Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons

Abstract

Thin layers of in-plane anisotropic materials can support ultraconfined polaritons, whose wavelengths depend on the propagation direction. Such polaritons hold potential for the exploration of fundamental material properties and the development of novel nanophotonic devices. However, the real-space observation of ultraconfined in-plane anisotropic plasmon polaritons (PPs)—which exist in much broader spectral ranges than phonon polaritons—has been elusive. Here we apply terahertz nanoscopy to image in-plane anisotropic low-energy PPs in monoclinic Ag2Te platelets. The hybridization of the PPs with their mirror image—by placing the platelets above a Au layer—increases the direction-dependent relative polariton propagation length and the directional polariton confinement. This allows for verifying a linear dispersion and elliptical isofrequency contour in momentum space, revealing in-plane anisotropic acoustic terahertz PPs. Our work shows high-symmetry (elliptical) polaritons on low-symmetry (monoclinic) crystals and demonstrates the use of terahertz PPs for local measurements of anisotropic charge carrier masses and damping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Real-space nanoimaging of in-plane anisotropic THz PPs on Ag2Te platelets.
Fig. 2: Real-space nanoimaging of in-plane anisotropic THz APPs on a Ag2Te/SiO2/Au heterostructure.
Fig. 3: Relationship between anisotropic APP propagation, platelet geometry and crystal lattice structure.
Fig. 4: PP dispersions and isofrequency curves.

Similar content being viewed by others

Data availability

Data that support the results of this work are available from the corresponding authors upon reasonable request.

References

  1. Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2020).

    Article  Google Scholar 

  2. Daniel, R. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    Article  Google Scholar 

  3. Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  4. Tielrooij, K. J. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2018).

    Article  CAS  Google Scholar 

  5. Lee, I. H., Yoo, D., Avouris, P., Low, T. & Oh, S. H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).

    Article  CAS  Google Scholar 

  6. Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2020).

    Article  Google Scholar 

  7. Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).

    Article  CAS  Google Scholar 

  8. Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).

    Article  CAS  Google Scholar 

  9. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  CAS  Google Scholar 

  10. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article  CAS  Google Scholar 

  11. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015).

    Article  CAS  Google Scholar 

  12. Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, e1705318 (2018).

    Article  Google Scholar 

  13. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article  CAS  Google Scholar 

  14. Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article  CAS  Google Scholar 

  15. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article  CAS  Google Scholar 

  16. Taboada-Gutierrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    Article  CAS  Google Scholar 

  17. Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).

    Article  CAS  Google Scholar 

  18. Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article  CAS  Google Scholar 

  19. Wu, Y. et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat. Rev. Phys. 4, 578–594 (2022).

  20. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  CAS  Google Scholar 

  21. Low, T. et al. Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett. 113, 106802 (2014).

    Article  Google Scholar 

  22. Lian, C. et al. Integrated plasmonics: broadband Dirac plasmons in borophene. Phys. Rev. Lett. 125, 116802 (2020).

    Article  CAS  Google Scholar 

  23. Torbatian, Z., Novko, D. & Asgari, R. Hyperbolic plasmon modes in tilted Dirac cone phases of borophene. Phys. Rev. B 104, 075432 (2021).

    Article  CAS  Google Scholar 

  24. Huang, X. et al. Black phosphorus carbide as a tunable anisotropic plasmonic metasurface. ACS Photon. 5, 3116–3123 (2018).

    Article  CAS  Google Scholar 

  25. Wang, C. et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nat. Commun. 11, 1158 (2020).

    Article  CAS  Google Scholar 

  26. Chen, J. N. et al. Optical nano-imaging of gate-tuneable graphene plasmons. Nature 487, 77–81 (2012).

    Article  CAS  Google Scholar 

  27. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  CAS  Google Scholar 

  28. Alonso-Gonzalez, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).

    Article  CAS  Google Scholar 

  29. Chen, S. et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi2Se3. Nat. Commun. 13, 1374 (2022).

    Article  CAS  Google Scholar 

  30. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011).

    Article  Google Scholar 

  31. Soltani, A. et al. Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor. Light.: Sci. Appl. 9, 97 (2020).

    Article  CAS  Google Scholar 

  32. Pogna, E. A. A. et al. Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy. Nat. Commun. 12, 6672 (2021).

    Article  CAS  Google Scholar 

  33. Zhang, W. et al. Topological aspect and quantum magnetoresistance of β-Ag2Te. Phys. Rev. Lett. 106, 156808 (2011).

    Article  Google Scholar 

  34. Yeh, T.-T. et al. The optical properties of Ag2Te crystals from THz to UV. J. Alloys Compd. 725, 433–440 (2017).

    Article  CAS  Google Scholar 

  35. Leng, P. et al. Gate-tunable surface states in topological insulator β-Ag2Te with high mobility. Nano Lett. 20, 7004–7010 (2020).

    Article  CAS  Google Scholar 

  36. Dai, S. et al. Phonon polaritons in monolayers of hexagonal boron nitride. Adv. Mater. 31, e1806603 (2019).

    Article  Google Scholar 

  37. Menabde, S. G. et al. Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition. Nat. Commun. 12, 938 (2021).

    Article  CAS  Google Scholar 

  38. Menabde, S. G., Heiden, J. T., Cox, J. D., Mortensen, N. A. & Jang, M. S. Image polaritons in van der Waals crystals. Nanophotonics 11, 2433–2452 (2022).

    Article  CAS  Google Scholar 

  39. Lee, I. H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article  CAS  Google Scholar 

  40. Autore, M. & Hillenbrand, R. What momentum mismatch? Nat. Nanotechnol. 14, 308–309 (2019).

    Article  CAS  Google Scholar 

  41. Lee, I.-H. et al. Anisotropic acoustic plasmons in black phosphorus. ACS Photon. 5, 2208–2216 (2018).

    Article  CAS  Google Scholar 

  42. Lyu, W. et al. Anisotropic acoustic phonon polariton-enhanced infrared spectroscopy for single molecule detection. Nanoscale 13, 12720–12726 (2021).

    Article  Google Scholar 

  43. Gomez-Diaz, J. S., Tymchenko, M. & Alu, A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys. Rev. Lett. 114, 233901 (2015).

    Article  Google Scholar 

  44. Nikitin, A. Y. in World Scientific Handbook of Metamaterials and Plasmonics. Recent Progress in the Field of Nanoplasmonics Vol. 4 (ed Aizpurua, J.) (World Scientific, 2017).

  45. Sulaev, A. et al. Experimental evidences of topological surface states of β-Ag2Te. AIP Adv. 3, 032123 (2013).

    Article  CAS  Google Scholar 

  46. Lee, S. et al. Single crystalline β-Ag2Te nanowire as a new topological insulator. Nano Lett. 12, 4194 (2012).

    Article  CAS  Google Scholar 

  47. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article  CAS  Google Scholar 

  48. Damari, R. et al. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies. Nat. Commun. 10, 3248 (2019).

    Article  Google Scholar 

  49. Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012).

    Article  CAS  Google Scholar 

  50. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  51. Schnell, M., Carney, P. S. & Hillenbrand, R. Synthetic optical holography for rapid nanoimaging. Nat. Commun. 5, 3499 (2014).

    Article  CAS  Google Scholar 

  52. Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photon. 6, 1279–1288 (2019).

    Article  CAS  Google Scholar 

  53. Chen, C. et al. Terahertz nanoimaging and nanospectroscopy of chalcogenide phase-change materials. ACS Photon. 7, 3499–3506 (2020).

    Article  CAS  Google Scholar 

  54. Lohmann, T., Klitzing, K. V. & Smet, J. H. Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping. Nano Lett. 9, 1973–1979 (2009).

    Article  CAS  Google Scholar 

  55. Zhong, M. et al. In-plane optical and electrical anisotropy of 2D black arsenic. ACS Nano 15, 1701–1709 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Spanish Ministry of Science and Innovation under the María de Maeztu Units of Excellence Program (CEX2020-001038-M/MCIN/AEI/10.13039/501100011033) (R.H., A.C., L.E.H. and E.A.); Projects PID2021-123949OB-I00 (R.H.), PID2019-109905GB-C21 (M.G.V. and I.E.), RTI2018-094861-B-100 (L.E.H.), PID2019-107432GB-I00 (J.A.) and PID2019-107338RB-C61 (E.A.) funded by MCIN/AEI/10.13039/501100011033 and by ‘ERDF—A Way of Making Europe’; the National Natural Science Foundation of China (NSFC) (52225207 and 11934005) and the Shanghai Pilot Program for Basic Research—Fudan University 21TQ1400100 (21TQ006) (F.X.X.); NSFC grant no. 61988102 and the Science and Technology Commission of Shanghai Municipality (nos. 23010503400 and 23ZR1443500) (S.C.); the Czech Science Foundation GACR under the Junior Star grant no. 23-05119M (A.K.); the European Research Council (ERC) under grant agreement no. 101020833 (M.G.V.); the German Research Foundation (DFG) under project nos. 467576442 (I.N.) and GA 3314/1-1–FOR 5249 (QUAST) (M.G.V.); the Gipuzkoa Council (Spain) in the frame of the Gipuzkoa Fellows Program (B.M.-G.); and the University groups of the Basque Government (IT1526-22) (J.A.).

Author information

Authors and Affiliations

Authors

Contributions

R.H. and S.C. conceived the study. P.L.L. and X.Y.X. fabricated the Ag2Te platelets and performed the electrical transport and Hall measurements under the supervision of F.X.X. S.C. performed the THz s-SNOM imaging and related data analysis. A.K. developed the theoretical description of polariton modes and performed the dispersion fitting. E.V. performed the infrared PhP interferometry and related data analysis. A.C. fabricated the Ag2Te disc. E.M. and A.C. performed the STEM analysis. M.G. performed the ab initio calculations under the supervision of I.E. and M.G.V. B.M.-G. participated in the crystal structure characterization and discussions. M.B.-B. and I.N. participated in the sample preparation. C.M.E., E.A., L.E.H. and J.A. participated in the theory discussions. R.H., S.C. and A.K. wrote the manuscript with input from all the authors. R.H. supervised the work.

Corresponding authors

Correspondence to F. X. Xiu or R. Hillenbrand.

Ethics declarations

Competing interests

R.H. was a co-founder of Neaspec GmbH, which now is a part of Attocube AG, a company producing s-SNOM systems, such as the one used in this study. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Joshua Caldwell, Ido Kaminer and Sang-Hyun Oh for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12 and Figs. 1–13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Leng, P.L., Konečná, A. et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (2023). https://doi.org/10.1038/s41563-023-01547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01547-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing