Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Nano-enabled strategies to enhance biological nitrogen fixation

Increasing the capacity of biological nitrogen fixation (BNF) is an effective strategy to enhance food security while simultaneously reducing the carbon and nitrogen footprint of agriculture. Nanotechnology offers several pathways to enhance BNF successfully.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanotechnology-based BNF enhancement strategies.

References

  1. Irisarri, P. et al. Frontiers Agronomy 3, 796717 (2021).

    Article  Google Scholar 

  2. Xu, S. et al. Nature 609, 299–306 (2022).

    Article  CAS  Google Scholar 

  3. Herridge, D. F., Giller, K. E., Jensen, E. S. & Peoples, M. B. Plant Soil 474, 1–15 (2022).

    Article  CAS  Google Scholar 

  4. Foyer, C. H. et al. Nat. Plants 2, 16112 (2016).

    Article  Google Scholar 

  5. Ramdath, D. D., Padhi, E. M. T., Sarfaraz, S., Renwick, S. & Duncan, A. M. Nutrients 9, 324 (2017).

    Article  Google Scholar 

  6. Leip, A. et al. Global Food Security 35, 100648 (2022).

    Article  Google Scholar 

  7. Kuypers, M. M. M., Marchant, H. K. & Kartal, B. Nat. Rev. Microbiol. 16, 263–276 (2018).

    Article  CAS  Google Scholar 

  8. Lowry, G. V., Avellan, A. & Gilbertson, L. M. Nat. Nanotechnol. 14, 517–522 (2019).

    Article  CAS  Google Scholar 

  9. Kwak, S.-Y. et al. Nat. Nanotechnol. 14, 447–455 (2019).

    Article  CAS  Google Scholar 

  10. Demirer, G. S. et al. Nat. Nanotechnol. 16, 243–250 (2021).

    Article  CAS  Google Scholar 

  11. Spielman-Sun, E. et al. Nanoscale 12, 3630–3636 (2020).

    Article  CAS  Google Scholar 

  12. Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Nat. Commun. 11, 2045 (2020).

    Article  CAS  Google Scholar 

  13. Zhang, P. et al. Environ. Science-Nano 6, 60–67 (2019).

    Article  CAS  Google Scholar 

  14. Zhang, P. et al. Nat. Plants 7, 864–876 (2021).

    Article  Google Scholar 

  15. Wyrzykowska, E. et al. Nat. Nanotechnol. 17, 924–932 (2022).

    Article  CAS  Google Scholar 

  16. Nakei, M. D., Venkataramana, P. B. & Ndakidemi, P. A. Frontiers Sustain. Food Syst. 6, 824444 (2022).

    Article  Google Scholar 

  17. Xu, T. et al. ACS Nano 16, 6034–6048 (2022).

    Article  CAS  Google Scholar 

  18. Cao, X. et al. Acs Nano 16, 1170–1181 (2022).

    Article  CAS  Google Scholar 

  19. Giraldo, J. P. et al. Nat. Mater. 13, 400–408 (2014).

    Article  CAS  Google Scholar 

  20. Wang, Y., Li, S., Liu, L., Lv, F. & Wang, S. Angew. Chem. Int. 56, 5308–5311 (2017).

    Article  CAS  Google Scholar 

  21. Ma, J., Zhou, Y., Li, J., Song, Z. & Han, H. J. Nanobiotechnol. 20, 168 (2022).

    Article  CAS  Google Scholar 

  22. Yuan, Z. et al. Nanoscale 9, 9921–9937 (2017).

    Article  CAS  Google Scholar 

  23. Jiang, D. et al. Chem. Soc. Rev. 48, 3683–3704 (2019).

    Article  CAS  Google Scholar 

  24. Wu, H., Tito, N. & Giraldo, J. P. ACS Nano 11, 11283–11297 (2017).

    Article  CAS  Google Scholar 

  25. Wang, Y. et al. Environ. Science Nano 7, 2930–2940 (2020).

    Article  CAS  Google Scholar 

  26. Okamoto, T. et al. Frontiers Plant Science 12, 719259 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

Funding support from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie FRIAS COFUND Fellowship Program for Junior and Senior Researchers, Phase 2 (grant agreement no. 754340) and via the NanoSolveIT project (grant agreement no. 814572) and the BBSRC Sustainable Agriculture Research Innovation Club grant (grant no. BB/R021716/1). The Royal Society International Exchange Programs (grant nos. 1853690 and 2122860), the National Key R&D Program of China (grant nos. 2017YFD0801103 and 2017YFD0801300), and the 111 project of the Education Ministry of China (grant no. B18053) the National Natural Science Foundation (grant no. 32130081) are also acknowledged. T.L.O'K., J.C.W., and C.L.H. acknowledge the support from the National Science Foundation under grant no. CHE-2001611, the NSF Center for Sustainable Nanotechnology. The CSN is part of the Centers for Chemical Innovation Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason C. White, Yukui Rui or Peng Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Gao, L., White, J.C. et al. Nano-enabled strategies to enhance biological nitrogen fixation. Nat. Nanotechnol. 18, 688–691 (2023). https://doi.org/10.1038/s41565-023-01392-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01392-5

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research