Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A DNA-based voltmeter for organelles

Abstract

The role of membrane potential in most intracellular organelles remains unexplored because of the lack of suitable tools. Here, we describe Voltair, a fluorescent DNA nanodevice that reports the absolute membrane potential and can be targeted to organelles in live cells. Voltair consists of a voltage-sensitive fluorophore and a reference fluorophore for ratiometry, and acts as an endocytic tracer. Using Voltair, we could measure the membrane potential of different organelles in situ in live cells. Voltair can potentially guide the rational design of biocompatible electronics and enhance our understanding of how membrane potential regulates organelle biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and characterization of Voltair probes.
Fig. 2: Targeting VoltairIM to membranes of specific endocytic organelles.
Fig. 3: VoltairIM measures lysosomal membrane potential.
Fig. 4: Membrane potential of organelles along endocytic, recycling and retrograde trafficking pathway.

Similar content being viewed by others

Data availability

The data supporting the plots in this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The MATLAB code for the voltage clamping experiments are available from the corresponding author upon reasonable request.

References

  1. Alberts, B. et al. Ion Channels and the Electrical Properties of Membranes. in Molecular Biology of the Cell 4th edn (Garland Science, 2002).

  2. Mousavi, S. A. R., Chauvin, A., Pascaud, F., Kellenberger, S. & Farmer, E. E. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500, 422–426 (2013).

    Article  CAS  Google Scholar 

  3. Grabe, M. & Oster, G. Regulation of organelle acidity. J. Gen. Physiol. 117, 329–344 (2001).

    Article  CAS  Google Scholar 

  4. Zhong, X. Z. & Dong, X.-P. Lysosome electrophysiology. Methods Cell. Biol. 126, 197–215 (2015).

    Article  CAS  Google Scholar 

  5. Meeusen, S., McCaffery, J. M. & Nunnari, J. Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747–1752 (2004).

    Article  CAS  Google Scholar 

  6. Ramzan, R., Staniek, K., Kadenbach, B. & Vogt, S. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim. Biophys. Acta 1797, 1672–1680 (2010).

    Article  CAS  Google Scholar 

  7. Wang, W. et al. A voltage-dependent K+ channel in the lysosome is required for refilling lysosomal Ca2+ stores. J. Cell Biol. 216, 1715–1730 (2017).

    Article  CAS  Google Scholar 

  8. Wang, X. et al. TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 151, 372–383 (2012).

    Article  CAS  Google Scholar 

  9. Dong, X.-P., Wang, X. & Xu, H. TRP channels of intracellular membranes. J. Neurochem. 113, 313–328 (2010).

    Article  CAS  Google Scholar 

  10. Srivastava, J., Barber, D. L. & Jacobson, M. P. Intracellular pH sensors: design principles and functional significance. Physiology 22, 30–39 (2007).

    Article  CAS  Google Scholar 

  11. Kulkarni, R. U. et al. Voltage-sensitive rhodol with enhanced two-photon brightness. Proc. Natl Acad. Sci. USA 114, 2813–2818 (2017).

    Article  CAS  Google Scholar 

  12. Miller, E. W. Small molecule fluorescent voltage indicators for studying membrane potential. Curr. Opin. Chem. Biol. 33, 74–80 (2016).

    Article  CAS  Google Scholar 

  13. Dan, K., Veetil, A. T., Chakraborty, K. & Krishnan, Y. DNA nanodevices map enzymatic activity in organelles. Nat. Nanotechnol. 14, 252–259 (2019).

    Article  CAS  Google Scholar 

  14. Leung, K., Chakraborty, K., Saminathan, A. & Krishnan, Y. A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol. 14, 176–183 (2019).

    Article  CAS  Google Scholar 

  15. Zhao, B. et al. Visualizing intercellular tensile forces by DNA-based membrane molecular probes. J. Am. Chem. Soc. 139, 18182–18185 (2017).

    Article  CAS  Google Scholar 

  16. Veetil, A. T. et al. DNA-based fluorescent probes of NOS2 activity in live brains. Proc. Natl Acad. Sci. USA 117, 14694–14702 (2020).

    Article  CAS  Google Scholar 

  17. Famulok, M., Hartig, J. S. & Mayer, G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev. 107, 3715–3743 (2007).

    Article  CAS  Google Scholar 

  18. Saha, S., Prakash, V., Halder, S., Chakraborty, K. & Krishnan, Y. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat. Nanotechnol. 10, 645–651 (2015).

    Article  CAS  Google Scholar 

  19. Modi, S., Nizak, C., Surana, S., Halder, S. & Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 8, 459–467 (2013).

    Article  CAS  Google Scholar 

  20. Rubaiy, H. N. A short guide to electrophysiology and ion channels. J. Pharm. Pharm. Sci. 20, 48–67 (2017).

    Article  CAS  Google Scholar 

  21. Lazzari-Dean, J. R., Gest, A. M. & Miller, E. W. Optical estimation of absolute membrane potential using fluorescence lifetime imaging. eLife 8, e44522 (2019).

    Article  CAS  Google Scholar 

  22. van Lengerich, B., Rawle, R. J. & Boxer, S. G. Covalent attachment of lipid vesicles to a fluid-supported bilayer allows observation of DNA-mediated vesicle interactions. Langmuir 26, 8666–8672 (2010).

    Article  CAS  Google Scholar 

  23. Chakraborty, K., Veetil, A. T., Jaffrey, S. R. & Krishnan, Y. Nucleic acid-based nanodevices in biological imaging. Annu. Rev. Biochem. 85, 349–373 (2016).

    Article  CAS  Google Scholar 

  24. Jin, L. et al. Characterization and application of a new optical probe for membrane lipid domains. Biophys. J. 90, 2563–2575 (2006).

    Article  CAS  Google Scholar 

  25. Fliegert, R. et al. Modulation of Ca2+ entry and plasma membrane potential by human TRPM4b. FEBS J. 274, 704–713 (2007).

    Article  CAS  Google Scholar 

  26. Post, S. R. et al. Class A scavenger receptors mediate cell adhesion via activation of G(i/o) and formation of focal adhesion complexes. J. Lipid Res. 43, 1829–1836 (2002).

    Article  CAS  Google Scholar 

  27. Rosenfeld, J. L. et al. Lysosome proteins are redistributed during expression of a GTP-hydrolysis-defective rab5a. J. Cell Sci. 114, 4499–4508 (2001).

    CAS  Google Scholar 

  28. Magadán, J. G., Barbieri, M. A., Mesa, R., Stahl, P. D. & Mayorga, L. S. Rab22a regulates the sorting of transferrin to recycling endosomes. Mol. Cell. Biol. 26, 2595–2614 (2006).

    Article  CAS  Google Scholar 

  29. Koivusalo, M., Steinberg, B. E., Mason, D. & Grinstein, S. In situ measurement of the electrical potential across the lysosomal membrane using FRET. Traffic 12, 972–982 (2011).

    Article  CAS  Google Scholar 

  30. Farsi, Z. et al. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles. Science 351, 981–984 (2016).

    Article  CAS  Google Scholar 

  31. Cang, C. et al. mTOR regulates lysosomal ATP-sensitive two-pore Na(+) channels to adapt to metabolic state. Cell 152, 778–790 (2013).

    Article  CAS  Google Scholar 

  32. Sun, X. et al. A negative feedback regulation of MTORC1 activity by the lysosomal Ca2+ channel MCOLN1 (mucolipin 1) using a CALM (calmodulin)-dependent mechanism. Autophagy 14, 38–52 (2018).

    Article  CAS  Google Scholar 

  33. Hockey, L. N. et al. Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition. J. Cell Sci. 128, 232–238 (2015).

    Article  CAS  Google Scholar 

  34. Lloyd-Evans, E., Waller-Evans, H., Peterneva, K. & Platt, F. M. Endolysosomal calcium regulation and disease. Biochem. Soc. Trans. 38, 1458–1464 (2010).

    Article  CAS  Google Scholar 

  35. Narayanaswamy, N. et al. A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat. Methods 16, 95–102 (2019).

    Article  CAS  Google Scholar 

  36. Chakraborty, K., Leung, K. & Krishnan, Y. High lumenal chloride in the lysosome is critical for lysosome function. eLife 6, e28862 (2017).

    Article  Google Scholar 

  37. Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009).

    Article  CAS  Google Scholar 

  38. Hover, S. et al. Bunyavirus requirement for endosomal K+ reveals new roles of cellular ion channels during infection. PLoS Pathog. 14, e1006845 (2018).

    Article  CAS  Google Scholar 

  39. Cain, C. C., Sipe, D. M. & Murphy, R. F. Regulation of endocytic pH by the Na+,K+-ATPase in living cells. Proc. Natl Acad. Sci. USA 86, 544–548 (1989).

    Article  CAS  Google Scholar 

  40. Schapiro, F. B. & Grinstein, S. Determinants of the pH of the Golgi complex. J. Biol. Chem. 275, 21025–21032 (2000).

    Article  CAS  Google Scholar 

  41. Gagescu, R. et al. The recycling endosome of Madin-Darby canine kidney cells is a mildly acidic compartment rich in raft components. Mol. Biol. Cell. 11, 2775–2791 (2000).

    Article  CAS  Google Scholar 

  42. Numata, M. & Orlowski, J. Molecular cloning and characterization of a novel (Na+,K+)/H+ exchanger localized to the trans-Golgi network. J. Biol. Chem. 276, 17387–17394 (2001).

    Article  CAS  Google Scholar 

  43. Raffaello, A., Mammucari, C., Gherardi, G. & Rizzuto, R. Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem. Sci. 41, 1035–1049 (2016).

    Article  CAS  Google Scholar 

  44. Atakpa, P., Thillaiappan, N. B., Mataragka, S., Prole, D. L. & Taylor, C. W. IP3 Receptors preferentially associate with ER-lysosome contact sites and selectively deliver Ca2+ to lysosomes. Cell Rep. 25, 3180–3193.e7 (2018).

    Article  CAS  Google Scholar 

  45. Russa, A. D. et al. Microtubule remodeling mediates the inhibition of store-operated calcium entry (SOCE) during mitosis in COS-7 cells. Arch. Histol. Cytol. 71, 249–263 (2008).

    Article  CAS  Google Scholar 

  46. Lloyd-Evans, E. On the move, lysosomal CAX drives Ca2+ transport and motility. J. Cell Biol. 212, 755–757 (2016).

    Article  CAS  Google Scholar 

  47. Yang, H. H. & St-Pierre, F. Genetically encoded voltage indicators: opportunities and challenges. J. Neurosci. 36, 9977–9989 (2016).

    Article  CAS  Google Scholar 

  48. Vaithianathan, T., Henry, D., Akmentin, W. & Matthews, G. Nanoscale dynamics of synaptic vesicle trafficking and fusion at the presynaptic active zone. eLife 5, e13245 (2016).

    Article  Google Scholar 

  49. Jani, M. S., Zou, J., Veetil, A. T. & Krishnan, Y. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat. Chem. Biol. 16, 660–666 (2020).

    Article  CAS  Google Scholar 

  50. Acarón Ledesma, H. et al. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol. 14, 645–657 (2019).

    Article  CAS  Google Scholar 

  51. Prakash, V. et al. Quantitative mapping of endosomal DNA processing by single molecule counting. Angew. Chem. Int. Ed. Engl. 58, 3073–3076 (2019).

    Article  CAS  Google Scholar 

  52. Lahann, J. Click Chemistry for Biotechnology and Materials Science (John Wiley & Sons, 2009).

  53. Thekkan, S. et al. A DNA-based fluorescent reporter maps HOCl production in the maturing phagosome. Nat. Chem. Biol. 15, 1165–1172 (2019).

    Article  CAS  Google Scholar 

  54. Moore, D. & Dowhan, D. Purification and concentration of DNA from aqueous solutions. Curr. Protoc. Mol. Biol. https://doi.org/10.1002/0471142727.mb0201as59 (2002).

  55. Vonderheit, A. & Helenius, A. Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol. 3, e233 (2005).

    Article  CAS  Google Scholar 

  56. Grimm, C., Vierock, J., Hegemann, P. & Wietek, J. Whole-cell patch-clamp recordings for electrophysiological determination of ion selectivity in channelrhodopsins. J. Vis. Exp. https://doi.org/10.3791/55497 (2017).

  57. Dong, X.-P. et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455, 992–996 (2008).

    Article  CAS  Google Scholar 

  58. Surana, S., Bhat, J. M., Koushika, S. P. & Krishnan, Y. An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat. Commun. 2, 340 (2011).

    Article  CAS  Google Scholar 

  59. Van Galen, J. et al. Sphingomyelin homeostasis is required to form functional enzymatic domains at the trans-Golgi network. J. Cell Biol. 206, 609–618 (2014).

    Article  CAS  Google Scholar 

  60. Modi, S., Halder, S., Nizak, C. & Krishnan, Y. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways. Nanoscale 6, 1144–1152 (2014).

    Article  CAS  Google Scholar 

  61. Zhang, Q. et al. Functional relevance of Golgi- and plasma membrane-localized endothelial NO synthase in reconstituted endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 1015–1021 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Kuriyan, J. C. Clardy, J. W. Szostak, H. Xu and F. Bezanilla for critical comments; K. Chakraborty, X. Zhang, J. L. C. Souza, J. Delgado and Y. Jiang for discussions; and the integrated light microscopy and mass spectrometry facilities at the University of Chicago. This work was supported by the Women’s Board of the University of Chicago; FA9550-19-0003 from AFOSR, NIH grants R21NS114428, 1R01NS112139-01A1, Pilot and Feasibility award from an NIH-NIDDK Center grant P30DK42086 to the University of Chicago’s Digestive Diseases Research Center; and Chicago Biomedical Consortium with support from the Searle Funds at the Chicago Community Trust, C-084. M.S. was a Heisenberg fellow supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Contributions

A.S., A.T.V. and Y.K. designed the project. A.S., A.T.V. and K.S.P. synthesized the probe, A.S. and J.D. built the instrumentation, and A.S., J.D. and B.S. performed the experiments. M.S. provided a scavenger receptor plasmid. A.S. and Y.K. designed the experiments and analysed and interpreted the data. A.S. and Y.K. wrote the paper. All authors provided input on the manuscript.

Corresponding author

Correspondence to Yamuna Krishnan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Yonggang Ke, Haoxing Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic of lysosomal Vmem measurement.

Imaging protocol of organelles labelled with VoltairIM. Resting organelles are imaged in the G and R channels, neutralized with valinomycin-monensin. The second set of images is acquired in the G and R channels. The resting membrane potential of the organelle is calculated by normalizing the G/R values from untreated lysosomes (xi) to neutralized lysosomes (yi).

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Notes 1–6, Tables 1,2.

Supplementary Video 1

Pseudo-coloured video showing the sensitivity of RVF. RVF-labelled HEK 293T cells were voltage clamped from −100 mV to +100 mV at increments of 10 mV in extracellular buffer. The clamped cell is shown by a white arrow; scale = 10 µm.

Supplementary Video 2

Pseudo-coloured video showing the sensitivity of VoltairPM. Labelled HEK 293T cells were voltage clamped from −100 mV to +100 mV at increments of 10 mV in extracellular buffer. The RVF channel shows the fluorescence change with respect to the membrane potential, whereas Atto647N fluorescence is insensitive to the applied voltage increments. The G/R ratio quantitatively shows the change in the membrane potential difference; scale = 10 µm.

Supplementary Video 3

Time-lapse imaging of lysosomal membrane potential in COS-7 cells labelled with VoltairIM. ML-SA1 (20 µM) or Vehicle (DMSO) is added to cells at 100 s. The pseudo-coloured images represent the computed intensity ratio of VoltairIM in the G (RVF) and R (Atto647N) channels. The cell of interest is represented by a white ROI (region of interest); scale = 10 µm.

Supplementary Video 4

Time-lapse imaging of endosomal membrane potential in COS-7 cells labelled with VoltairIM. ML-SA1 (20 µM) is added to cells at 100 s. The pseudo-coloured images represent the computed intensity ratio of VoltairIM in the G (RVF) and R (Atto647N) channels. The cell of interest is represented by a white ROI (region of interest); scale = 10 µm.

Supplementary Video 5

Time-lapse imaging of cytosolic calcium levels in ATP-treated COS-7 cells, labelled with Fluo-4 AM. 100 µM ATP is added to cells at 35 s. The pseudo-coloured images represent the intensity of Fluo-4 in a heat map; scale = 10 µm.

Supplementary Video 6

Time-lapse imaging of lysosomal membrane potential in ATP-treated COS-7 cells labelled with VoltairIM. 100 µM ATP or 1X PBS is added to cells at 35 s. The pseudo-coloured images represent the computed intensity ratio of VoltairIM in the G (RVF) and R (Atto647N) channels. The cell of interest is represented by a white ROI (region of interest). The white arrowheads indicate the lysosomes undergoing ATP-induced hyperpolarization. The decrease in G/R (observed in movie) represents the increase in positive membrane potential; scale = 10 µm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saminathan, A., Devany, J., Veetil, A.T. et al. A DNA-based voltmeter for organelles. Nat. Nanotechnol. 16, 96–103 (2021). https://doi.org/10.1038/s41565-020-00784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-00784-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing