Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface

Abstract

The growing interest to develop modern digital displays and colour printing has driven the advancement of colouration technologies with remarkable speed. In particular, metasurface-based structural colouration shows a remarkable high colour saturation, wide gamut palette, chiaroscuro presentation and polarization tunability. However, previous approaches cannot simultaneously achieve all these features. Here, we design and experimentally demonstrate a surface-relief plasmonic metasurface consisting of shallow nanoapertures that enable the independent manipulation of colour hue, saturation and brightness by individually varying the geometric dimensions and orientation of the nanoapertures. We fabricate microscale artworks using a reusable template-stripping technique that features photorealistic and stereoscopic impressions. In addition, through the meticulous arrangement of differently oriented nanoapertures, kaleidoscopic information states can be decrypted by particular combinations of incident and reflected polarized light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the surface-relief silver metasurface.
Fig. 2: Experimental colour hues of the metasurface and theoretical fundamentals.
Fig. 3: Plasmonic sketch with continuous colour brightness tuning.
Fig. 4: Photorealistic plasmonic full-colour nanopainting.
Fig. 5: Experimental proof-of-concept for the steganography technique.

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article and its Supplementary Information files. All the relevant data are available from the corresponding author upon request.

References

  1. Kristensen, A. et al. Plasmonic colour generation. Nat. Rev. Mater. 2, 16088 (2016).

    Article  Google Scholar 

  2. Song, M. et al. Colors with plasmonic nanostructures: a full-spectrum review. Appl. Phys. Rev. 6, 041308 (2019).

    Article  CAS  Google Scholar 

  3. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  4. Luo, X., Tsai, D., Gu, M. & Hong, M. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem. Soc. Rev. 48, 2458–2494 (2019).

    Article  CAS  Google Scholar 

  5. Li, Y., van de Groep, J., Talin, A. A. & Brongersma, M. L. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device. Nano Lett. 19, 7988–7995 (2019).

    Article  CAS  Google Scholar 

  6. Chowdhury, S. N. et al. Lithography-free plasmonic color printing with femtosecond laser on semicontinuous silver films. ACS Photon. 8, 521–530 (2020).

    Article  Google Scholar 

  7. Huang, Y.-W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122–3127 (2015).

    Article  CAS  Google Scholar 

  8. Ellenbogen, T., Seo, K. & Crozier, K. B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. 12, 1026–1031 (2012).

    Article  CAS  Google Scholar 

  9. Neubrech, F., Duan, X. & Liu, N. Dynamic plasmonic color generation enabled by functional materials. Sci. Adv. 6, eabc2709 (2020).

    Article  CAS  Google Scholar 

  10. Duan, X., Kamin, S. & Liu, N. Dynamic plasmonic colour display. Nat. Commun. 8, 14606 (2017).

    Article  CAS  Google Scholar 

  11. Zhu, X., Vannahme, C., Højlund-Nielsen, E., Mortensen, N. A. & Kristensen, A. Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325–329 (2016).

    Article  CAS  Google Scholar 

  12. Xue, J. et al. Perturbative countersurveillance metaoptics with compound nanosieves. Light Sci. Appl. 8, 101 (2019).

    Article  Google Scholar 

  13. Yang, Z., Ji, C., Cui, Q. & Guo, L. J. High-purity hybrid structural colors by enhancing optical absorption of organic dyes in resonant cavity. Adv. Opt. Mater. 8, 2000317 (2020).

    Article  CAS  Google Scholar 

  14. Clausen, J. S. et al. Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett. 14, 4499–4504 (2014).

    Article  CAS  Google Scholar 

  15. Esposito, M. et al. Symmetry breaking in oligomer surface plasmon lattice resonances. Nano Lett. 19, 1922–1930 (2019).

    Article  CAS  Google Scholar 

  16. Joo, W.-J. et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 370, 459–463 (2020).

    Article  CAS  Google Scholar 

  17. Kumar, K. et al. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 7, 557–561 (2012).

    Article  CAS  Google Scholar 

  18. Xu, T., Wu, Y.-K., Luo, X. & Guo, L. J. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, 59 (2010).

    Article  Google Scholar 

  19. Wang, H. et al. Full color generation using silver tandem nanodisks. ACS Nano 11, 4419–4427 (2017).

    Article  CAS  Google Scholar 

  20. Rezaei, S. D. et al. Wide-gamut plasmonic color palettes with constant subwavelength resolution. ACS Nano 13, 3580–3588 (2019).

    Article  CAS  Google Scholar 

  21. Roberts, A. S., Pors, A., Albrektsen, O. & Bozhevolnyi, S. I. Subwavelength plasmonic color printing protected for ambient use. Nano Lett. 14, 783–787 (2014).

    Article  CAS  Google Scholar 

  22. Goh, X. M. et al. Three-dimensional plasmonic stereoscopic prints in full colour. Nat. Commun. 5, 5361 (2014).

    Article  CAS  Google Scholar 

  23. Tan, S. J. et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014).

    Article  CAS  Google Scholar 

  24. Shaltout, A. M., Kim, J., Boltasseva, A., Shalaev, V. M. & Kildishev, A. V. Ultrathin and multicolour optical cavities with embedded metasurfaces. Nat. Commun. 9, 2673 (2018).

    Article  Google Scholar 

  25. Hail, C. U., Schnoering, G., Damak, M., Poulikakos, D. & Eghlidi, H. A plasmonic painter’s method of color mixing for a continuous red–green–blue palette. ACS Nano 14, 1783–1791 (2020).

    Article  CAS  Google Scholar 

  26. Lee, J. S. et al. Ultrahigh resolution and color gamut with scattering-reducing transmissive pixels. Nat. Commun. 10, 4782 (2019).

    Article  Google Scholar 

  27. Wu, Y.-K., Hollowell, A. E., Zhang, C. & Guo, L. J. Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci. Rep. 3, 1194 (2013).

    Article  Google Scholar 

  28. Proust, J., Bedu, F., Gallas, B., Ozerov, I. & Bonod, N. All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano 10, 7761–7767 (2016).

    Article  CAS  Google Scholar 

  29. Li, Q., Wu, T., van de Groep, J., Lalanne, P. & Brongersma, M. L. Structural color from a coupled nanowire pair beyond the bonding and antibonding model. Optica 8, 464–470 (2021).

    Article  Google Scholar 

  30. Dong, Z. et al. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett. 17, 7620–7628 (2017).

    Article  CAS  Google Scholar 

  31. Sun, S. et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano 11, 4445–4452 (2017).

    Article  CAS  Google Scholar 

  32. Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105 (2018).

    Article  CAS  Google Scholar 

  33. Huo, P. et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface. Optica 7, 1171 (2020).

    Article  CAS  Google Scholar 

  34. Koshelev, K. & Kivshar, Y. Dielectric resonant metaphotonics. ACS Photon. 8, 102–112 (2021).

    Article  CAS  Google Scholar 

  35. Bao, Y. et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding. Adv. Funct. Mater. 28, 1805306 (2018).

    Article  Google Scholar 

  36. Zhou, J. et al. Visualizing Mie resonances in low-index dielectric nanoparticles. Phys. Rev. Lett. 120, 253902 (2018).

    Article  CAS  Google Scholar 

  37. Yang, W. et al. All-dielectric metasurface for high-performance structural color. Nat. Commun. 11, 1864 (2020).

    Article  CAS  Google Scholar 

  38. Yang, B. et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces. Nano Lett. 19, 4221–4228 (2019).

    Article  CAS  Google Scholar 

  39. Yang, J. H. et al. Structural colors enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano 14, 5678–5685 (2020).

    Article  CAS  Google Scholar 

  40. Bao, Y. et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue–saturation–brightness control. Light Sci. Appl. 8, 95 (2019).

    Article  Google Scholar 

  41. Jiang, M. et al. Patterned resist on flat silver achieving saturated plasmonic colors with sub-20-nm spectral linewidth. Mater. Today 35, 99–105 (2020).

    Article  CAS  Google Scholar 

  42. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

  43. Wu, S. et al. Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes. Phys. Rev. Lett. 110, 207401 (2013).

    Article  Google Scholar 

  44. Kelf, T. A. et al. Localized and delocalized plasmons in metallic nanovoids. Phys. Rev. B 74, 245415 (2006).

    Article  Google Scholar 

  45. Viguerie, L., Walter, P., Laval, E., Mottin, B. & Sole, V. A. Revealing the sfumato technique of Leonardo da Vinci by X-ray fluorescence spectroscopy. Angew. Chem. Int. Ed. 49, 6125–6128 (2010).

    Article  Google Scholar 

  46. Kudyshev, Z. A., Kildishev, A. V., Shalaev, V. M. & Boltasseva, A. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Appl. Phys. Rev. 7, 021407 (2020).

    Article  CAS  Google Scholar 

  47. Ma, W. et al. Deep learning for the design of photonic structures. Nat. Photon. 15, 77–90 (2021).

    Article  CAS  Google Scholar 

  48. Wiecha, P. R., Lecestre, A., Mallet, N. & Larrieu, G. Pushing the limits of optical information storage using deep learning. Nat. Nanotechnol. 14, 237–244 (2019).

    Article  CAS  Google Scholar 

  49. Dong, Z. et al. Schrödinger’s red pixel by quasi-bound-states-in-the-continuum. Sci. Adv. 8, eabm4512 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Key Research and Development Program of the Ministry of Science and Technology of China (2017YFA0303700 to Y.L. and T.X.), National Natural Science Foundation of China (62005117 to M.S.), the Natural Science Foundation of Jiangsu Province (BK20220068 to T.X. and BK20212004 to Y.L.) and the Fundamental Research Funds for the Central Universities (to T.X.).

Author information

Authors and Affiliations

Authors

Contributions

M.S. and T.X. conceived the idea. M.S. performed all the numerical simulations and imaging experiments. L.F. fabricated all the samples. P.H., M.L. and C.H. provided help with the fabrication and experiments. F.Y., Y.L. and T.X. supervised the project. All the authors discussed results and edited the manuscript.

Corresponding authors

Correspondence to Yan-qing Lu or Ting Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Jay Guo, Joel Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–11 and Supplementary Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Feng, L., Huo, P. et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat. Nanotechnol. 18, 71–78 (2023). https://doi.org/10.1038/s41565-022-01256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01256-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing