Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Energetics and evolution of anaerobic microbial eukaryotes

Abstract

Mitochondria and aerobic respiration have been suggested to be required for the evolution of eukaryotic cell complexity. Aerobic respiration is several times more energetically efficient than fermentation. Moreover, aerobic respiration occurs at internalized mitochondrial membranes that are not constrained by a sublinear scaling with cell volume. However, diverse and complex anaerobic eukaryotes (for example, free-living and parasitic unicellular, and even small multicellular, eukaryotes) that exclusively rely on fermentation for energy generation have evolved repeatedly from aerobic ancestors. How do fermenting eukaryotes maintain their cell volumes and complexity while relying on such a low energy-yielding process? Here I propose that reduced rates of ATP generation in fermenting versus respiring eukaryotes are compensated for by longer cell cycles that satisfy lifetime energy demands. A literature survey and growth efficiency calculations show that fermenting eukaryotes divide approximately four to six times slower than aerobically respiring counterparts with similar cell volumes. Although ecological advantages such as competition avoidance offset lower growth rates and yields in the short term, fermenting eukaryotes inevitably have fewer physiological and ecological possibilities, which ultimately constrain their long-term evolutionary trajectories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Environmental and phylogenetic diversity of anaerobic eukaryotes.
Fig. 2: The lifetime energy requirements of both aerobic and anaerobic eukaryotic cells are a function of their metabolic rates and division times.
Fig. 3: Anaerobic eukaryotes divide several times more slowly than their aerobic counterparts.
Fig. 4: Anaerobes dissimilate most of their ingested carbon.

Similar content being viewed by others

References

  1. Margulis, L. Origin of Eukaryotic Cells (Yale Univ. Press, 1970).

  2. Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).

    Article  CAS  Google Scholar 

  3. Lane, N. How energy flow shapes cell evolution. Curr. Biol. 30, R471–R476 (2020).

    Article  CAS  Google Scholar 

  4. Fenchel, T. & Finlay, B. J. The biology of free-living anaerobic ciliates. Eur. J. Protistol. 26, 201–215 (1991).

    Article  CAS  Google Scholar 

  5. Müller, M. et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012).

    Article  Google Scholar 

  6. Stairs, C. W., Leger, M. M. & Roger, A. J. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Phil. Trans. R. Soc. B 370, 20140326 (2015).

    Article  Google Scholar 

  7. Hampl, V., Čepička, I. & Eliáš, M. Was the mitochondrion necessary to start eukaryogenesis? Trends Microbiol. 27, 96–104 (2019).

    Article  CAS  Google Scholar 

  8. Karnkowska, A. et al. A eukaryote without a mitochondrial organelle. Curr. Biol. 26, 1274–1284 (2016).

    Article  CAS  Google Scholar 

  9. Fenchel, T. & Finlay, B. J. Ecology and Evolution in Anoxic Worlds (Oxford Univ. Press, 1995).

  10. Stairs, C. W. et al. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. eLife 7, e34292 (2018).

    Article  Google Scholar 

  11. Woehle, C. et al. A novel eukaryotic denitrification pathway in foraminifera. Curr. Biol. 28, 2536–2543.e5 (2018).

    Article  CAS  Google Scholar 

  12. Kamp, A., Høgslund, S., Risgaard-Petersen, N. & Stief, P. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes. Front. Microbiol. 6, 1492 (2015).

    Article  Google Scholar 

  13. Finlay, B. J., Span, A. S. W. & Harman, J. M. P. Nitrate respiration in primitive eukaryotes. Nature 303, 333–336 (1983).

    Article  CAS  Google Scholar 

  14. Pánek, T. et al. Combined culture-based and culture-independent approaches provide insights into diversity of jakobids, an extremely plesiomorphic eukaryotic lineage. Front. Microbiol. 6, 1288 (2015).

    Article  Google Scholar 

  15. Wylezich, C., Karpov, S. A., Mylnikov, A. P., Anderson, R. & Jürgens, K. Ecologically relevant choanoflagellates collected from hypoxic water masses of the Baltic Sea have untypical mitochondrial cristae. BMC Microbiol. 12, 271 (2012).

    Article  Google Scholar 

  16. Yahalomi, D. et al. A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome. Proc. Natl Acad. Sci. USA 117, 5358–5363 (2020).

    Article  CAS  Google Scholar 

  17. Stairs, C. W. et al. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr. Biol. 31, 5605–5612.e5 (2021).

    Article  CAS  Google Scholar 

  18. Rotterová, J. et al. Genomics of new ciliate lineages provides insight into the evolution of obligate anaerobiosis. Curr. Biol. 30, 2037–2050.e6 (2020).

    Article  Google Scholar 

  19. Lane, N. & Martin, W. F. Eukaryotes really are special, and mitochondria are why. Proc. Natl Acad. Sci. USA 112, E4823 (2015).

    Article  CAS  Google Scholar 

  20. Lane, N. Serial endosymbiosis or singular event at the origin of eukaryotes? J. Theor. Biol. 434, 58–67 (2017).

    Article  Google Scholar 

  21. Booth, A. & Doolittle, W. F. Eukaryogenesis, how special really? Proc. Natl Acad. Sci. USA 112, 10278–10285 (2015).

    Article  CAS  Google Scholar 

  22. Schavemaker, P. E. & Lynch, M. Flagellar energy costs across the tree of life. eLife 11, e77266 (2022).

  23. Lynch, M., Schavemaker, P. E., Licknack, T. J., Hao, Y. & Pezzano, A. Evolutionary bioenergetics of ciliates. J. Eukaryot. Microbiol. https://doi.org/10.1111/jeu.12934 (2022).

  24. Schavemaker, P. E. & Muñoz-Gómez, S. A. The role of mitochondrial energetics in the origin and diversification of eukaryotes. Nat. Ecol. Evol. 6, 1307–1317 (2022).

    Article  Google Scholar 

  25. Lynch, M. & Marinov, G. K. Membranes, energetics, and evolution across the prokaryote-eukaryote divide. eLife 6, e20437 (2017).

    Article  Google Scholar 

  26. Lynch, M. & Marinov, G. K. The bioenergetic costs of a gene. Proc. Natl Acad. Sci. USA 112, 15690–15695 (2015).

    Article  CAS  Google Scholar 

  27. Fenchel, T. Respiration in heterotrophic unicellular eukaryotic organisms. Protist 165, 485–492 (2014).

    Article  Google Scholar 

  28. Fenchel, T. & Finlay, B. J. Respiration rates in heterotrophic, free-living protozoa. Microb. Ecol. 9, 99–122 (1983).

    Article  CAS  Google Scholar 

  29. Kiørboe, T. & Hirst, A. G. Shifts in mass scaling of respiration, feeding, and growth rates across life-form transitions in marine pelagic organisms. Am. Nat. 183, E118–E130 (2014).

    Article  Google Scholar 

  30. Hatton, I. A., Dobson, A. P., Storch, D., Galbraith, E. D. & Loreau, M. Linking scaling laws across eukaryotes. Proc. Natl Acad. Sci. USA 116, 21616–21622 (2019).

    Article  CAS  Google Scholar 

  31. Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).

    Article  CAS  Google Scholar 

  32. Chen, Y. & Nielsen, J. Energy metabolism controls phenotypes by protein efficiency and allocation. Proc. Natl Acad. Sci. USA 116, 17592–17597 (2019).

    Article  CAS  Google Scholar 

  33. Malina, C., Yu, R., Björkeroth, J., Kerkhoven, E. J. & Nielsen, J. Adaptations in metabolism and protein translation give rise to the Crabtree effect in yeast. Proc. Natl Acad. Sci. USA 118, e2112836118 (2021).

    Article  CAS  Google Scholar 

  34. Aguilera, A. & Benítez, T. Relationship between growth, fermentation, and respiration rates in Saccharomyces cerevisiae: a study based on the analysis of the yield Y(px). Biotechnol. Bioeng. 32, 240–244 (1988).

    Article  CAS  Google Scholar 

  35. Fenchel, T. & Finlay, B. J. Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiol. Lett. 74, 269–275 (1990).

    Article  Google Scholar 

  36. Bauchop, T. & Elsden, S. R. The growth of micro-organisms in relation to their energy supply. Microbiology 23, 457–469 (1960).

    Article  CAS  Google Scholar 

  37. Hirakata, Y. et al. Food selectivity of anaerobic protists and direct evidence for methane production using carbon from prey bacteria by endosymbiotic methanogen. ISME J. 14, 1873–1885 (2020).

    Article  CAS  Google Scholar 

  38. Bernard, C. & Fenchel, T. Some microaerobic ciliates are facultative anaerobes. Eur. J. Protistol. 32, 293–297 (1996).

    Article  Google Scholar 

  39. Nicholls, P. & Kim, J. K. Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system. Can. J. Biochem. 60, 613–623 (1982).

    Article  CAS  Google Scholar 

  40. Lele, U. N. & Watve, M. Bacterial growth rate and growth yield: is there a relationship? Proc. Indian Natl Sci. Acad. 30, 537–546 (2014).

    Article  Google Scholar 

  41. Lipson, D. A. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front. Microbiol. 6, 615 (2015).

    Article  Google Scholar 

  42. Pirt, S. J. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. B 163, 224–231 (1965).

    Article  CAS  Google Scholar 

  43. Fenchel, T. & Finlay, B. J. Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for the growth efficiency of the host. J. Protozool. 38, 18–22 (1991).

    Article  Google Scholar 

  44. Muñoz-Gómez, S. A., Bilolikar, G., Wideman, J. G. & Geiler-Samerotte, K. Constructive neutral evolution 20 years later. J. Mol. Evol. 89, 172–182 (2021).

    Article  Google Scholar 

  45. Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015).

    Article  CAS  Google Scholar 

  46. Baker, B. J. et al. Diversity, ecology and evolution of Archaea. Nat. Microbiol 5, 887–900 (2020).

    Article  CAS  Google Scholar 

  47. Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).

    Article  CAS  Google Scholar 

  48. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article  CAS  Google Scholar 

  49. Shiratori, T., Suzuki, S., Kakizawa, Y. & Ishida, K. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat. Commun. 10, 5529 (2019).

    Article  Google Scholar 

  50. Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).

    Article  CAS  Google Scholar 

  51. Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank P. Schavemaker and M. Lynch (Arizona State University), and M. Leger (Institute of Evolutionary Biology, Barcelona) for providing comments on this manuscript. I apologize to those whose important contributions to the diversity of anaerobic eukaryotes have not been cited due to space constraints. This project was supported by an EMBO Postdoctoral Fellowship (ALTF 21-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio A. Muñoz-Gómez.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Courtney Stairs and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables 1 and 2

Table 1 Anaerobes (this study). Table 2 Aerobes (Fenchel, 1983).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Gómez, S.A. Energetics and evolution of anaerobic microbial eukaryotes. Nat Microbiol 8, 197–203 (2023). https://doi.org/10.1038/s41564-022-01299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01299-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology