Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Designing anion exchange membranes for CO2 electrolysers

Abstract

New technologies are required to electrocatalytically convert carbon dioxide (CO2) into fuels and chemicals at near-ambient temperatures and pressures more effectively. One particular challenge is mediating the electrochemical CO2 reduction reaction (CO2RR) at low cell voltages while maintaining high conversion efficiencies. Anion exchange membranes (AEMs) in zero-gap reactors offer promise in this direction; however, there remain substantial obstacles to be overcome in tailoring the membranes and other cell components to the requirements of CO2RR systems. Here we review recent advances, and remaining challenges, in AEM materials and devices for CO2RR. We discuss the principles underpinning AEM operation and the properties desired for CO2RR, in addition to reviewing state-of-the-art AEMs in CO2 electrolysers. We close with future design strategies to minimize product crossover, improve mechanical and chemical stability, and overcome the energy losses associated with the use of AEMs for CO2RR systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AEM CO2 electrolyser configuration and balance of plant.
Fig. 2: Mechanisms of anion and water transport in AEMs.
Fig. 3: Performance of AEM-based gas-phase CO2 electrolysers.
Fig. 4: Structures of AEMs used in CO2 electrolysers.
Fig. 5: Strategies to mitigate product and CO2 crossover in AEMs.
Fig. 6: Strategies to improve CO2RR AEM chemical and mechanical stability.
Fig. 7: Strategies to improve CO2RR AEM interfaces and energy efficiency.

Similar content being viewed by others

References

  1. Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

    Article  Google Scholar 

  2. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  Google Scholar 

  3. Mehta, V. & Cooper, J. S. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114, 32–53 (2003).

    Article  Google Scholar 

  4. Millet, P. et al. PEM water electrolyzers: from electrocatalysis to stack development. Int. J. Hydrogen Energy 35, 5043–5052 (2010).

    Article  Google Scholar 

  5. Kutz, R. B. et al. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. 5, 929–936 (2017). Research paper that describes a Sustainion AEM CO2 electrolyser for CO production and boasts 1,000 h reaction stability.

    Article  Google Scholar 

  6. Delacourt, C., Ridgway, P. L., Kerr, J. B. & Newman, J. Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J. Electrochem. Soc. 155, B42–B49 (2008).

    Article  Google Scholar 

  7. Salvatore, D. A. et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2018).

    Article  Google Scholar 

  8. Herranz, J., Patru, A., Fabbri, E. & Schmidt, T. J. Co-electrolysis of CO2 and H2O: from electrode reactions to cell level development. Curr. Opin. Electrochem. https://doi.org/10.1016/j.coelec.2020.05.004 (2020).

  9. Ainscough, C., Peterson, D. & Miller, E. DOE Hydrogen And Fuel Cells Program Record 14004 Technical Report 7 (US DOE, 2014).

  10. Pătru, A., Binninger, T., Pribyl, B. & Schmidt, T. J. Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature. J. Electrochem. Soc. 166, F34–F43 (2019).

    Article  Google Scholar 

  11. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  Google Scholar 

  12. Wang, M. et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10, 3602 (2019).

    Article  Google Scholar 

  13. Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019). Research paper that describes an AEM CO2 electrolyser for producing C2+ products, ethylene and concentrated ethanol, and discusses the challenges with product crossover.

    Article  Google Scholar 

  14. Oener, S. Z., Ardo, S. & Boettcher, S. W. Ionic processes in water electrolysis: the role of ion-selective membranes. ACS Energy Lett. 2, 2625–2634 (2017).

    Article  Google Scholar 

  15. Aeshala, L. M., Uppaluri, R. & Verma, A. Electrochemical conversion of CO2 to fuels: tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte. Phys. Chem. Chem. Phys. 16, 17588–17594 (2014).

    Article  Google Scholar 

  16. Merle, G., Wessling, M. & Nijmeijer, K. Anion exchange membranes for alkaline fuel cells: a review. J. Membr. Sci. 377, 1–35 (2011).

    Article  Google Scholar 

  17. Holdcroft, S. & Fan, J. Sterically-encumbered ionenes as hydroxide ion-conducting polymer membranes. Curr. Opin. Electrochem. 18, 99–105 (2019).

    Article  Google Scholar 

  18. Varcoe, J. R. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014). Perspective paper that discusses the key concepts, misconceptions, technological and scientific limitations, and research priorities for anion exchange membranes in electrochemical devices.

    Article  Google Scholar 

  19. Ramaswamy, N. & Mukerjee, S. Alkaline anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer. Chem. Rev. 119, 11945–11979 (2019).

    Article  Google Scholar 

  20. Gottesfeld, S. et al. Anion exchange membrane fuel cells: current status and remaining challenges. J. Power Sources 375, 170–184 (2018).

    Article  Google Scholar 

  21. Noh, S., Jeon, J. Y., Adhikari, S., Kim, Y. S. & Bae, C. Molecular engineering of hydroxide conducting polymers for anion exchange membranes in electrochemical energy conversion technology. Acc. Chem. Res. 52, 2745–2755 (2019).

    Article  Google Scholar 

  22. Yin, Z. et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 12, 2455–2246 (2019). Research paper that describes a QAPPT AEM CO2 electrolyser for CO production that uses pure water as an electrolyte.

    Article  Google Scholar 

  23. Zawodzinski, T. A., Neeman, M., Sillerud, L. O. & Gottesfeld, S. Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. J. Phys. Chem. 95, 6040–6044 (1991).

    Article  Google Scholar 

  24. Tuckerman, M. E., Marx, D. & Parrinello, M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417, 925–929 (2002).

    Article  Google Scholar 

  25. Kamcev, J. & Freeman, B. D. Charged polymer membranes for environmental/energy applications. Annu. Rev. Chem. Biomol. Eng. 7, 111–133 (2016).

    Article  Google Scholar 

  26. Lee, K. M., Wycisk, R., Litt, M. & Pintauro, P. N. Alkaline fuel cell membranes from xylylene block ionenes. J. Membr. Sci. 383, 254–261 (2011).

    Article  Google Scholar 

  27. Zheng, Y. et al. Water uptake study of anion exchange membranes. Macromolecules 51, 3264–3278 (2018).

    Article  Google Scholar 

  28. Mangiagli, P. M., Ewing, C. S., Xu, K., Wang, Q. & Hickner, M. A. Dynamic water uptake of flexible ion-containing polymer networks. Fuel Cells 9, 432–438 (2009).

    Article  Google Scholar 

  29. Li, Y. S., Zhao, T. S. & Chen, R. Cathode flooding behaviour in alkaline direct ethanol fuel cells. J. Power Sources 196, 133–139 (2011).

    Article  Google Scholar 

  30. Zawodzinski, T. A., Davey, J., Valerio, J. & Gottesfeld, S. The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes. Electrochim. Acta 40, 297–302 (1995).

    Article  Google Scholar 

  31. Xu, C. & Zhao, T. S. In situ measurements of water crossover through the membrane for direct methanol fuel cells. J. Power Sources 168, 143–153 (2007).

    Article  Google Scholar 

  32. Liu, F., Lu, G. & Wang, C.-Y. Low crossover of methanol and water through thin membranes in direct methanol fuel cells. J. Electrochem. Soc. 153, A543–A553 (2006).

    Article  Google Scholar 

  33. Zawodzinskijr, T., Springer, T., Uribe, F. & Gottesfeld, S. Characterization of polymer electrolytes for fuel cell applications. Solid State Ion. 60, 199–211 (1993).

    Article  Google Scholar 

  34. Ziv, N. & Dekel, D. R. A practical method for measuring the true hydroxide conductivity of anion exchange membranes. Electrochem. Commun. 88, 109–113 (2018).

    Article  Google Scholar 

  35. Larrazábal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019). Research paper that analyses the mass balance in an AEM CO2 electrolyser and discusses CO2 crossover via carbonate formation.

    Article  Google Scholar 

  36. Lu, X. et al. In-situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.0c06779 (2020).

  37. Pan, J. et al. High-performance alkaline polymer electrolyte for fuel cell applications. Adv. Funct. Mater. 20, 312–319 (2010).

    Article  Google Scholar 

  38. Thieu, L. M., Zhu, L., Korovich, A. G., Hickner, M. A. & Madsen, L. A. Multiscale tortuous diffusion in anion and cation exchange membranes. Macromolecules 52, 24–35 (2019).

    Article  Google Scholar 

  39. Disabb-Miller, M. L., Johnson, Z. D. & Hickner, M. A. Ion motion in anion and proton-conducting triblock copolymers. Macromolecules 46, 949–956 (2013).

    Article  Google Scholar 

  40. Kim, Y. S. & Pivovar, B. S. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers. Annu. Rev. Chem. Biomol. Eng. 1, 123–148 (2010).

    Article  Google Scholar 

  41. Dischinger, S. M., Gupta, S., Carter, B. M. & Miller, D. J. Transport of neutral and charged solutes in imidazolium-functionalized poly(phenylene oxide) membranes for artificial photosynthesis. Ind. Eng. Chem. Res. 59, 5257–5266 (2019).

    Article  Google Scholar 

  42. Krödel, M. et al. Rational design of ion exchange membrane material properties limits the crossover of CO2 reduction products in artificial photosynthesis devices. ACS Appl. Mater. Interfaces 12, 12030–12042 (2020).

    Article  Google Scholar 

  43. Nishimura, Y. et al. Solid polymer electrolyte CO2 reduction. Energy Convers. Manag. 36, 629–632 (1995).

    Article  Google Scholar 

  44. Narayanan, S. R., Haines, B., Soler, J. & Valdez, T. I. Electrochemical conversion of carbon dioxide to formate in alkaline polymer electrolyte membrane cells. J. Electrochem. Soc. 158, A167–A173 (2011).

    Article  Google Scholar 

  45. Aeshala, L. M., Rahman, S. U. & Verma, A. Effect of solid polymer electrolyte on electrochemical reduction of CO2. Sep. Purif. Technol. 94, 131–137 (2012).

    Article  Google Scholar 

  46. Li, Y. C. et al. Bipolar membranes inhibit product crossover in CO2 electrolysis cells. Adv. Sustain. Syst. 2, 1700187 (2018).

    Article  Google Scholar 

  47. Reyes, A. et al. Managing hydration at the cathode enables efficient CO2 electrolysis at commercially relevant current densities. ACS Energy Lett. 5, 1612–1618 (2020).

    Article  Google Scholar 

  48. Weng, L.-C., Bell, A. T. & Weber, A. Z. Towards membrane-electrode assembly systems for CO2 reduction: a modeling study. Energy Environ. Sci. 12, 1950–1968 (2019).

    Article  Google Scholar 

  49. Leonard, M. E., Clarke, L. E., Forner-Cuenca, A., Brown, S. M. & Brushett, F. R. Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. ChemSusChem 89, 400–411 (2019).

    Google Scholar 

  50. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  Google Scholar 

  51. Salvatore, D. & Berlinguette, C. P. Voltage matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 215–220 (2020). Perspective paper that employs a reference electrode in situ of zero-gap CO2 electrolysers to measure voltage drops across membrane electrode assembly components.

    Article  Google Scholar 

  52. Liu, Z. et al. Electrochemical generation of syngas from water and carbon dioxide at industrially important rates. J. CO2 Util. 15, 50–56 (2016).

    Article  Google Scholar 

  53. Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J. Electrochem. Soc. 165, J3371 (2018).

    Article  Google Scholar 

  54. Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. https://doi.org/10.1039/C7EE03245E (2018).

  55. Zheng, T. et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019).

    Article  Google Scholar 

  56. Peng, H. et al. Alkaline polymer electrolyte fuel cells stably working at 80 °C. J. Power Sources 390, 165–167 (2018).

    Article  Google Scholar 

  57. Park, E. J. & Kim, Y. S. Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: synthesis, properties, and performance — a topical review. J. Mater. Chem. A 6, 15456–15477 (2018).

    Article  Google Scholar 

  58. Luo, X., Rojas-Carbonell, S., Yan, Y. & Kusoglu, A. Structure–transport relationships of poly(aryl piperidinium) anion-exchange membranes: effect of anions and hydration. J. Membr. Sci. 598, 117680 (2019).

    Article  Google Scholar 

  59. Lee, J., Lim, J., Roh, C.-W., Whang, H. S. & Lee, H. Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes. J. CO2 Util. 31, 244–250 (2019).

    Article  Google Scholar 

  60. Arquer, F. P. G. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  Google Scholar 

  61. Xu, Y. et al. Oxygen-tolerant electroproduction of C2 products from simulated flue gas. Energy Environ. Sci. 13, 554–561 (2020).

    Article  Google Scholar 

  62. Khadke, P. S. & Krewer, U. Mass-transport characteristics of oxygen at Pt/anion exchange ionomer interface. J. Phys. Chem. C. 118, 11215–11223 (2014).

    Article  Google Scholar 

  63. Zhang, T. et al. Nickel–nitrogen–carbon molecular catalysts for high rate CO2 electro-reduction to CO: on the role of carbon substrate and reaction chemistry. ACS Appl. Energy Mater. 3, 1617–1626 (2020).

    Article  Google Scholar 

  64. Carter, B. M., Keller, L., Wessling, M. & Miller, D. J. Preparation and characterization of crosslinked poly(vinylimidazolium) anion exchange membranes for artificial photosynthesis. J. Mater. Chem. A https://doi.org/10.1039/C9TA00498J (2019).

  65. Cui, L. et al. Novel sulfonated poly(ether ether ketone)/silica coated carbon nanotubes high-performance composite membranes for direct methanol fuel cell. Polym. Adv. Technol. 26, 457–464 (2015).

    Article  Google Scholar 

  66. Su, Y.-H. et al. Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells. J. Membr. Sci. 296, 21–28 (2007).

    Article  Google Scholar 

  67. Si, K. et al. Rigid-rod poly(phenylenesulfonic acid) proton exchange membranes with cross-linkable biphenyl groups for fuel cell applications. Macromolecules 46, 422–433 (2013).

    Article  Google Scholar 

  68. Weissbach, T. et al. Simultaneous, synergistic control of ion exchange capacity and cross-linking of sterically-protected poly(benzimidazolium)s. Chem. Mater. 28, 8060–8070 (2016).

    Article  Google Scholar 

  69. Zhao, Y. et al. High-performance alkaline fuel cells using crosslinked composite anion exchange membrane. J. Power Sources 221, 247–251 (2013).

    Article  Google Scholar 

  70. Katzfuß, A. et al. Methylated polybenzimidazole and its application as a blend component in covalently cross-linked anion-exchange membranes for DMFC. J. Membr. Sci. 465, 129–137 (2014).

    Article  Google Scholar 

  71. Park, A. M., Turley, F. E., Wycisk, R. J. & Pintauro, P. N. Electrospun and cross-linked nanofiber composite anion exchange membranes. Macromolecules 47, 227–235 (2014).

    Article  Google Scholar 

  72. Weng, L.-C., Bell, A. T. & Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 20, 16973–16984 (2018).

    Article  Google Scholar 

  73. Mohanty, A. D., Tignor, S. E., Krause, J. A., Choe, Y.-K. & Bae, C. Systematic alkaline stability study of polymer backbones for anion exchange membrane applications. Macromolecules 49, 3361–3372 (2016).

    Article  Google Scholar 

  74. Arges, C. G. & Ramani, V. Investigation of cation degradation in anion exchange membranes using multi-dimensional NMR spectroscopy. J. Electrochem. Soc. 160, F1006–F1021 (2013).

    Article  Google Scholar 

  75. Parrondo, J., Wang, Z., Jung, M.-S. J. & Ramani, V. Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments. Phys. Chem. Chem. Phys. 18, 19705–19712 (2016).

    Article  Google Scholar 

  76. Klingele, M. et al. A completely spray-coated membrane electrode assembly. Electrochem. Commun. 70, 65–68 (2016).

    Article  Google Scholar 

  77. Breitwieser, M., Klingele, M., Vierrath, S., Zengerle, R. & Thiele, S. Tailoring the membrane–electrode interface in PEM fuel cells: a review and perspective on novel engineering approaches. Adv. Energy Mater. 8, 1701257 (2018). Review and perspective paper on engineering the membrane–electrode interface to increase efficiency for PEM fuel cells; many of the same principles can be carried over to CO2 electrolysers.

    Article  Google Scholar 

  78. Ito, H. et al. Experimental investigation of electrolytic solution for anion exchange membrane water electrolysis. Int. J. Hydrogen Energy 43, 17030–17039 (2018).

    Article  Google Scholar 

  79. Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).

    Article  Google Scholar 

  80. Ovalle, V. J. & Waegele, M. M. Understanding the impact of N-arylpyridinium ions on the selectivity of CO2 reduction at the Cu/electrolyte interface. J. Phys. Chem. C 123, 24453–24460 (2019).

    Article  Google Scholar 

  81. Aeshala, L. M., Uppaluri, R. G. & Verma, A. Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel. J. CO2 Util. 3-4, 49–55 (2013).

    Article  Google Scholar 

  82. Hou, P., Wang, X., Wang, Z. & Kang, P. Gas phase electrolysis of carbon dioxide to carbon monoxide using nickel nitride as the carbon enrichment catalyst. ACS Appl. Mater. Interfaces 10, 38024–38031 (2018).

    Article  Google Scholar 

  83. Ma, C. et al. Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction. Appl. Catal. B 250, 347–354 (2019).

    Article  Google Scholar 

  84. Ju, W. et al. Electrocatalytic reduction of gaseous CO2 to CO on Sn/Cu-nanofiber-based gas diffusion electrodes. Adv. Energy Mater. 9, 1901514 (2019).

    Article  Google Scholar 

  85. Endrődi, B. et al. Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency. ACS Energy Lett. 4, 1770–1777 (2019).

    Article  Google Scholar 

  86. Jeong, H.-Y. et al. Achieving highly efficient CO2 to CO electroreduction exceeding 300 mA cm−2 with single-atom nickel electrocatalysts. J. Mater. Chem. A 7, 10651–10661 (2019).

    Article  Google Scholar 

  87. Zhu, W., Kattel, S., Jiao, F. & Chen, J. G. Shape-controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra. Adv. Energy Mater. 9, 1802840 (2019).

    Article  Google Scholar 

  88. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2020).

    Article  Google Scholar 

  89. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Article  Google Scholar 

  90. Kaczur, J. J., Yang, H., Liu, Z., Sajjad, S. D. & Masel, R. I. Carbon dioxide and water electrolysis using new alkaline stable anion membranes. Front. Chem. 6, 263 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis P. Berlinguette.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Zengcai Liu, Guenter Schmid and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 3

Detailed data and corresponding references for Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvatore, D.A., Gabardo, C.M., Reyes, A. et al. Designing anion exchange membranes for CO2 electrolysers. Nat Energy 6, 339–348 (2021). https://doi.org/10.1038/s41560-020-00761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-020-00761-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing