Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Accelerated ageing of organic and perovskite photovoltaics

As the stability of organic and perovskite solar cells improves, accelerated ageing methods become increasingly essential to elucidate their long-term degradation mechanisms and to predict their real-world operational lifetimes. By effectively applying these underutilized tests, emerging photovoltaic technologies can be de-risked and their time to market can be expedited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prediction of long-term solar cell performance degradation using accelerated ageing tests.

References

  1. Azmi, R. et al. Science 376, 73–77 (2022).

    Article  Google Scholar 

  2. Li, Y. et al. Nat. Commun. 12, 5419 (2021).

    Article  Google Scholar 

  3. Burlafinger, K. et al. Prog. Photovolt. 30, 518–527 (2022).

    Article  Google Scholar 

  4. Burlingame, Q. et al. Nature 573, 394–397 (2019).

    Article  Google Scholar 

  5. Zhao, X. et al. Science 377, 307–310 (2022).

    Article  Google Scholar 

  6. K. M., A. et al. Solar RRL 4, 1900335 (2020).

  7. Haillant, O., Dumbleton, D. & Zielnik, A. Sol. Energy Mater. Sol. Cells 95, 1889–1895 (2011).

    Article  Google Scholar 

  8. Visoly-Fisher, I. et al. Sol. Energy Mater. Sol. Cells 134, 99–107 (2015).

    Article  Google Scholar 

  9. Burlingame, Q. et al. Adv. Energy Mater. 6, 1601094 (2016).

    Article  Google Scholar 

  10. Li, G. et al. Science 379, 399–403 (2023).

    Article  Google Scholar 

  11. Weitz, P. et al. Ad. Energy Mater. 13, 2202564 (2023).

    Article  Google Scholar 

  12. Katz, E. A., Mescheloff, A., Visoly-Fisher, I. & Galagan, Y. Sol. Energy Mater. Sol. Cells 144, 273–280 (2016).

    Article  Google Scholar 

  13. Guo, R. et al. Solar RRL 4, 1900270 (2020).

    Article  Google Scholar 

  14. Burlingame, Q., Zanotti, G., Ciammaruchi, L., Katz, E. A. & Forrest, S. R. Org. Electron. 41, 274–279 (2016).

    Article  Google Scholar 

  15. Tromholt, T., Katz, E. A., Hirsch, B., Vossier, A. & Krebs, F. C. Appl. Phys. Lett. 96, 073501 (2010).

    Article  Google Scholar 

  16. Nishioka, K. et al. Sol. Energy Mater. Sol. Cells 90, 1308–1321 (2006).

    Article  Google Scholar 

  17. Green, M. A. Appl. Phys. Lett. 108, 081111 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quinn C. Burlingame or E. A. Katz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewer(s) for their contribution to the peer review of this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlingame, Q.C., Loo, YL. & Katz, E.A. Accelerated ageing of organic and perovskite photovoltaics. Nat Energy 8, 1300–1302 (2023). https://doi.org/10.1038/s41560-023-01330-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01330-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing