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No evidence for a common blood 
microbiome based on a population study of 
9,770 healthy humans

Cedric C. S. Tan    1,2 , Karrie K. K. Ko1,3,4,5, Hui Chen    1, Jianjun Liu1, 
Marie Loh6,7,8, SG10K_Health Consortium, Minghao Chia1,9  
& Niranjan Nagarajan    1,5,9 

Human blood is conventionally considered sterile but recent studies 
suggest the presence of a blood microbiome in healthy individuals. Here 
we characterized the DNA signatures of microbes in the blood of 9,770 
healthy individuals using sequencing data from multiple cohorts. After 
filtering for contaminants, we identified 117 microbial species in blood, 
some of which had DNA signatures of microbial replication. They were 
primarily commensals associated with the gut (n = 40), mouth (n = 32) and 
genitourinary tract (n = 18), and were distinct from pathogens detected in 
hospital blood cultures. No species were detected in 84% of individuals, 
while the remainder only had a median of one species. Less than 5% of 
individuals shared the same species, no co-occurrence patterns between 
different species were observed and no associations between host 
phenotypes and microbes were found. Overall, these results do not support 
the hypothesis of a consistent core microbiome endogenous to human 
blood. Rather, our findings support the transient and sporadic translocation 
of commensal microbes from other body sites into the bloodstream.

In recent years, there has been considerable interest regarding the 
existence of a microbiome in the blood of healthy individuals, and its 
links to health and disease. Human blood is traditionally considered a 
sterile environment, where the occasional entry and proliferation of 
pathogens in blood can trigger a dysregulated host response, result-
ing in severe clinical sequelae such as sepsis, septic shock or death1. 
Additionally, asymptomatic transient bacteraemia (that is, bacterial 
presence in blood) in blood donors is known to be a major cause of 
transfusion-related sepsis2. Recent studies have suggested the presence 
of multiple microbial species circulating in healthy human blood3–7 

(reviewed in ref. 8). However, most of these studies were either done 
in relatively small cohorts or lacked rigorous checks to distinguish true 
biological measurements from different sources of contamination8. As 
such, the concept of a microbial community in healthy human blood 
remains controversial. We analysed blood DNA sequencing data from a 
population study of healthy individuals, comprising multiple cohorts 
processed by different laboratories with varied sequencing kits. By lev-
eraging the large dataset (n = 9,770) complete with batch information 
in our systematic analyses for potential contaminants, we investigated 
whether a blood microbiome truly exists in the general population.
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insufficient disinfection of the skin puncture site20. Sequencing-based 
approaches are especially sensitive to microbial DNA contaminants 
native to laboratory reagent kits (that is, the ‘kitome’)19, exacerbated 
by the low microbial biomass and high host background in blood that 
increases the noise-to-signal ratio17. Few studies so far have provided 
a comprehensive profile of the breadth and prevalence of microbial 
species in blood in light of these challenges. Furthermore, several 
aspects of the ‘blood microbiome’ remain unclear: are the detected 
microbes endogenous to blood or translocated from other body sites? 
Is there a core set of microbes that circulates in human blood? Is there 
a microbial community whose structure and function could influence  
host health?

To address these questions, we performed presumably the 
largest-scale analysis of blood sequencing data so far, on the basis of 
DNA libraries for 9,770 healthy individuals from six distinct cohorts 
(Supplementary Table 1). We differentiated blood microbial DNA sig-
natures from potential reagent contaminants and sequence analysis 
artefacts, leveraging the different reagent kits used to process each 
cohort. We detected 117 microbial species in the blood of these healthy 
individuals, most of which are commensals associated with the micro-
biomes of other body sites. Additionally, we identified DNA signatures 
of replicating bacteria in blood using coverage-based peak-to-trough 
ratio analyses21,22, providing a culture-independent survey that has not 
been done previously. Despite this, we found no evidence for micro-
bial co-occurrence relationships, core species or associations with 
host phenotypes. These findings challenge the paradigm of a ‘blood 
microbiome’ and instead support a model whereby microbes from 
other body sites (for example, gut, mouth) sporadically translocate 
into the bloodstream of healthy individuals, albeit more commonly 
than previously assumed. Overall, our observations serve to establish 

For meaningful discourse, it is useful to formalize what a hypo-
thetical ‘blood microbiome’ entails. The ‘microbiome’ should refer to 
a community of microbes that interact with each other and with the 
environment in their ecological niche9. Therefore, in a blood micro-
biome, microbes should exhibit community structures indicated by 
co-occurrence or mutual exclusion of species10 as seen in the microbi-
omes of other sites such as the gut11 or mouth12. Furthermore, we may 
expect the presence of core microbial species, which can be defined 
as species that are frequently observed and shared across individu-
als13,14, such as Staphylococcus epidermidis on human skin15. Taxa that 
are found in a substantial fraction of samples from distinct individuals 
(that is, with high prevalence) may be considered ‘core’. The prevalence 
threshold for defining core taxa is arbitrary, with previous microbiome 
studies using values ranging from 30–100% and many opting for 100%14. 
Regardless, identifying core microbes in blood would form the basis 
for associating microbiome changes with human health.

Existing evidence for a blood microbiome in healthy individu-
als comes from both culture-based3,4 and culture-independent5–7 
approaches. The former involves blood culture experiments, while the 
latter includes the following molecular methods: 16S ribosomal RNA 
(rRNA) quantitative polymerase chain reaction (qPCR), 16S rRNA ampli-
con sequencing and/or shotgun sequencing of RNA or DNA. Depending 
on the study design, these results should be interpreted with caution 
due to several methodological and technical limitations including small 
sample sizes, limited taxonomic resolution, difficulties in distinguish-
ing cell-free microbial DNA from live microbial cells and the ubiquity of 
environmental contamination8,16–19. In particular, microbial DNA con-
taminants introduced during sample collection and processing must be 
accounted for to characterize the blood microbiome. Contaminating 
microbial cells can also be introduced due to poor aseptic technique or 
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Fig. 1 | Robust identification of microbial DNA signatures in blood.  
a, Summary of pre-processing steps and filters applied to taxonomic profiles 
(n = 9,770 individuals) and the number of species retained after each filter.  
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a much needed baseline for the use of clinical metagenomics in inves-
tigating bloodstream infections.

Results
Inferring blood microbial DNA signatures with multicohort 
analysis
Blood samples from healthy individuals typically contain low microbial 
biomass and high host DNA background17, making it difficult to discrimi-
nate between biologically relevant signals from artefactual ones. We first 
addressed artefacts arising during bioinformatic sequence analysis by 
performing stringent quality control on samples (Fig. 1a), comprising 
read-quality trimming and filtering, removing low-complexity sequences 
of ambiguous taxonomic origin, excluding human reads (Methods) and 
removing samples with low microbial reads (<100 read pairs). Following 
this, we obtained a species-level characterization of microbial DNA sig-
natures in blood for most (n = 8,892) samples. To minimize false-positive 
taxonomic assigments, we discriminated between species that are likely 
present from those that could be misclassification artefacts using an 
abundance cut-off (Methods). We validated the reliability of the microbial 
species detected via ‘Kraken2’ (ref. 23) by aligning reads to their reference 
genomes, where a high coverage breadth delineated true positives from 
computational artefacts24,25. We further observed an excellent linear 
relationship between the number of Kraken2-assigned read pairs and the 
number of aligned read pairs on the log10 scale (slope = 1.15; two-sided 
F-test, F = 154, d.f. = 1, P < 0.001; Extended Data Fig. 1), suggesting that 
Kraken2 reliably identified taxa in blood. These findings collectively 
provide confidence that the microbial species detected in our blood 
sequencing libraries are not likely sequence analysis artefacts.

To address artefacts from reagent and handling contamination, we 
used a series of stringent decontamination filters (Fig. 1a and Methods). 
These filters are based on the observation that laboratory contami-
nants are often correlated with each other (within-batch consistency) 
and biased towards specific laboratory batches (between-batch vari-
ability; Extended Data Fig. 2)26. Similar analyses based on these patterns 
have been used previously and were found to be highly effective for 
the in silico identification of laboratory contaminants27–29. The identi-
fication of batch-specific contaminants in this study was aided by the 
availability of multiple large cohorts of healthy individuals (Supple-
mentary Table 1) and corresponding rich batch information, including 
reagent kit types and lot numbers. After accounting for reagent and 
handling contaminants, we obtained a list of 117 microbial species that 
were detected in the whole blood samples of 8,892 individuals (Sup-
plementary Table 2). These microbes spanned 56 genera comprising 
110 bacteria, 5 viruses and 2 fungi.

To estimate the effectiveness of our filtering strategy in improving 
biological signal while reducing contamination noise, we examined 
the types of microbial species detected in our dataset before (870 
species) and after (117 species) all filters were applied (Fig. 1b–d). First, 
the microbial species were cross-referenced against a published list 
of contaminant genera in sequencing data19,30. From this list, genera 
were either classified as likely contaminants, mixed-evidence (that is, 
both a pathogen and common contaminant) or potential pathogens/
commensals. Following decontamination, the proportion of detected 
species that were classified as contaminants decreased from 21% to 10% 
(Fig. 1b). Next, the microbial species were compared against human 
blood culture records spanning more than a decade (2011–2021) from 
a tertiary hospital (Fig. 1c). The proportion of species that had been 
cultured from blood increased from 12% to 27% after decontamination, 
suggesting that our filtering procedures enriched for microbial species 
capable of invading the bloodstream. Finally, we compared the propor-
tion of human-associated microbes before and after decontamination 
using a database describing the host range of pathogens31 (Fig. 1d). 
For species not found in this database, a systematic PubMed search 
(Methods) was performed to determine whether there was at least one 
past report of human infection. The proportion of human-associated 

species increased from 40% to 78% after decontamination, indicating 
that these species are more likely to be biologically relevant. Finally, we 
tested our results against the null hypotheses that the 117 microbial spe-
cies retained after decontamination produced the same proportions 
of species classified as likely contaminants, human-associated, or that 
were detected in blood culture compared to species picked at random 
(Methods). Our decontamination filters significantly decreased the 
proportions of likely contaminants while increasing the proportions 
of human-associated species and those detected in blood cultures 
(all one-sided randomization tests P < 0.005; Extended Data Fig. 3). 
Overall, by using a set of contaminant-identification heuristics, our 
filters are sensitive and specific in retaining biologically relevant taxa 
while removing likely contaminants.

Sporadic translocation of DNA from commensals in healthy 
blood
We next determined the fraction of healthy individuals for which 
microbes could be detected (that is, prevalence). The most preva-
lent microbial species, Cutibacterium acnes, was observed in 4.7% of 
individuals (Fig. 2a), suggesting that none of the 117 microbes were 
‘core’ species across most healthy individuals. Additionally, we did 
not detect any microbial species in most (82%) of the samples after 
decontamination (Fig. 2b), whereas the remaining 18% had a median 
of only one microbial species per sample. Low microbial prevalence 
was not due to insufficient sequencing depth since there was a weak 
negative correlation between the number of confidently detected 
species and the total microbial read count per sample (Spearman’s 
ρ = −0.279, two-sided t-test, P < 0.001). Furthermore, some samples 
containing no microbial species had a microbial read count of up to 
~2.1 million (median = 6,187 reads; distribution shown in Extended 
Data Fig. 4). Although a considerable number of reads were classi-
fied as microbial, they were all assigned to contaminant species. Our 
results suggest that the presence of microbes in the blood of healthy 
individuals is infrequent and sporadic.

Given past reports of bacterial translocation from the mouth32 
or gut33 into blood, we asked whether the microbes we detected 
could have originated from various body sites. We assigned poten-
tial body site origins to our list of 117 blood microbes on the basis of 
microbe-to-body-site mappings extracted from the Disbiome data-
base34. We found that many (n = 59; 50%) of the 117 species were human 
commensals associated with various body sites (Fig. 2c). While some 
of these species may be contaminants that have survived our stringent 
decontamination filters, this observation, together with their low 
prevalence, suggests that the DNA of many of these species may have 
transiently translocated from other organs rather than being endog-
enous to blood. A substantial proportion (n = 42; 36%) of the species 
were obligate anaerobes or obligate intracellular microbes atypical 
of skin-associated microbes that might have been introduced during 
phlebotomy2, indicating that they are not likely to be sampling arte-
facts (Fig. 2d). Overall, the diverse origins of the microbes detected in 
blood, together with their low prevalence across a healthy population, 
is consistent with sporadic translocation of commensals, or their DNA, 
into the bloodstream.

Bacteraemia is typically associated with a range of clinical sequelae 
from mild fevers to sepsis. We asked whether the common microbes 
identified in patients with bacteraemia were different from those 
in healthy individuals by comparing the prevalence of microbes in 
our dataset against observations from 11 years of hospital blood cul-
ture records. The prevalence of microbial genera from blood culture 
records clearly differed from that in our dataset, despite the overlap in 
detected taxa (Fig. 2e). For example, while Staphylococcus, Escherichia 
and Klebsiella were predominant in blood cultures, they were rare 
in our cohorts. We performed a similar comparison with a previous 
study35 that sequenced the blood of sepsis patients and found a simi-
lar difference in prevalence compared to our dataset (Extended Data  
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Fig. 5), confirming that our observations were not due to differences in 
sequencing vs culture-based detection methods. A possible explana-
tion for these differences could be the higher virulence of pathogens 
detected in the clinic, which are more likely to cause symptoms in 
individuals who would have been excluded during study recruitment. 
Conversely, if the microbial signatures in our dataset came from whole 
cells, these species might be better tolerated by the immune system 
in healthy individuals (for example, Bifidobacterium spp.36 and Fae-
calibacterium prausnitizii37 with immunomodulatory properties as 
gut commensals; Fig. 2a).

Evidence of replicating microbes in blood sans community 
structure
We asked whether blood microbial DNA signatures reflected the pres-
ence of viable microbial cells as opposed to circulating cell-free DNA. 

In contrast to previous approaches that used microbial cultures3,38, 
we looked for more broad-based evidence of live bacterial growth by 
applying replication rate analyses21,22 to our sequenced blood samples. 
In replicating bacteria, there should be increased coverage of DNA reads 
(that is, peak) nearer to the origin of replication (Ori) and decreased cov-
erage (that is, trough) nearer to the terminus (Ter), leading to a coverage 
peak-to-trough ratio (PTR) > 1 (ref. 22). We found evidence for replica-
tion of 11 bacterial species out of the 20 that were sufficiently abundant 
to do this analysis (Table 1). The median-smoothed coverage plots of the 
replicating species all exhibited the sinusoidal coverage pattern (Fig. 3a, 
black pattern) characteristic of replicating bacterial cells22, contrasting 
with the even coverage patterns of three representative contaminants: 
Achromobacter xylosoxidans, Pseudomonas mendocina and Alcaligenes 
faecalis (Fig. 3b). The Ori and Ter positions determined using coverage 
biases largely corresponded with an orthogonal method based on 
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the GC-skew39 of bacterial genomes, suggesting that the replication 
rate analyses are reliable. Additionally, all but one of these replicating 
species are present in hospital blood culture records and in previous 
reports of bacteraemia40–49 (Table 1), indicating their ability to replicate 
in human blood. Overall, beyond the detection of microbial DNA, we 

identified culture-independent molecular signatures for microbial 
replication in human blood.

Given the DNA signatures of replicating bacteria, we investigated 
whether microbe–microbe interactions could be detected in healthy 
blood. We computed pairwise ‘SparCC’ correlations50 between species, 

Table 1 | Summary statistics for samples where bacterial species were deemed to be replicating using iRep21 (that is, 
peak-to-trough ratio (PTR) > 1)

Subject ID Species Possible origin Reported in 
blood

Read pairs assigned 
by Kraken2

Overall prevalence 
(%)

PTR

WHB4594 Fusobacterium nucleatum • Genitourinary tract
• Gut
• Mouth

Yes 194,199 0.11 1.68

WHB9179 Neisseria subflava • Gut
• Mouth

Yes 15,385 0.16 1.51

WHB9179 Haemophilus parainfluenzae • Gut
• Mouth
• Respiratory tract

Yes 12,183 0.2 1.17

WHB4035 Fannyhessea vaginae • Genitourinary tract Yes 10,395 0.24 1.88

WHB6459 Staphylococcus epidermidis • Gut
• Mouth
• Respiratory tract
• Skin

Yes 9,140 0.85 1.57

WHB10710 Lactobacillus crispatus • Genitourinary tract
• Gut
• Mouth

Yes 7,799 1.06 1.57

0116–0053 Acinetobacter baumannii • Mouth Yes 7,673 0.31 1.9

WHB9179 Neisseria flavescens Yes 3,787 0.06 1.38

WHB9978 Rickettsia sp. Tillamook 23 No 2,923 0.02 1.35

WHH1248 Moraxella osloensis Yes 2,402 1.91 1.33

WHB9812 Corynebacterium imitans Yes 1,976 0.02 1.59
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where positive and negative values indicate co-occurrence and mutual 
exclusion, respectively. We visualized correlations of the 117 blood 
microbial species using network graphs (Fig. 4a). We could not detect 
strong community co-occurrence/mutual exclusion patterns, with 
most associations being weak (|correlation| < 0.05), and only 19 pair-
wise associations exceeding a correlation magnitude of 0.2 (Fig. 4a). To 
determine whether this was due to overly stringent decontamination, 
we generated independent network graphs for the five adult cohorts 
before decontamination and examined the co-occurrence/mutual 
exclusion associations shared across cohorts. We identified no associa-
tions common to all the network graphs (Fig. 4b), indicating that there 
were no consistent detectable microbial associations in blood that are 
typically seen in other microbiomes.

No association between blood microbes and host phenotypes
Previous studies have used blood microbial DNA as disease biomarkers, 
demonstrating associations with cancer30, type II diabetes51 and peri-
odontal disease52. Likewise, we investigated whether the presence of 
microbes was associated with host phenotypes in our dataset. We first 
examined whether microbes were detected more frequently in infants 
(GUSTO cohort) relative to adult cohorts, given that the still-developing 
immune systems of infants put them at a greater relative risk of infec-
tion53. GUSTO samples had a higher prevalence of microbes associ-
ated with most human body sites (Extended Data Fig. 6a). This was in 
part driven by genitourinary tract-associated microbes Fannyhessea 
vaginae, Lactobacillus jensenii, Lactobacillus crispatus, Lactobacillus 

iners and Gardnerella vaginalis (Extended Data Fig. 6b). Similarly, we 
found enrichment of gut-associated bacteria such as Bifidobacterium 
spp. in GUSTO (Extended Data Fig. 6c). These findings suggest that 
bacterial translocation may be more frequent in infants relative to 
adults, although differences in sample collection (umbilical cord vs 
venipuncture) could also explain these differences. A future study 
controlling for differences in sampling methods would be useful to 
further explore this observation.

Next, we tested for pairwise associations between eight host phe-
notypes that were documented on the day of blood collection and 
the presence of each of the 117 blood microbial species. These host 
phenotypes were: sex, ancestry, age, body mass index (BMI), blood 
total cholesterol (TC), blood triglycerides (TG), systolic and diastolic 
blood pressure (SBP and DBP). True associations are expected to be 
consistent across cohorts in our dataset since they were sampled from 
the same population. We found only five significant microbe–phe-
notype associations (two-sided Fisher’s exact or Mann-Whitney U 
test, P < 0.05; Supplementary Table 3) after adjusting for multiple 
comparisons. Notably, all but one of the significant associations were 
present in only one cohort. The exception was C. acnes, which was more 
prevalent in individuals of Malay ancestry within the SEED cohort, but 
more prevalent in Chinese individuals within the MEC cohort (Extended 
Data Fig. 7). These cohort-specific differences could be due to other 
demographic variables that were not recorded in this study, or perhaps 
from C. acnes subspecies differences. To ensure that we did not miss 
associations due to the possible nonlinearity of host phenotype and 
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After decontamination (117 species)
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n = 476 (samples with >1 microbial species)

|Corr.|>0.05  |Corr.|>0.2 |Corr.|>0.3

HELIOS (n = 2,282) TTSH (n = 629) SEED (n = 590) MEC (n = 2,746) PRISM (n = 1,257)

Fig. 4 | Microbial co-occurrence networks. a, SparCC50 co-occurrence 
networks computed for all samples with at least two microbial species following 
decontamination at different SparCC correlation thresholds (0.05, 0.2, 0.3). 
Only associations with a magnitude of SparCC correlation greater than the 
respective thresholds are retained. b, SparCC networks for individual cohorts at 
a correlation threshold of 0.2. No co-occurrence associations were retained after 

taking the intersection of edges between all cohort networks. In a and b, each 
node represents a single microbial species, and each edge a single association 
between a pair of microbial species. Edge thickness is scaled by the magnitude 
of correlation. The number of samples used to compute each network and 
the correlation thresholds used are annotated. Positive and negative SparCC 
correlations are indicated in green and blue, respectively.
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microbial relationships, we derived categorical phenotypes. These 
included being elderly (age ≥ 65) and other measures of ‘poorer 
health’, such as being obese (BMI > 30), having high blood triglycer-
ides (TG > 2.3 mmol l−1), total cholesterol (TC ≥ 6.3 mmol l−1) or blood 
pressure (SBP ≥ 130 and DBP ≥ 80). We found no significant associations 
between these derived phenotypes and the presence of any microbial 
species (two-sided Fisher’s exact test, P > 0.05; Supplementary Table 4). 
Collectively, these results suggest no consistent associations between 
microbial presence in blood and the host phenotypes tested within a 
healthy population.

Discussion
We present presumably the largest-scale analysis so far of microbial 
signatures in human blood while accounting for computational and 
contamination artefacts and found no evidence for a common blood 
microbiome across healthy individuals. Instead, we observed sporadic 
instances of blood harbouring DNA from single microbial species of 
diverse bodily origins, some of which might be actively replicating. The 
bloodstream allows microbes to move between different body sites 
in healthy individuals. However, the low prevalence of the detected 
species suggests that this movement is likely to be infrequent and tran-
sient. Unresolved questions remain about how interconnected the 
microbiomes at various body sites are, and whether these processes 
are altered during disease. Can perturbations to the microbial com-
munity at one body site affect those at another site? How does the 
host immune system asymptomatically regulate microbial presence 
in blood? Our study lays the groundwork for future investigations into 
these questions.

We employed a series of decontamination filters to differentiate 
microbial signatures in blood from artefactual signals associated with 
reagent and handling contamination, on the basis that the latter dis-
play strong batch-specific biases (Extended Data Fig. 2 and Methods). 
Although our approach substantially improved the signal-to-noise 
ratio (Fig. 1b–d), it is probably not fully effective in removing con-
taminants because a fraction of the 117 microbial species remaining 
after decontamination were still flagged as being of environmental 
or non-human origin (Fig. 1b,d). Future studies should leverage our 
comparisons to various microbial databases (Fig. 1b–d) to prioritize 
some of these 117 species for validation, primarily those that are not 
common contaminants, are detected in blood cultures and are human 
associated (Supplementary Table 2). Nevertheless, we could not detect 
a common blood microbiome despite the likely presence of residual 
contamination artefacts.

We observed DNA signatures of replicating microbes in blood 
via replication rate analyses. However, we could not distinguish sig-
nals arising from replicating microbes in blood from those derived 
from microbial cells that were recently replicating at other body sites 
before entering the bloodstream. Notably, while we detected replica-
tion signatures in 11 out of 20 species with sufficient coverage across 
their genomes, we could not detect any among the 20 most prevalent 
contaminant species identified by our decontamination filters, includ-
ing species from the genera Alcaligenes, Caulobacter, Bradyrhizobium 
and Sphingomonas. This further indicates that the microbial species 
with detectable replication signatures in our dataset are not likely to 
be part of the ‘kitome’. These findings highlight the use of replication 
analyses for discriminating between putatively genuine taxa versus 
‘kitome’ contaminants in future metagenomic studies.

We found no core species in human blood on the basis of low 
prevalence across individuals in our dataset, but this is contingent 
on the sensitivity of detecting microbes through sequencing. How-
ever, previous studies have shown that metagenomic sequencing is 
highly sensitive for the detection of blood microbes at 20–30 million 
reads per sample35,54,55. In comparison, our libraries were sequenced 
deeply (median = 373 million reads), suggesting that our methods 
do not lack sensitivity. Our prevalence estimates are also affected 

by the abundance thresholds used to determine whether a species is 
present in a single sample (Fig. 1a). These included both absolute read 
count and relative abundance thresholds that were defined following 
simulation experiments (see Methods). However, even when using a 
single and more relaxed relative abundance threshold of 0.001, none 
of the species had more than 52% prevalence (Supplementary Table 
5). Furthermore, the 20 most prevalent species at this threshold are 
all environmental microbes, mostly comprising Sphingomonas and 
Bradyrhizobium species, which are common sequencing-associated 
contaminants19. Therefore, independent of our decontamination 
thresholds, none of the species detected qualify as core members.

We could not detect any strong co-occurrence (cooperative) 
or mutual exclusion (competitive) associations56 between species 
regardless of whether decontamination filters were applied. Within a 
microbial community, metabolic dependencies of species and meta-
bolic complementation are key drivers of microbial co-occurrence57. 
Conversely, competitive behaviours such as nutrient sequestration and 
selective adhesion58 can lead to microbial mutual exclusion. The lack of 
strong associations between microbial species points to the absence of 
an interacting microbial community in the blood of healthy humans. Of 
note, since our dataset was derived from circulating venous blood, we 
were unable to measure microbial interactions that may be occurring 
at other sites of the bloodstream, such as the inner endothelial lining. 
Experiments investigating bacterial adhesion to endothelial linings 
may provide further insights as to whether such interactions exist.

The availability of blood culture records from the same country 
of origin as our blood samples enabled a reliable comparison of micro-
bial prevalence in the healthy population and in the clinic59. Some of 
the variation in prevalence estimates may be due to differences in 
detection methods. However, previous studies have shown a strong 
concordance between culture and sequencing-based detection35,54,60,61, 
indicating that most of the observed variation is not due to the use 
of different detection methods. Our results indicate that microbial 
presence in blood does not always lead to disease. This is consistent 
with our other observation that microbial DNA detected in healthy 
asymptomatic individuals tends to be from commensals, which may 
inherently be less virulent and better tolerated by the host compared 
to disease-causing pathogens. Indeed, circulating commensals may 
exhibit immunomodulatory phenotypes, akin to gut microbes62,63, 
facilitating asymptomatic co-existence with the host. Perhaps, the 
presence (or lack) of immunomodulatory properties may determine 
whether an individual with bacteraemia is asymptomatic or septic. 
Further exploration of the immunomodulatory activities of commen-
sals vis-à-vis common blood culture pathogens may aid the design of 
therapies that modulate dysregulated host responses during sepsis1.

We found no consistent associations between both measured 
(for example, TC, SBP) or derived (for example, obesity) host pheno-
types, and microbial presence. This suggests that the risk of transient 
microbial translocation across our cohorts of healthy adults is consist-
ent across host phenotypes. However, this may not hold for diseased 
individuals since microbial DNA profiles in blood have been used to 
delineate health versus disease states, such as sepsis35,54,55,60,61,64 and 
a range of other diseases unrelated to bloodstream infections30,52,65. 
These studies highlight the promise of blood metagenomic sequenc-
ing for developing diagnostic, prognostic or therapeutic tools, but 
the biological basis of their findings remain unclear. One hypothesis 
is that mucosal and epithelial barrier integrity is compromised dur-
ing disease or physiological stress66, leading to higher translocation 
rates of microbes into the bloodstream and resulting in altered blood 
microbial profiles. Future studies testing this hypothesis may consider 
a focus on the gut or mouth-associated bacteria that were detected in 
our study (for example, Bifidobacterium adolescentis, Faecalibacterium 
prausnitzii, Streptococcus mitis). Further investigations into these 
mechanisms may improve our understanding of why blood microbial 
profiles correlate with health status, and our characterization of the 
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diversity of species in the blood of healthy individuals forms a crucial 
baseline to do so.

In conclusion, if we take the definition of a ‘microbiome’ as a micro-
bial community whose member species interact among themselves and 
with their ecological niche9, we found no consistent circulating blood 
microbiome in healthy individuals (Extended Data Fig. 8). Sporadic and 
transient translocation of commensals from other body sites into the 
bloodstream is the more parsimonious explanation for the observation 
that most blood microbes are commensals found in other body sites. 
Furthermore, the relatively low prevalence of microbes in blood sug-
gests rapid clearance of translocated microbes rather than prolonged 
colonization. On the basis of these findings, we advocate against the 
use of the terms ‘blood microbiome’ or ‘circulating microbiome’, which 
are potentially misleading when referring to the detection of microbial 
DNA or of microbial cells in blood due to transient translocation events.

Methods
Datasets
All individuals in the participating cohorts were recruited with signed 
informed consent from the participating individual or parent/guardian 
in the case of minors. All cohort studies were approved by relevant insti-
tutional ethics review boards and a summary of the cohort demograph-
ics and the ethics review approval reference numbers are provided in 
Supplementary Table 1. Our sequencing dataset, also known as the 
SG10K_Health dataset (https://www.npm.sg/collaborate/partners/
sg10k/), comprises shotgun sequencing libraries of DNA extracted from 
the whole blood or umbilical cord blood of 9,770 healthy Singaporean 
individuals who were recruited as part of six independent cohorts. 
Individuals were deemed to be healthy if they did not have any personal 
history of major disorders such as stroke, cardiovascular diseases, 
cancer, diabetes and renal failure. Oral health information was not col-
lected and therefore was not part of the exclusion criteria. Whole blood 
for sequencing was collected via venipuncture only from the five adult 
cohorts (median age = 49; interquartile range = 16): Health for Life in 
Singapore (HELIOS, n = 2,286), SingHealth Duke-NUS Institute of Preci-
sion Medicine (PRISM, n = 1,257), Tan Tock Seng Hospital Personalised 
Medicine Normal Controls (TTSH, n = 920), Singapore Epidemiology 
of Eye Diseases (SEED, n = 1,436)67,68 and the Multi-Ethnic Cohort (MEC, 
n = 2,902)69. Additionally, cord blood was collected only for the birth 
cohort Growing Up in Singapore Towards healthy Outcomes (GUSTO, 
n = 969)70. Measurement of host phenotypes was performed on the day 
of blood collection, except for the GUSTO cohort where measurements 
were taken at a later timepoint when the children were at a median age 
of 6.1 years (interquartile range = 0.1). Individuals were broadly catego-
rized, in a previous study71, into four ethnic categories representing 
distinct genetic ancestries: Chinese (59%), Malays (19%), Indians (21%) 
and Others (1%). All individuals were deemed healthy at the point of 
recruitment if they did not include any self-reported diseases in the 
recruitment questionnaires. No participant compensation was pro-
vided within the context of this study. No statistical methods were used 
to pre-determine sample sizes but our sample sizes far exceed those 
reported in previous publications (reviewed in ref. 8).

Additionally, we retrieved anonymized blood culture records 
from Singapore General Hospital, the largest tertiary hospital in Sin-
gapore. These records spanned the years 2011–2021 and included aero-
bic, anaerobic and fungal blood cultures taken from 282,576 unique 
patients. These blood cultures were ordered as part of routine clinical 
management, that is, when clinically indicated for the investigation of 
bacteraemia or fungemia. Blood cultures were performed and analysed 
following hospital standard operating procedures. In brief, blood sam-
ples were collected aseptically and inoculated into BD BACTEC bottles 
at the bedside (BD BACTEC Plus Aerobic/F culture vials plastic (442023) 
for aerobic blood culture, BD BACTEC Plus Anaerobic/F culture vials 
plastic (442022) for anaerobic blood culture and Myco/F Lytic (42288) 
for fungal blood culture). The inoculated bottles were transported to 

the diagnostic laboratory at ambient temperature and incubated in the 
BD BACTEC FX blood culture system on arrival. Aerobic and anaerobic 
blood culture bottles were incubated for a maximum of 5 d, and fungal 
blood culture bottles were incubated for a maximum of 28 d. Blood 
culture bottles that were flagged positive by the BD BACTEC FX blood 
culture system were inoculated onto solid media, and the resultant 
colonies were identified using a combination of biochemical tests 
and matrix assisted laser desorption ionization-time of flight mass 
spectrometry (MALDI-TOF MS) (Bruker microflex LRF).

Sample preparation and batch metadata
Samples were processed in batches and were not randomized for 
sequencing. However, batch information for each sample was retained 
and used to correct for batch-specific effects. This includes the type of 
extraction kits and library preparation kits used, and lot numbers for 
the SBS kits, PE Cluster kits and sequencing flowcells used. DNA from 
whole blood was extracted using one of six different DNA extraction 
kits. Paired-end 151 bp sequencing with an insert size of 350 bp was 
performed for up to 15-fold or 30-fold coverage of the human genome. 
Library preparation was performed using one of three library prepara-
tion kits. Sequencing was performed on the Illumina HiSeq X platform 
with HiSeq PE Cluster kits and HiSeq SBS kits. All reagent kits used, the 
number of batches and the number of samples processed per batch are 
provided in Supplementary Table 6.

Data pre-processing and quality control
The bioinformatic processing steps applied to the sequencing libraries 
are summarized in Fig. 1a. Read alignment of sequencing reads to the 
GRCh38 human reference genome was performed as described in a sep-
arate study72 using BWA-MEM v0.7.1773. We retrieved read pairs where 
both members of the pair did not map to the human genome using 
Samtools v1.15.174 and Bedtools v2.30.075, after which we performed 
quality control of the sequencing reads. We trimmed low-quality bases 
at the ends of reads with quality <Q10 (base-quality trimming) and 
discarded reads with average read quality less than Q10 (read-quality 
filter). We also discarded low-complexity sequences with an average 
entropy less than 0.6, with a sliding window of 50 and k-mer length 
of 5 (low-complexity read filter). All basic quality control steps were 
performed using bbduk from the BBTools suite v37.62 (sourceforge.
net/projects/bbmap/).

Taxonomic classification of blood sequencing libraries
Taxonomic classification of non-human reads was done using Kraken2 
v2.1.223 with the ‘–paired’ flag. We used the PlusPF database (17 May 
2021 release; https://genome-idx.s3.amazonaws.com/kraken/k2_
pluspf_20210517.tar.gz), which includes archaeal, bacterial, viral, 
protozoan and fungal references. Of all non-human read pairs, 72% 
were classified as microbial at the species level, yielding 8,890 spe-
cies. Samples with fewer than 100 microbial read pairs were removed, 
resulting in a final dataset comprising 8,892 samples, with a median 
microbial read-pair count of 6,187.

To minimize noise in the taxonomic assignments, we defined a 
set of abundance thresholds whereby species with abundance values 
less than or equal to these thresholds (that is, relative abundance 
≤0.005, read pairs assigned ≤10) were counted as absent (set to zero 
read counts). We performed simulations to systematically determine 
a relative abundance threshold that minimizes false-positive species 
assignments. Sequencing reads were simulated using InSilicoSeq 
v1.5.476, with error models trained on the SG10K_Health sequencing 
libraries and processed using the same bioinformatic steps as the 
SG10K_Health dataset to obtain microbial taxonomic profiles. We simu-
lated 373 million reads equivalent to the median library read count of all 
samples, comprising reads from the GRCh38 human reference and ten 
microbial genomes (Yersinia enterocolitica, Leclercia adecarboxylata, 
Moraxella osloensis, Streptococcus pneumoniae, Pasteurella multocida, 
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Staphylococcus epidermidis, Actinomyces viscosus, Torque teno virus, 
Human betaherpesvirus 6A and Candida albicans) in various propor-
tions. Due to read misclassification, some of the simulated reads were 
erroneously assigned to another species and produced false positives. 
A final relative abundance threshold of 0.005 that delineated these 
false-positive assignments from true positives was selected (Extended 
Data Fig. 9a). Following the application of these thresholds, the rela-
tive abundance distribution of microbial taxa classified as present was 
found to be distinct from the distribution of those classified as absent 
(Extended Data Fig. 9b). Furthermore, the distribution of abundances 
for microbe-negative samples is centred around a relative abundance 
of 0.0001, that is, at least tenfold below the typical relative abundance 
thresholds used to determine whether a taxon is present or absent 
(0.001–0.04514). Relative abundances were calculated by dividing the 
species-specific microbial read count in a sample by the total number 
of microbial reads assigned to that sample.

Decontamination filters
After application of the presence/absence filter, we identified and 
removed putative contaminants using established decontamination 
heuristics26 that have been validated in previous studies27,28, before our 
downstream analyses. These rules were applied using eight types of 
batch information: source cohort, DNA extraction kit type, library prep-
aration kit type, lot numbers for sequencing-by-synthesis kit (box 1,  
box 2), paired-end cluster kit (box 1, box 2) and sequencing flow cell 
used. Other batch information such as the pipettes and consumables 
used, or storage location and duration were not recorded but could 
potentially contribute to some level of batch-specific contamination. 
However, these batches are expected to be correlated with the other 
types of batch information available, hence the resultant contaminants 
could in theory be accounted for using our filters. We describe the four 
decontamination filters used, as shown in Fig. 1a, in sequential order:

 (1) Prevalence filter. A microbial species is considered a con-
taminant specific to a batch if it is present at greater than 25% 
prevalence in that batch and has greater than a twofold higher 
prevalence than that for any other batch. Batches with fewer 
than 100 samples were excluded from this analysis. This filter is 
based on the principle that species which are highly prevalent in 
some batches but lowly prevalent or absent in others are likely 
contaminants26. We illustrate this for an example species in 
Extended Data Fig. 10a.

 (2) Correlation filter. A microbial species is considered a contami-
nant if it is highly correlated (Spearman’s ρ > 0.7) with any con-
taminant within the same batch, as identified by the prevalence 
filter. This filter is based on the principle that contaminants are 
highly correlated within the same batch26. Spearman’s ρ was 
calculated using centred log-ratio-transformed77 microbial 
relative abundances. Centred log-ratio transformations and 
Spearman’s ρ were calculated using the clr function of the com-
positions package78 and cor.test function in R. We illustrate this 
within-batch correlation for an example species in Extended 
Data Fig. 10b.

 (3) Batch filter. A non-contaminant microbial species must be de-
tected in samples processed by at least two reagent kit batches 
or reagent types. That is, any species that is only detected in a 
single batch for any of the reagent kits used (Supplementary 
Table 6) are considered contaminants. This filter is based on the 
principle that species that can be repeatedly observed across 
different reagent batches are more likely to reflect genuine 
non-contaminant signals26. Library preparation kit type was 
excluded from this analysis since only three kit types were used, 
with 86% of samples processed using one of the kits.

 (4) Read-count filter. A microbial species is considered a sequenc-
ing or analysis artefact if it is not assigned at least 100 reads in 

at least one sample. This filter is based on the principle that spe-
cies that are always assigned a low number of read pairs never 
exceeding the background noise within sequencing libraries 
are more likely to be artefactual rather than genuine signals. An 
example of an artefactual species is ‘Candidatus Nitrosocosmi-
cus franklandus’, which was assigned at most 22 read pairs by 
Kraken2 across 21 sequenced samples.

To demonstrate the effectiveness of our decontamination filters, 
we additionally tested our results against the null hypothesis that 
the 117 microbial species retained after decontamination produced 
the same proportions of species classified as likely contaminants, 
human-associated or detected in blood culture compared to picking 
these species at random. In this analysis, we generated 1,000 sets of 117 
microbial species that were randomly selected from the list of species 
before decontamination and compared the species to the three data-
bases (see Fig. 1b–d). P values were calculated by taking the proportion 
of random iterations that generated proportions of species classified as 
likely contaminants, detected in blood or human-associated that were 
as extreme or more extreme than those observed for the 117 species 
retained by our decontamination filters.

Characterization of microbial species
We classified microbial species as human-associated or not on the basis 
of a published host–pathogen association database31. In this database, 
host–pathogen associations are defined by the presence of at least one 
documented infection of the host by the pathogen31. For species that 
were not found in this database, we performed a systematic PubMed 
search using the search terms: (microbial species name) AND (human) 
AND ((infection) OR (commensal)). Similarly, species that had at least 
one published report of human colonization/infection were consid-
ered human-associated. Additionally, we classified the potential body 
site origins for each microbial species using the Disbiome database, 
which collects data and metadata of published microbiome studies in 
a standardized way34. We extracted the information for all microbiome 
experiments in the database using the URL: ‘https://disbiome.ugent.
be:8080/experiment’ (accessed 26 April 2022). We first extracted 
microbe-to-sample-type mappings from this information (for example, 
C. acnes→skin swab). We then manually classified each sample type into 
different body sites (for example, skin swab→skin). This allowed us to 
generate microbe-to-body-site mappings. Sample types with ambigu-
ous body site origins (for example, abscess pus) were excluded. The 
range of sample types within the Disbiome database used to derive the 
microbe-body-site mappings are provided in Supplementary Table 7.  
Finally, we classified microbial species on the basis of their growth 
requirements, with reference to a clinical microbiology textbook79. 
Viruses were classified as obligate intracellular. The microbiological 
classifications for each species are provided in Supplementary Table 2.

Estimating coverage breadth and bacterial replication rates
We performed read alignment of sequencing libraries to microbial ref-
erence genomes using Bowtie v2.4.580 with default parameters. In total, 
we used references for 28 of the 117 microbial species detected in blood, 
comprising all bacterial species with at least 1,000 Kraken2-assigned 
read pairs in a single sample and all viral species (n = 5). For each spe-
cies, we aligned the microbial reads of five sample libraries with the 
most reads assigned to that species, to the reference genome of that 
species. For each sample and microbial genome, the genome coverage 
per position was computed using the pileup function of the Rsamtools 
v2.8.0 package81 in R. In principle, the recovery of a large fraction of a 
microbial genome, as opposed to sporadic reads mapping to particular 
regions on said genome, provides a higher confidence that the species 
is truly present in a sample24,25. We could recover at least 10% of the 
microbial genomes for 27 of the 28 species (96%). Since it is difficult to 
assess coverage breadth for a species covered by a low number of reads, 
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we only performed this analysis on all viruses (n = 5) and all bacterial 
species with at least 1,000 Kraken2-assigned read pairs (n = 23), which 
corresponds to ~10% coverage over a typical 3 Mbp bacterial genome 
(assuming non-overlapping reads). For the replication rate analyses, 
PTR values were calculated using the bPTR function in iRep v1.1.021, 
which is based on a previously proposed method22. The Ori and Ter posi-
tions were determined on the basis of the coverage peaks and troughs 
(Fig. 3, in red and blue, respectively). Ori and Ter positions were also 
calculated using a cumulative GC-skew line, which is expected to be in 
anti-phase with the sinusoidal coverage pattern across the genome39 
(Fig. 3, in green).

Microbial networks
Microbial co-occurrence/mutual exclusion associations were com-
puted using the SparCC algorithm50 implemented in the SPIEC-EASI 
v1.1.2 package82 in R, and the microbial networks were visualized using 
Igraph v1.2.983. We excluded the birth cohort GUSTO since it is of a 
different demographic that may possess a distinct set of microbial 
associations.

Detecting associations between microbial taxonomic profiles 
and host phenotypes
We tested for microbe–host phenotype associations within indi-
vidual cohorts separately. For the two categorical host phenotypes, 
genetic sex and ancestry, we tested for differences in the prevalence 
of each microbial species between the different categories using a 
two-sided Fisher’s exact test (fisher.test function in R). For the continu-
ous variables (age, BMI, TC, TG, SBP and DBP), we used a two-sided 
Mann-Whitney U test (wilcox.test function in R) to test for differences in 
the distributions of the variables when a species was present or absent. 
Benjamini-Hochberg multiple-testing correction was applied only after 
consolidating the P values from both tests and for all cohorts using the 
P.adjust function in R. Statistical tests were only performed if a spe-
cies was present in at least 50 samples in total. Separately, for derived 
phenotypes (that is, being elderly or measures of ‘poorer health’), 
we used the Fisher’s exact test before applying Benjamini-Hochberg 
multiple-testing correction. In all cases, samples with missing host 
phenotype data were excluded. All data analysed fulfilled the assump-
tions of the statistical tests used.

Data analysis and visualization
All data analyses were performed using R v4.1.0 or Python v3.9.12. 
Visualizations were performed using ggplot v3.3.584. Extended Data Fig. 
8 was created using BioRender.com under an academic subscription.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The authors of this study do not own the rights to the SG10K_Health 
dataset, and this dataset is under controlled access to ensure good data 
governance, responsible data use, and that the dataset is only used 
for the intended research purposes in compliance with SG10K_Health 
study cohort IRB and ethics approval. Users interested in accessing the 
SG10K_Health individual-level data (WGS and VCF files) are required 
to submit a Data Access Request outlining the proposed research for 
approval by the NPM Data Access Committee (DAC), which convenes 
monthly. The forms and data access policy can be downloaded via the 
SG10K_Health portal (https://npm.a-star.edu.sg/help/NPM) upon regis-
tration with an institutional email address. For more information, users 
can contact the National Precision Medicine Programme Coordinating 
Office, A*STAR (contact_npco@gis.a-star.edu.sg). The average turna-
round timeframe for a request is 4–6 weeks from receipt of request to 
receiving a notification outcome from the NPM DAC on whether the 

application is accepted/rejected/requires amendments. The approved 
requestor will be asked to sign a non-negotiable data access agreement 
to ensure that (1) the data are used only for the proposed research 
purpose, (2) no attempt is made to re-identify the participants, (3) 
there is no onward sharing of the data to a third party and (4) a standard 
acknowledgement statement is included in the manuscript.
All source data used for our analyses are hosted on Zenodo (https://doi.
org/10.5281/zenodo.7665281), including Kraken2 taxonomic profiles of 
all real and simulated sequencing libraries, and the anonymized blood 
culture records. The accession numbers for all genome references 
used are provided in Supplementary Table 8. The PlusPF database 
(17 May 2021 release) can be accessed online (https://genome-idx.
s3.amazonaws.com/kraken/k2_pluspf_20210517.tar.gz). The Disbiome 
database34 can be accessed online (https://disbiome.ugent.be:8080/
experiment). The host–pathogen database31 can be accessed through 
FigShare (https://doi.org/10.6084/m9.figshare.8262779). Source data 
are provided with this paper.

Code availability
All custom codes used to perform the analyses reported here are hosted 
on GitHub (https://github.com/cednotsed/blood_microbial_signa-
tures.git).
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Extended Data Fig. 1 | Strong linear relationship between the number of 
Bowtie2 mapped and Kraken2 assigned reads on the log10 scale. All data 
points (n = 122) are shown on the scatter plot. The linear regression line and 
associated parameter estimates annotated here were computed after removing 

outlier data points (in red). These outliers had studentised residuals >2 as 
computed from an initial linear regression including all data points. A two-sided 
F-test was used to determine if the slope parameter in the linear regression model 
differed from zero.
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Extended Data Fig. 2 | Between-batch variability and within-batch 
consistency of contamination signals. Heatmap of contaminant species 
prevalence stratified by the different lot numbers of the HiSeq SBS kit used for 
sequencing and by the different DNA extraction kits used to process the blood 
samples. Contaminant species are sorted by genus and notable genera known 

to be common contaminants are annotated on the figure. The prevalence of 
microbes varies greatly between the batches and kit types used (between-batch 
variability) and multiple species appear strongly correlated within a single batch 
(within-batch consistency).
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Extended Data Fig. 3 | Decontamination filters significantly improve 
signal-to-noise ratio of microbial taxa retained. Null distributions for the 
proportions of species classified as not likely contaminants, detected in blood, 
or human-associated. To generate these null distributions, for each of 1000 
iterations, we randomly selected 117 microbial species from the list of species 
before decontamination and classified them based on same procedure used 

to generate Fig. 1b–d. The observed proportions following the application of 
our decontamination filters are indicated by black dashed lines. P-values were 
calculated as the fraction of iterations where the species proportions were 
greater or equal to the observed proportions (one-sided test; no multiple-testing 
correction performed).
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Extended Data Fig. 4 | Distribution of total microbial reads for samples with no detected non-contaminant taxa. Total microbial read counts are equivalent to the 
number of reads classified as microbial after applying the abundance filter but before decontamination (see Methods, Fig. 1a).
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Extended Data Fig. 5 | Microbial prevalence in sepsis patients differs from 
that in healthy individuals. Bar chart showing prevalence of genera detected 
in sepsis patients and in our blood sequencing libraries before and after 
decontamination. Blauwkamp et al. used shotgun sequencing of blood plasma 

collected from sepsis patients to determine the etiological agents involved 
and assessed the analytical sensitivity of this approach via multiple alternative 
culture-based and PCR-based detection methods.
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Extended Data Fig. 6 | Higher prevalence of microbes in the blood of 
healthy children. (a) The disproportionately high prevalence of microbes 
in the children’s cohort GUSTO relative to the other adult cohorts. Silhouette 
icons were sourced from Adobe Stock with a standard license. Prevalence of (b) 

genitourinary tract-associated and (c) gut-associated microbes in children’s and 
adult cohorts, stratified by sex. Body site classifications were determined using 
the Disbiome database.
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Extended Data Fig. 7 | Inconsistent associations between C. acnes and genetic 
ancestry. Samples were stratified by source cohort and genetic ancestry to 
calculate C. acnes prevalence. Only the cohorts where a significant (p < 0.05) 

association between the presence of C. acnes and genetic ancestry was found are 
shown (that is, MEC and SEED). The number of samples used as the denominator 
when calculating prevalence is annotated.
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Extended Data Fig. 8 | Potential models for microbes in blood. Our findings suggest that there is no consistent circulating blood microbiome (that is, the blood 
microbiome model). The more likely model is where microbes from other body sites transiently and sporadically translocate into blood. Created with BioRender.com 
under an academic subscription.
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Extended Data Fig. 9 | Simulation experiments to determine the abundance 
cutoff for reducing false-positive species assignments. (a) Histogram of 
the relative abundance of true-positive and true-negative Kraken2 species 
assignments. Approximately 373 million total reads were generated from 
human (GRCh38) and 10 microbial reference genomes at various microbial read 
fractions using InSillicoSeq. An abundance cutoff delineating the false-positive 

(FP) from true was selected (relative abundance=0.005) that retains and excludes 
all true-positive and false-positive Kraken2 species assignments, respectively. 
(b) Relative abundance distributions of taxa considered present or absent as 
demarcated by our abundance thresholds (that is, relative abundance ≤0.005, 
read pairs assigned ≤10).

http://www.nature.com/naturemicrobiology
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Extended Data Fig. 10 | Illustration of decontamination filters used. (a) The 
prevalence filter flagged Sphingobium sp. YG1 as a contaminant because its 
prevalence in at least one batch (that is, flow cell lot used) is greater than 25% 
(threshold indicated by dotted red line) and more than two-fold higher than 
the prevalence in at least one other batch. (b) Heatmap of pairwise Spearman’s 

Rho (that is, correlation) between the 72 contaminant species identified by the 
correlation filter for flow cell batch 20367079. The highly correlated nature of 
these species indicates that they are indeed likely contaminants specific to batch 
20367079.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.
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Data analysis R 4.1.0 

Python 3.9.12 
Samtools 1.15.1 
Kraken 2.1.2 
Insilicoseq 1.5.4 
bwa 0.7.17 
bbtools 37.62 
bedtools 2.30.0 
blast 2.5.0 
bowtie2 2.4.5 
irep 1.1.0 
Igraph 1.2.9 
SpiecEasi 1.1.2  
Rsamtools 2.8.0 
compositions 2.0.2 
ggplot 3.3.5 
 
All custom code used to perform the analyses reported here are hosted on GitHub (https://github.com/cednotsed/
blood_microbial_signatures.git). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The dataset is under controlled access to ensure good data governance, responsible data use, and that the dataset is only used for the intended research purposes 
in compliance with SG10K_Health study cohort IRB and ethics approval. Users interested in accessing the SG10K_Health individual-level data (WGS and VCF files) 
are required to submit a Data Access Request outlining the proposed research for approval by the NPM Data Access Committee (DAC), which convenes monthly. 
The forms and data access policy can be downloaded via the SG10K_Health portal (https://npm.a-star.edu.sg/help/NPM). For more information, users can contact 
the National Precision Medicine Programme Coordinating Office, A*STAR (contact_npco@gis.a-star.edu.sg). The average turnaround timeframe for a request is 4-6 
weeks from receipt of request to receiving a notification outcome from the NPM DAC on whether the application is accepted/rejected/requires amendments. The 
approved requestor will be asked to sign a non-negotiable data access agreement to ensure the data is used only for (1)  the proposed research purpose, (2) no 
attempt to re-identify the subjects, (3) no onward sharing of the data to a third party, and (4) to include a standard acknowledgement statement in the manuscript.  
All source data used for our analyses are hosted on Zenodo (https://doi.org/10.5281/zenodo.7368262), including Kraken2 taxonomic profiles of all real and 
simulated sequencing libraries, and the anonymised blood culture records. The accession numbers for all genome references used are provided in Supplementary 
Table 8. The PlusPF database (17th May 2021 release) can be accessed online (https://genome-idx.s3.amazonaws.com/kraken/k2_pluspf_20210517.tar.gz). The 
Disbiome database34 can be accessed online (https://disbiome.ugent.be:8080/experiment). The host-pathogen database31 can be accessed through FigShare 
(https://doi.org/10.6084/m9.figshare.8262779). 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Summary of cohort demographics are provided in Supplementary Table 1. Whole blood for sequencing was collected via 
venipuncture only from the five adult cohorts (median age=49; interquartile range=16): Health for Life in Singapore (HELIOS; 
n=2,286), SingHealth Duke-NUS Institute of Precision Medicine (PRISM, n=1,257), Tan Tock Seng Hospital Personalised 
Medicine Normal Controls (TTSH, n=920), Singapore Epidemiology of Eye Diseases (SEED, n=1,436)[Refs 68,69], and the 
Multi-Ethnic Cohort (MEC, n=2,902)[Ref 70]. Additionally, cord blood was collected only for the birth cohort Growing Up in 
Singapore Towards healthy Outcomes (GUSTO; n=969)[Ref 71]. Measurement of host phenotypes was performed on the day 
of blood collection, except for the GUSTO cohort where measurements were taken at a later timepoint when the children 
were at a median age of 6.1 (interquartile range=0.1). 

Population characteristics All individuals recruited were deemed healthy based on self-reports. Individuals were categorised, in a previous study [Ref 
72], into four ethnic categories representing distinct genetic ancestries: Chinese (59%), Malays (19%), Indians (21%) and 
Others (1%). 

Recruitment Individuals were deemed to be healthy if they do not have any personal history of major disorders such as stroke, 
cardiovascular diseases, cancer, diabetes and renal failure. Oral health information was not collected and therefore not part 
of the exclusion criteria.  All individuals were deemed healthy at the point of recruitment if they did not include any self-
reported diseases in the recruitment questionnaires. 

Ethics oversight All individuals in the participating cohorts were recruited with signed informed consent from the participating individual or 
parent/guardian in the case of minors. All studies were approved by relevant institutional ethics review boards and a 
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summary of the cohort demographics and the ethics review approval reference numbers are provided in  Supplementary 
Table 1. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We used all sample data that was available (n = 9770). Sample size is large enough for all statistical analyses used.

Data exclusions Sequencing libraries with less than 100 assigned microbial read pairs were excluded as they do not provide sufficient and meaningful 
microbiological information. 

Replication The data analysed in this study is cross-sectional and all sequencing libraries were generated from samples collected from independent 
individuals. All sequencing libraries used in this study were from distinct individuals.

Randomization Samples were processed in batches and were not randomised for sequencing. However, batch information for each sample was retained and 
used to correct for batch-specific effects.

Blinding No experimental groups were assigned to samples in this study as all samples were 'blood collected from healthy individuals' so blinding is not 
relevant. However, technicians involved in the processing of the samples did not have access to participant metadata.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq
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MRI-based neuroimaging
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