Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Ecovoltaic principles for a more sustainable, ecologically informed solar energy future

The majority of power generated by photovoltaic energy infrastructure is derived from ground-mounted solar arrays that prioritize energy production, minimize operating costs and, at best, accommodate limited ecosystem services. We argue that co-prioritizing ecosystem services and energy generation using an ecologically informed, ‘ecovoltaics’ approach to solar array design and operation will have multiple benefits for climate, biodiversity and the restoration of degraded lands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Solar array design and management goals.
Fig. 2: How ecosystem services and attributes in degraded agroecosystems, rangelands or other low-statured ecosystems might be enhanced by an ecovoltaic approach.

References

  1. van Zalk, J. & Behrens, P. Energy Policy 123, 83–91 (2018).

    Article  Google Scholar 

  2. Hernandez, R. R. et al. Renew. Sustain. Energy Rev. 29, 766–779 (2014).

    Article  Google Scholar 

  3. Hernandez, R. R. et al. Nat. Sustain. 2, 560–568 (2019).

    Article  Google Scholar 

  4. Barron-Gafford, G. A. et al. Nat. Sustain. 2, 848–855 (2019).

    Article  Google Scholar 

  5. Randle-Boggis, R. J. et al. Renew. Sustain. Energy Rev. 125, 109775 (2020).

    Article  Google Scholar 

  6. Young, T., Petersen, D. A. & Clary, J. J. Ecol. Lett. 8, 662–673 (2005).

    Article  Google Scholar 

  7. Armstrong, A., Ostle, N. J. & Whitaker, J. Environ. Res. Lett. 11, 074016 (2016).

    Article  Google Scholar 

  8. Sturchio, M. A. et al. Ecosphere 13, e4334 (2022).

    Article  Google Scholar 

  9. Adeh, E. H., Selker, J. S. & Higgins, C. W. PLoS ONE 13, e0203256 (2018).

    Article  Google Scholar 

  10. Graham, M. et al. Sci. Rep. 11, 7452 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andrew, A. C., Higgins, C. W., Smallman, M. A., Graham, M. & Ates, S. Front. Sustain. Food Syst. 5, 659175 (2021).

    Article  Google Scholar 

  12. Baer, S. G., Blair, J. M., Collins, S. L. & Knapp, A. K. Ecology 84, 724–735 (2003).

    Article  Google Scholar 

  13. Baer, S. G., Adams, T., Scott, D. A., Blair, J. M. & Collins, S. L. Ecol. Appl. 30, e02014 (2020).

    Article  PubMed  Google Scholar 

  14. Holl, K. D., Luong, J. C. & Brancalion, P. H. S. Trends Ecol. Evol. 37, 777–788 (2022).

    Article  PubMed  Google Scholar 

  15. Bardgett, R. D. et al. Nat. Rev. Earth Environ. 2, 720–735 (2021).

    Article  Google Scholar 

  16. Ravi, S. et al. Appl. Energy 165, 383–392 (2016).

    Article  Google Scholar 

  17. Kannenberg, S. A., Sturchio, M. A., Venturas, M. D. & Knapp, A. K. Commun. Earth Environ. 4, 238 (2023).

    Article  Google Scholar 

  18. Post, A. K. & Knapp, A. K. J. Ecol. 108, 2431–2443 (2020).

    Article  Google Scholar 

  19. Hoover, D. L. et al. Glob. Change Biol. 28, 2611–2621 (2022).

    Article  CAS  Google Scholar 

  20. Fuhlendorf, S. D., Engle, D. M., Elmore, R. D., Limb, R. F. & Bidwell, T. G. Rangeland Ecol. Manag. 65, 579–589 (2012).

    Article  Google Scholar 

  21. Allred, B. W., Scasta, J. D., Hovick, T. J., Fuhlendorf, S. D. & Hamilton, R. G. Agric. Ecosyst. Environ. 193, 37–41 (2014).

    Article  Google Scholar 

  22. Koerner, S. E. et al. Nat. Ecol. Evol. 2, 1925–1932 (2018).

    Article  PubMed  Google Scholar 

  23. Sawyer, H. et al. Front. Ecol. Environ. 20, 345–351 (2022).

    Article  Google Scholar 

  24. Moore‐O’Leary, K. A. et al. Front. Ecol. Environ. 15, 385–394 (2017).

    Article  Google Scholar 

  25. Ladouceur, E. et al. J. Ecol. 111, 814–829 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the US Department of Agriculture’s National Institute of Food and Agriculture (NIFA) through the Sustainable Agricultural Systems project entitled “Sustainably Co-locating Agricultural and Photovoltaic Electricity Systems (SCAPES),” led by the University of Illinois Urbana-Champaign, grant number: 2021-68012-35898, 2021–2025. The authors thank E. Peirce for her illustrations, as well as K. Condon for her assistance with figure formatting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Sturchio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sturchio, M.A., Knapp, A.K. Ecovoltaic principles for a more sustainable, ecologically informed solar energy future. Nat Ecol Evol 7, 1746–1749 (2023). https://doi.org/10.1038/s41559-023-02174-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02174-x

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene