Google Scholar 

  16. Neely, K. L., Macaulay, K. A., Hower, E. K. & Dobler, M. A. PeerJ 8, e9289 (2020).

    Article  Google Scholar 

  17. Eaton, K. R. et al. PLoS ONE 17, e0276902 (2022).

    Article  CAS  Google Scholar 

  18. Nowotny, J. D., Connelly, M. T. & Traylor-Knowles, N. Sci. Rep. 11, 1–9 (2021).

    Article  Google Scholar 

  19. Snyder, G. A., Browne, W. E. & Traylor-Knowles, N. J. Vis. Exp. 159, 2020.

  20. Zhou, S., Fu, E. S., Chen, B. & Yan, H. Micromachines 13, 832 (2022).

    Article  Google Scholar 

  21. Wangpraseurt, D. et al. Nature Commun. 11, 1748 (2020).

    Article  CAS  Google Scholar 

  22. Wangpraseurt, D. et al. Adv. Funct. Mater. 32, 2202273 (2022).

    Article  CAS  Google Scholar 

  23. Cleves, P. A., Strader, M. E., Bay, L. K., Pringle, J. R. & Matz, M. V. Proc. Natl Acad. Sci. USA 115, 5235 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation grants HDR 1939699 to N.A.L., HDR 1939795 to H.M.P., 1844536 and 2231621 to D.R., and 2149925 to D.W., the URI Research Council to H.M.P. and D.R., and the Gordon and Betty Moore Foundation Aquatic Symbiosis Model Systems (grant 9325) to S.C., D.W. and M.T. This material is based upon work supported by the Defense Advanced Research Projects Agency under the Reefense Program, BAA HR001121S0012 to D.W. The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liza Roger or Daniel Wangpraseurt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roger, L., Lewinski, N., Putnam, H. et al. Nanotechnology for coral reef conservation, restoration and rehabilitation. Nat. Nanotechnol. 18, 831–833 (2023). https://doi.org/10.1038/s41565-023-01402-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01402-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research