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Opportunities and challenges in the 
development of exoskeletons for  
locomotor assistance
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Franchino Porciuncula1,2, Krithika Swaminathan1, Louis N. Awad    2  
& Conor J. Walsh    1 

Exoskeletons can augment the performance of unimpaired users and 
restore movement in individuals with gait impairments. Knowledge of how 
users interact with wearable devices and of the physiology of locomotion 
have informed the design of rigid and soft exoskeletons that can specifically 
target a single joint or a single activity. In this Review, we highlight the 
main advances of the past two decades in exoskeleton technology and 
in the development of lower-extremity exoskeletons for locomotor 
assistance, discuss research needs for such wearable robots and the clinical 
requirements for exoskeleton-assisted gait rehabilitation, and outline the 
main clinical challenges and opportunities for exoskeleton technology.

Exoskeletons aiding locomotion entered the popular imagination over 
a century ago, followed by a series of early patents and prototypes1–5. 
Among other advances in the late twentieth and early twenty-first cen-
tury, funding from the Exoskeleton for Human Performance Augmen-
tation Program6 of the Defense Advanced Research Projects Agency 
(DARPA) of the United States enabled the development of wearable 
robotic devices for the lower extremities (in particular, the Berkeley 
lower-extremity exoskeleton, BLEEX7,8; the Sarcos Guardian XO9; and 
the MIT quasi-passive exoskeleton10–13) to augment strength and reduce 
effort during the carriage of load. By taking load off the wearer and 
providing assistive joint torques during walking, these weight-bearing 
lower-extremity exoskeletons sought to increase load capacity, improve 
efficiency and endurance, and reduce the perceived difficulty of walk-
ing11, potentially benefitting military personnel, first responders and 
weekend warriors. Measuring the metabolic cost of exoskeleton-aided 
locomotion became the gold standard for quantifying wearer effort and 
exertion. As such, demonstrating metabolic cost reductions compared 
to walking without the robot became a major goal for exoskeletons 
designed to augment strength and performance. Despite their promise, 
lower-extremity exoskeletons for performance augmentation in unim-
paired users initially failed to demonstrate metabolic cost reductions 

compared with walking without the exoskeletons14–16. Therefore, 
lighter-weight hardware and autonomous systems were developed 
and tested in goal-driven experiments, with single-joint systems tested 
to explore underlying biological mechanisms. These technological 
advances ultimately enabled exoskeletons to meet the envisioned 
objectives of reducing the metabolic cost during loaded or unloaded 
locomotion for military, industrial and recreational applications.

Alongside the development of exoskeletons to enhance the 
performance of load carriage, devices (in particular, the Lokomat17, 
Gait Trainer18, lower extremity powered exoskeleton (LOPES)19, active 
leg exoskeleton (ALEX)20,21 and Rutgers Ankle22) were designed to 
mechanize physical therapy for individuals re-learning to walk fol-
lowing spinal-cord injury (SCI) or stroke. Common clinical practice 
calls for physical therapists to manually move the feet and legs of 
non-ambulatory patients through the motions of walking to facili-
tate re-learning of movement patterns for functional improvement23. 
Robotic devices were developed to offload this burden from physical 
therapists and to improve patient outcomes by delivering precise 
interventions and training at optimal intensities, unconstrained by the 
limits of manual assistance. Exoskeletons initially failed to show clinical 
improvements that would justify their cost compared to traditional 
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for example to enable workers to lift heavy loads for extended periods 
of time (FORTIS, Guardian XO, Hanyang Exoskeleton Assistive Robot 
(HEXAR)-CR5052, Body Extender53–55).

Autonomous weight-bearing exoskeletons can also be designed 
with high power to restore some degree of mobility in people with 
substantial walking impairments. Several such devices have achieved 
regulatory approval56 (in particular, Hybrid Limb Assist (HAL)57,58 in 
Japan and Europe, and ReWalk59, EksoNR60,61 and Indego62 in the United 
States). Originally designed to support people with paraplegia, these 
devices can also be applied as gait-training tools for individuals with 
residual walking capacity49. A variety of such weight-bearing exoskel-
etons are commercially available (the Atlas, the ExoAtlet, the Hank, the 
Mina, the SuitX, the ExoH2 and the Twiice).

These devices can further be designed with various features; for 
example, extended sensor modalities can be integrated in control loops 
to measure reaction forces between the wearer and the ground58,63, 
the centre-of-mass position64, or brain activity65,66. Such features 
may enable the development of weight-bearing exoskeletons with 
well-coordinated control, allowing the wearer to adapt to new environ-
ments with the ease of an unimpaired walker, rather than providing only 
predefined motions. However, their weight and size limit their capacity 
to achieve specific physiological goals, such as reducing metabolic 
cost, because the exoskeleton spans the entire lower extremity and 
assists multiple joints. Therefore, research efforts have been targeted 
towards the design of lightweight systems that, instead of transferring 
load directly to the ground, apply torque in conjunction with biological 
mechanisms to assist a single joint.

non-robotic gait-training methods24–30. However, a better understand-
ing of the underlying biomechanics and physiology led to an improve-
ment in exoskeleton design, including biologically inspired strategies 
for actuation and control31–36. For example, ‘patient-cooperative 
control’ has been implemented in devices for gait rehabilitation to 
allow for more individualized assistance37–43. Such ‘assist as needed’ 
approaches are particularly important for augmenting the gait of 
individuals with some residual walking function while encouraging 
their own contributions.

In this Review, we first synthesize key advances in exoskeleton 
technology in the early twenty-first century and highlight recent exo-
skeleton designs, offering clinical insight into how exoskeletons can 
improve gait rehabilitation and identifying future directions for wear-
able robots. For devices designed for unimpaired adults, we focus on 
gait and exclude research in industrial applications (unless they are 
particularly relevant). We then discuss exoskeletons aimed at reduc-
ing the metabolic cost of walking in unimpaired individuals, which 
has been a principal focus since the 1990s. For devices intended to be 
used for people with gait impairments, we exclude research reported 
only in animal models. Rather, we include representative studies of 
people with stroke, traumatic brain injury (TBI), multiple sclerosis (MS), 
cerebral palsy (CP), and complete and incomplete spinal-cord injury 
(SCI-c, SCI-i). These conditions represent a range of gait impairments 
that require anywhere from full assistance (the case of SCI) to partial 
assistance (the case of stroke, MS, TBI and CP).

Wearable robots
The Cybathlon—a non-profit project of the Swiss Federal Institute of 
Technology in Zürich, in which people with physical disabilities com-
pete against each other every 4 years to complete everyday tasks using 
assistive technologies—has showcased a variety of exoskeletons used 
in various challenges44. Lower-extremity exoskeletons are similar to 
one another in their ability to augment human performance or restore 
movement; however, they differ in some key characteristics, such as 
device function and purpose.

Exoskeletons can be broadly classified as weight-bearing devices 
that transfer load directly to the ground or as joint-targeting devices 
that augment biological torque at a specific joint or joints to achieve 
a physiological goal. Weight-bearing and joint-targeting exoskeletons 
can either be applied for performance augmentation in unimpaired 
users or for movement restoration in the clinic for people with dis-
abilities (Fig. 1). These exoskeletons can further be designed with dif-
ferent power sources. Autonomous devices require the user to carry a 
battery to power conventional actuators (which increases their weight). 
In research-focused systems, the power source and actuators can be 
placed on a freestanding offboard structure (tethering the wearer to a 
treadmill). Alternatively, passive designs, in which energy is collected 
and returned during the gait cycle, do not require any power source45. 
System-level advances in both exoskeleton types have led to their 
increased commercial presence, to informative clinical investigations 
and to a better understanding of how exoskeletons influence biologi-
cal processes46–51.

Weight-bearing exoskeletons
Weight-bearing exoskeletons typically span the entire lower extrem-
ity and are made of rigid robotic components that enable multijoint 
assistance and direct transfer of load to the ground. Such devices 
were initially designed to reduce metabolic cost in unimpaired indi-
viduals during walking. However, to transfer loads to the ground, 
these devices usually inhibit coordination between the device and 
the wearer, which causes a change in the wearer’s gait pattern (com-
pared with their optimal pattern), limiting the ability of autonomous 
weight-bearing devices to lower the metabolic cost of walking14. 
Therefore, weight-bearing exoskeleton technologies have focused 
on increasing force production during non-ambulatory tasks,  

Unimpaired weight-bearing Unimpaired joint-targeting

Clinical weight-bearing Clinical joint-targeting
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Fig. 1 | Examples of autonomous exoskeletons. a, Weight-bearing applications 
in unimpaired users. b, Joint-targeting applications in unimpaired users. 
c, Weight-bearing applications in clinical populations. d, Joint-targeting 
applications in clinical populations.
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Joint-targeting devices
Joint-targeting devices assist a specific part of the body, enabling 
insights into how distinct biological features respond to changes 
in targeted exoskeleton assistance, which cannot be achieved with 
weight-bearing devices. The physiological effects of joint-targeting 
exoskeletons were first investigated using an ankle system driven by 
artificial pneumatic muscles31,32 with an offboard air compressor. By 
delivering assistance proportional to soleus surface electromyography 
(EMG), this device not only assisted gait, but also allowed fundamen-
tal investigations of the ankle’s function, in particular how passive 
elements in the ankle muscle–tendon contribute to the efficiency of 
walking15,34. Knowledge gained from these fundamental experiments 
greatly contributed to the design of joint-targeting devices that can 
decrease the metabolic cost of walking in unimpaired individuals with 
powered67–70 and passive45 ankle assistance (Fig. 2). Joint-targeting 
devices for ankle assistance also contributed to our understanding 
of gait rehabilitation in people with neurological impairments71–75.

Offboard actuation holds an important role in investigating the 
responses to joint-targeted assistance to inform the design of autono-
mous exoskeletons. By eliminating the need for body-worn power 
supplies and actuators, offboard systems enable heavier and more 
powerful actuators to serve across multiple experiments76–81, making 

them ideal research systems for rapid prototyping of joint-targeting 
exoskeletons. The field of wearable robotics has greatly benefitted 
from offboard actuation, which has allowed the evaluation of wearer 
sensitivity to varying levels of augmentation power82, the comparison 
of power-inspired assistance versus moment-inspired assistance83,84, 
the investigation of the impact of the stiffness of elastic ankle exoskel-
etons, and the optimization of assistance based on real-time meas-
urements of metabolic cost78,85. Furthermore, offboard actuation 
has allowed one device to emulate both rigid-link and non-rigid-link 
exoskeletons for gait training post-stroke86. Additionally, a commer-
cial offboard system (Caplex) can emulate the evaluation of assistive 
strategies in real time77.

The mechanical designs and control strategies of joint-targeting 
exoskeletons with offboard actuation can be easily modified to explore 
the different physiological impacts of the designs; however, these sys-
tems are restricted to treadmill-based studies, which may not reflect 
typical features of walking (such as changes in speed, direction or 
terrain). By contrast, autonomous systems allow the wearer to freely 
navigate unconstrained environments. The aim of joint-targeting 
exoskeletons is not to bear weight, hence autonomous devices do not 
require large rigid structures. However, rigid components are benefi-
cial for efficiently transferring torques to the body; for example, rigid 
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Fig. 2 | Timeline of exoskeleton design and function. Key developments 
in exoskeletons for gait assistance from 2000 to present. Green boxes and 
illustrations denote weight-bearing exoskeletons meant for unimpaired 

populations, yellow denotes weight-bearing exoskeletons for clinical 
applications, blue denotes joint-targeting devices for unimpaired populations, 
and pink denotes joint-targeting devices for clinical populations.
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components and a distal actuator at the ankle decrease the metabolic 
cost of loaded and unloaded walking in unimpaired individuals69,70,87. 
Rigid devices have also been developed for assisting other joints, in 
particular the hip88–91 and the knee92,93, and for multijoint assistance94 
(for example, the Cyberlegs project95). Moreover, rigid joint-targeting 
autonomous exoskeletons have been commercially developed for 
industrial, recreational and clinical applications, such as the Stride 
Management Assist (SMA)96–98 and the Gait Enhancing and Motivation 
System (GEMS)99,100. These autonomous bidirectional hip exoskeletons 
have been used to investigate new control schemes101–103, the augmen-
tation of performance in unimpaired individuals104–106, the restoration 
of gait function in elderly adults107,108, improvements in gait and other 
mobility in people with CP109–111 and clinical effects post-stroke112,113.

Joint-targeting exoskeletons often feature creative designs to 
mitigate the high energetic cost of distal mass; for example, light-
weight textile-based components can be applied to interface with the 
body and minimize kinematic interference. These soft exoskeletons 
(often called exosuits) sacrifice some efficiency in transmitting power 
to the user in exchange for light and minimally restrictive systems, 
which may be more comfortable to wear for prolonged periods com-
pared with traditionally rigid exoskeletons. Soft exosuits can augment 
metabolic performance114–118 and enable post-stroke gait assistance 
at the ankle119–121. They have been commercialized (one example is the 
ReStore122). The textile-based Myosuit assists hip and knee extension 
with a single actuator, as well as hip flexion with a passive spring-like 
element during sit-to-stand transitions123 and walking124. A soft wear-
able robotic ankle-foot orthosis with a bidirectional, tendon-driven 
and distally mounted actuator can assist plantarflexion and dorsiflex-
ion125. A textile-based device with a ‘cross-wire’ design can be applied 
at the hip to induce turning126. The XoSoft delivers similar amounts of 
mechanical power to the ankle and hip as other devices127 but has not 
yet been evaluated in the clinic or in terms of metabolic cost reduction 
in unimpaired individuals.

To further reduce costly distal mass, designs based on biological 
mechanisms are being explored. The human body compensates for 
energy cost with passive structures such as tendons connected to 
active muscles, which can be mimicked in passive devices that rely only 
on elastic elements to reduce the cost of walking. For example, such 
passive ankle devices can reduce the metabolic cost of walking45 or 
running128–130. Furthermore, passive devices, which can be worn under 
clothes131, can assist the hip132 or ankle during walking.

Understanding the wearer’s response
Exoskeletons have begun to confer the wearer some of the 
long-hypothesized physiological benefits during locomotion. Devices 
for unimpaired users can reduce the effort of walking and jogging in 
lab-based and outdoor settings, and devices for gait rehabilitation 
have led to clinical improvements. Although the aim of devices for 
gait rehabilitation is to reduce the metabolic cost of walking, their 
immediate objective is to modify the wearer’s existing gait pattern. 
Accordingly, clinically relevant metrics and functional outcomes, such 
as walking speed and spatiotemporal symmetry, are used to evaluate 
device benefits. Therefore, understanding the wearer’s response to 
exoskeletons is crucial to enable the design of robust devices, indi-
vidualized assistance and widespread user acceptance.

Reduction of metabolic cost
The first demonstration of an offboard ankle-assisting exoskeleton low-
ering the metabolic cost of walking compared to unassisted walking68 
made clear the promise of joint-targeting exoskeletons. Joint-targeting 
devices can interface with the body through different approaches, and 
they can be designed with different actuation and control modes to 
assist a variety of joint motions, rather than just the ankle. The meta-
bolic impact of these devices varies depending on whether the exo-
skeleton is autonomous or tethered to an offboard actuator, and on 

whether the effects of the exoskeleton are compared to walking without 
an exoskeleton (no exoskeleton) or to walking with an exoskeleton but 
without assistive torque (no assist).

Studying metabolic-cost reduction using offboard systems and 
comparisons to no assist allow for rapid iteration through experimental 
designs and through device and controller prototypes. An offboard 
ankle-assisting exosuit led to a magnitude of assistance delivered dur-
ing walking that directly influenced metabolic reduction compared 
with no assist (22.83 ± 3.2%)82. Although the highest augmentation 
torques may achieve the highest metabolic reduction, well-optimized 
assistance profiles offer further metabolic benefits over fixed control 
strategies. Human-in-the-loop (HIL) optimization automatically indi-
vidualizes control parameters to each participant in real time and has 
been shown to lead to metabolic reductions using offboard devices 
assisting the hip (17.4 ± 3.2% compared with no exoskeleton)85 and 
the ankle (24.3 ± 7.4% compared with no assist)78. Further study at the 
muscle level may provide more information on optimal profiles or 
device designs for maximizing metabolic reduction133.

For unimpaired users, the ultimate goal of autonomous exoskel-
etons is to reduce the metabolic cost of walking relative to no exo-
skeleton; that is, these wearable devices should more than offset the 
additional weight (including that of power sources) carried by the user. 
Therefore, exoskeletons not only have to provide assistance at the 
correct time, but also have to be sufficiently light so that their meta-
bolic benefit overcomes the metabolic burden of the added weight. 
A landmark study of an ankle-targeting autonomous system showed 
metabolic reduction during loaded walking (8 ± 3%) compared with 
no exoskeleton69. Other autonomous exoskeletons have also led to 
metabolic reductions relative to no exoskeleton134: a passive ankle 
device (7.2 ± 2.6%)45, a hip exoskeleton (GEMS, 17.4 ± 2.9%)135, and a 
soft exosuit for hip assistance during both walking (9.3 ± 2.2%)117 and 
running (4.0 ± 1.3%)117.

These results highlight the potential of exoskeletons as assistive 
complements to walking; however, their design, manufacturing and 
testing remain time-consuming and resource-consuming. In addi-
tion, predicting the efficiency of untested devices in metabolic-cost 
reduction remains challenging. The increase in metabolic cost owing 
to exoskeleton weight can be accounted for by the augmentation fac-
tor (AF), a metric aimed at predicting the metabolic benefit solely on 
the basis of its mass and power characteristics69. The AF is defined as

AF = p+ + pdis

η −
i=4
∑
i=1

βimi (1)

where p+ is the average positive augmentation power, pdis is the net 
augmentation-power dissipation (pdis = 0 when |p+| ≥ |p−| and pdis = p+ + p− 
when |p+| < |p−|; p− is the average negative-augmentation power), η is 
the muscle–tendon apparent efficiency15, mi are the added device 
masses on each segment (trunk, thigh, shank and foot) and βi are the 
device-location factors for each segment based on linear-regression 
equations136. When the AF was first introduced, only two datasets67,68, 
both assisting ankle plantarflexion, were available to estimate mus-
cle–tendon apparent efficiency, η = 0.41, defined as

η = Averagepositive augmentationpower
ΔNetmetabolic power relative tono assist

(2)

Using data published since 2014, focusing on studies demonstrat-
ing metabolic reductions relative to no assist, we calculated appar-
ent joint efficiencies for ankle plantarflexion (η = 0.47)68,69,87,137–139 and 
hip extension (η = 0.49)117,140–142. Some studies looked at devices that 
assisted multiple joints14,143–145. However, some studies did not include 
all information necessary to compute equation (1), hence we made 
some assumptions about device parameters, such as weight distribu-
tion (Supplementary Table 1). Using these updated apparent joint 
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efficiencies, the AF can predict the metabolic impact of exoskeletons 
(Fig. 3) for specific modes of assistance (Supplementary Table 2). 
Of note, a key assumption of the AF is that metabolic benefit from 
external assistance scales linearly with the average amount of positive 
power delivered by an exoskeleton. Some studies corroborate this 
assumption, showing, for example, that the condition with the highest 
augmentation power shows the highest metabolic-cost reduction82; 
or that two different assistance profiles with similar amounts of aug-
mentation power lead to similar metabolic reductions84. By contrast, 
empirical experiments78,83,138 and simulations146,147 have indicated that 
there is a point at which too much augmentation power may not lead to 
additional metabolic-cost reductions. Moreover, studies using passive 
devices have shown the potential for low-positive-power strategies to 
reduce the metabolic cost of walking45.

Interestingly, data reported for elastic ankle exoskeletons with 
intermediate stiffness springs set in parallel with the human plantar-
flexors do not follow the general trend148. This study included actuation 
profiles that did not provide metabolic improvement; such actuation 
profiles were also included in another study for unpowered ankle exo-
skeletons45. Actuation profiles that do not decrease the metabolic cost 
of walking are not common in the recent literature, a gap that perhaps 
hides factors influencing metabolic benefit. Indeed, augmentation 
power is not the only factor influencing metabolic improvement. To 
change the sign of equation (1), the device has to apply substantially 
more negative augmentation power than positive augmentation power, 
or needs to be sufficiently heavy so that its distal inertia overrides any 
benefit of positive augmentation power. In addition, various other 
factors may influence the metabolic cost.

Device-location factors136, for example, do not account for the 
increased energy cost of moving distal mass at high walking speeds148. 
Moreover, the AF does not consider potentially substantial changes in 
kinematics owing to exoskeleton assistance82,148. Although incomplete, 
the AF remains a surprisingly powerful indicator of metabolic improve-
ment of devices that apply net positive augmentation power. Studies 
describing actuation profiles that decrease and increase the metabolic 
cost of walking will further increase understanding of device designs 
that make walking easier.

In addition to the AF, other modelling techniques have been 
used to inform exoskeleton design with the aim of reducing meta-
bolic cost. High-level models such as the individual-limbs method149 
examine how each leg contributes mechanical power to the centre of 
mass150. Interestingly, high-level models have also been used to design 
a phase-oscillator controller that can reduce the metabolic cost of run-
ning compared with no exoskeleton151. Future approaches to predicting 
metabolic-cost reductions should also consider the cost difference in 
generating force with muscles crossing the hip, knee or ankle. Tools 
such as OpenSim152–154 can estimate individual muscle activations and 
kinetics, offering insights into how exoskeletons can modify muscle–
tendon dynamics in ways that can either benefit155 or impede156 gait.

High-level models can provide information about key trade-offs 
in the early phases of device development, and more detailed mus-
culoskeletal models can give insight into the biomechanical changes 
induced by wearable devices. To inform these models, close collabora-
tion between device and simulation designers will be crucial. Experi-
mentalists should provide key experimental data, such as applied 
device torques and powers, the distribution of added exoskeleton 
mass on the body, the resultant metabolic impact relative to both no 
exoskeleton and no assist, and raw kinetic, kinematic or muscle-level 
responses.

In-clinic validation
In contrast to devices designed for unimpaired users, improving walk-
ing performance in the clinic often does not focus on reducing meta-
bolic cost. People with gait deficiencies develop atypical movement 
patterns that are thought to be necessary for stability, and devices 
applied to improve gait may therefore disrupt energetic efficiencies 
established through these compensations. Although metabolic cost 
remains important, clinical studies involving exoskeletons for gait 
assistance often focus on safety metrics to establish patient–device 
agreement, as well as on efficacy metrics based on walking function 
and quality. Here we discuss outcomes from exoskeleton evaluations 
in clinical populations ranging from case studies to randomized con-
trolled trials (RCTs).

Weight-bearing exoskeletons have been studied in a range of 
conditions (from complete SCI to stroke) requiring full to partial assis-
tance, whereas joint-targeting exoskeletons have mainly been used in 
conditions requiring partial assistance, such as stroke (Table 1). Only 
preliminary studies have been performed for assessing acceptability 
and feasibility of wearable exoskeletons in people with SCI thus far, 
owing to the complex nature of assisting gait in this condition. In clini-
cal studies, exoskeletons have mainly been applied to increase train-
ing intensities to facilitate neuroplastic changes, as shown in animal 
models157; however, certain conditions, such as complete paralysis from 
SCI, benefit from exoskeletons as an alternative means of mobility.

Several commercial devices have been examined for their clini-
cal potential, including Ekso158–160 and Indego161 for SCI, ReWalk for 
MS162, as well as HAL163 and ReStore122,164 for stroke. The results have 
shown acceptable feasibility and safety; however, occurrences of 
non-injurious falls158 and skin issues owing to device fit (such as red-
ness and minor abrasion)122,161 were noted. Although assessments of 
device efficacy were limited in these preliminary studies, speed-based 
outcomes improved over the course of robotic gait training in the 
case of HAL for people with subacute stroke163, Ekso for people with 
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Fig. 3 | AF versus metabolic improvement of wearable exoskeletons. The 
shapes indicate the condition to which metabolic improvement was compared. 
The dashed grey line is the identity line. Only bilateral exoskeleton and exosuit 
level-ground walking experiments (for which data to calculate AF are available) 
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SCI160 and ReWalk for people with MS162. In a multisession case study 
involving three participants with complete SCI, training with the Ekso 
resulted in linear increases in the number of steps and distances in 2 
out of 3 participants, and a 2–3-fold increase in walking speed for all 
participants165. Notably, training with the ReStore resulted in a signifi-
cant increase in unassisted maximum gait speeds of 0.07 m s−1 in 36 
people with chronic stroke after a brief training of five sessions122, which 
is about a fourth of the dose of non-robotic training regimens, with a 
median dose of 20 sessions with pooled mean differences of 0.11 m s–1 
(ref. 166). Training with the Indego device resulted in an average walk-
ing speed of 0.37 m s–1 in 32 individuals with SCI who were otherwise 
non-ambulatory without the device, after 26 visits161, which is about 
half the median dose of body-weight-supported treadmill-walking regi-
mens (50 sessions), which did not increase walking speed167. In contrast 
to the aforementioned devices designed to provide assistance during 
walking, the Anklebot, which provides isolated training of the paretic 
ankle joint while seated, led to the transfer of gains from seated train-
ing to improvements in walking speed in 29 less-impaired individuals 
in the chronic phase of stroke168.

These findings highlight the potential of robot-assisted inter-
ventions in improving clinical outcomes. However, larger trials with 
control groups are needed to fully understand the generalizability of 
these results, the practicality of these technologies in the clinic and 
dose-response relationships over time. Importantly, exoskeletons 
must show clinically meaningful changes in walking performance in 
clinical trials. Specifically, RCTs seek to minimize biases in testing, thus 
increasing the likelihood of revealing robust effects of robotic training 
compared with conventional approaches169,170.

The effects of robotic training in people with stroke112,113,171–176 and 
other neurologic conditions, such as MS177,178 and TBI179, have been 
examined in RCTs. In people with chronic stroke, training with the 
SMA improved walking endurance, daily step count, corticomotor 
excitability of the paretic rectus femoris112, step length and spatial 
gait symmetry113, as compared with a control group who received 
non-robotic gait training only. Similarly, training with the Lokomat 
resulted in improvements in gait speed, balance and self-sufficiency175. 
Conversely, training with the Bionic Leg, a powered unilateral knee 
orthosis, failed to show benefits in gait speed in people with chronic 
stroke, and showed only modest functional benefits relative to gait 
training without robotics172.

Robotics have thus far only been applied in a subset of people 
with subacute stroke and substantial gait impairments. Training with 
the Lokomat173 and HAL174 led to a statistically significant increase in 
functional walking independence in people post-stroke, as well as 
to tendencies to increased walking speed following training with the 
treadmill-based Gait Assistance Robot171, as compared with gait training 
without robotics. Although less explored, early stroke rehabilitation 
during the acute phase or inpatient care may be one of the most relevant 
applications for exoskeletons. A large number of individuals with 
stroke are admitted to the hospital, and thus an ideal therapy design 
at this stage may be most advantageous, minimizing the development 
of compensations.

Training with the Lokomat also resulted in improvements in 
walking endurance and speed in people with MS, compared with 
conventional non-robotic training178. Training with the Gait Trainer 
resulted in improvements in balance; however, this effect was not 
significantly different compared to control training without robot-
ics177. Favourable effects with the Lokomat were also observed in 
people with TBI, with an improvement in maximum walking speed 
and step length; however, walking endurance was only improved in 
non-robotic control training179.

Owing to the limited benefit of robot-assisted interventions over 
conventional gait training thus far24,25,29,30, treadmill-based exoskel-
etons are not currently clinically recommended for gait rehabilita-
tion therapy of people with chronic stroke, incomplete SCI or TBI180. 

Nevertheless, the outcomes of RCTs can inform future clinical-trial 
designs to improve the quality and staging of the clinical studies with 
regards to appropriate outcome measures, dose-response effects 
and control groups for training-effect comparisons181,182. The device, 
training paradigms and patient-inclusion criteria need to be optimized 
to maximize the benefits of exoskeletons in gait rehabilitation183. A 
change in clinical practice is only justified if new interventions lead 
to a substantial benefit over existing practice180. Therefore, an RCT 
must be replicated across multiple testing sites to reduce bias and 
increase generalizability, which is regarded as the gold standard for 
therapeutic interventions181.

The pathway to multicentre RCTs with robotic devices should 
include four phases181. In phase 1, preliminary experiments should be 
conducted to confirm the safety of the device and its feasibility for 
clinical use. Clinically relevant outcome metrics, potential training 
paradigms and participant-inclusion criteria should also be deter-
mined at this phase. Once these phase-1 experiments confirm user 
safety and suggest improvements of clinical outcomes, then more 
detailed experiments, such as case studies with several participants, 
can be conducted in phase 2 to further inform training paradigms. 
Small case studies are more appropriate for substantiating preliminary 
phase-1 results in clinical settings, but do not require data from more 
participants than in phase 1. Case studies should include measure-
ments of clinical and biomechanical metrics to enable preliminary 
explanations for high-level functional changes, such as gait speed. To 
provide initial insight into how the device compares to conventional 
therapy without robotics, case studies should involve a preliminary 
control group that receives similarly structured intervention without 
the device. In some cases, such as in the chronic phase of stroke, a 
crossover design can be applied; in this, the participants serve as their 
own control, and complete interventions with and without the device. 
Proper device validation in phases 1 and 2 aids in the formulation of the 
design of an RCT in phase 3 to ultimately enable evidence of interven-
tion validity across multiple testing locations181 in phase 4. Therefore, 
if questions regarding intervention dosage, outcome metrics or par-
ticipant inclusion remain unsolved on completion of phase 2, phases 
1 and 2 should be repeated before progressing to phase 3. Similarly, if 
clinical outcomes are substantially improved but cannot be explained 
by quantitative biomechanical evaluations, phase 2 must be extended 
to better understand the human–robot interaction. Once functional 
outcomes have been shown to improve with the device with respect to 
the control, and once preliminary biological mechanisms have been 
identified, an RCT in phase 3 can be performed. An RCT must be suf-
ficiently powered and contain a formal control group representative of 
usual care, to allow for comparisons of rehabilitation effects. If an RCT 
shows positive changes in some metrics but remains overall inconclu-
sive, then progression to a multicentre RCT in phase 4 should be halted. 
Once clinically meaningful average improvements are obtained with 
the device (compared with the control group), a multicentre RCT can 
be conducted. Clinical effectiveness from such a study would motivate 
device implementation in clinical settings.

Only few exoskeleton systems have thus far been tested following 
this evidence-generation pathway. Although RCTs have shown prom-
ising clinical benefits related to speed and functional independence, 
these effects appear to be specific to the patient population and to the 
robotic devices (spanning a range of robotic systems, designs, control-
lers and interactions with diverse patient populations and impairment 
presentations184). It is important to identify which patient population 
would benefit the most from the robotic device185, rather than assessing 
a robot’s generalized benefit for all users184. Similarly, devices should 
be developed that can adapt to therapy, community settings and user 
needs to understand how exoskeletons can best support rehabilitation.

Therefore, clinical trials of neurorehabilitation involving robot-
ics have to adopt strategic staging181,186, akin to stepwise and iterative 
processes employed in the development of drug-based therapies186, 
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to minimize premature entry into multicentre RCTs. A comprehensive 
evaluation of effects of exoskeletons beyond functional outcomes 
is necessary to identify the underlying mechanisms that pertain to 
motor recovery versus compensations. However, clinical trials often 
lack the data required to perform quantitative biomechanical evalua-
tions. Clinical outcomes, such as walking-speed improvements, may 
be similar in different interventions, but the underlying neural-control 
strategies may be distinct112,113. Robotic interventions can deliver 
high-intensity and high-repetition practice, which are known drivers 
of neuroplasticity and which should be considered in clinical trials 
involving robotics187. Understanding neuroplasticity mechanisms 
can drive neurotechnology design for rehabilitation188, considering 
that common neurorehabilitation practices value motor recovery 
over compensations. Spatiotemporal measurements from onboard 
sensors could shed light on the biomechanical mechanisms that lead 

to functional changes189,190; for example, by mapping neural signals 
obtained by electroencephalography (EEG) to gait kinematics191. In 
addition, temporal aspects of gait training should be considered. Clini-
cal trials have thus far mainly focused on the rehabilitative potential 
of exoskeletons; however, the effective frequency and duration of 
training, and how long benefits may last, remain to be investigated185. 
Also, studies of assistive devices for continuous wear remain limited, 
but may allow for rehabilitation beyond the clinic and encourage com-
munity participation.

Component technology
Control
Accurate joint-angle estimation has proven invaluable in planning 
assistance. Most rigid systems use encoders on actuated joints to deter-
mine joint angles; however, devices without rigid joints cannot rely 

Table 1 | Clinical trials in the past 7 years

Device name Population Type of trial Level of evidence N Study type Ref.

Weight-bearing device

Lokomat Traumatic brain injury RCT Formal control group 16 Gait speeda 179

GT1 Multiple sclerosis RCT Formal control group 32 Gait speed 177

Lokomat Chronic stroke RCT Formal control group 18 Gait speeda 175

Lokomat Multiple sclerosis RCT Formal control group 16 Gait speeda 178

Bionic Leg Chronic stroke RCT Formal control group 20 Gait speed 172

GAR Subacute stroke RCT Formal control group 26 Gait speed and 
independencea

171

Lokomat Subacute stroke RCT Formal control group 28 Gait speed and 
independence

173

HAL (single-leg) Subacute stroke RCT Formal control group 32 Gait speed and 
independence

174

HAL Subacute stroke Safety and feasibility Within-subject comparison 18 Gait independence 163

Ekso Complete spinal-cord 
injury

Safety and feasibility Within-subject comparison 8 Safety and feasibility
Gait speed

158

Ekso Complete spinal-cord 
injury

Safety and feasibility Within-subject comparison 7 Safety and feasibility
Gait independence

159

Ekso Complete spinal-cord 
injury

Safety and feasibility Within-subject comparison 3 Gait speed 160

Rewalk Multiple sclerosis Safety and feasibility Within-subject comparison 13 Safety and feasibility
No functional outcomes

162

Ekso Complete spinal-cord 
injury

Early-stage pilot Within-subject comparison 3 Gait speed and 
independencea

165

Indego Spinal-cord injury Safety and feasibility Within-subject comparison 32 Safety and feasibility
Gait independence

161

H2 Chronic stroke Safety and feasibility Within-subject comparison 5 Gait speed 191

Joint-targeting device

SMA Chronic stroke RCT Formal control group 50 Gait speed 112

SMA Chronic stroke RCT Formal control group 50 Gait speeda 113

Robot-assisted AFO Chronic stroke RCT Formal control group 20 Gait speed and 
independencea

176

Rewalk Restore Chronic stroke Safety and feasibility Within-subject comparison 44 Safety and feasibility
Gait speed

122

AnkleBot Chronic stroke Early-stage pilot Within-subject comparison 29 Gait speed 168

Powered ankle 
exoskeleton

Cerebral palsy Safety and feasibility Within-subject comparison 5 Gait independence 109

Powered ankle 
exoskeleton

Cerebral palsy Early-stage pilot Within-subject comparison 7 Gait speed 110

Rewalk Restore Chronic stroke Early-stage pilot Within-subject comparison 5 Gait speed and 
independencea

164

Functional outcomes included commonly reported measures of gait speed (typically based on a 10-m-walk test) and gait independence (based on functional ambulatory classification or level 
of physical assistance required). N, number of participants. aWith quantitative biomechanical outcomes.
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on encoders and thus must use other sensors (for example, inertial 
measurement units; IMUs192,193) to determine joint angles. IMUs are 
lightweight, inexpensive and easy to integrate into robotic systems, but 
also particularly sensitive to their physical alignment with biological 
joints (a challenge that rigid devices do not face). Furthermore, ori-
entation measurements from IMUs suffer from inherent inaccuracies 
owing to bias (a constant offset compared to the true IMU orientation) 
and drift (a history-dependent change in orientation), which render 
measurements unusable within minutes if left uncorrected. Therefore, 
ensuring consistent alignment without first making precise measure-
ments is difficult, hence IMU-based joint angles can be highly variable 
depending on placement. Importantly, asking wearers to take precise 
measurements each time they put on an exoskeleton hinders com-
mercial applications, for which usability is crucial. Misalignments can 
be corrected by optimization algorithms that automatically estimate 
the location of the IMU relative to a biological joint, greatly improving 
joint-angle estimation accuracy194–197. Integrating these algorithms 
with wearable devices may enable the development of controllers that 
leverage joint-angle estimates for targeted assistance without requiring 
rigid joints. Such motion sensing could also be a valuable tool in the 
evaluation of a wearer’s kinematic performance outside of laboratory 
settings and could allow for the assessment of interventions at home 
or in the community. Furthermore, small IMUs worn during walking 
could inform an algorithm that determines the primary joint (or joints) 
at which a person experiences a gait deficit, along with the severity of 
that deficit. A clinician could then recommend a device appropriate 
for this specific deficit.

Exoskeletons are often controlled by applying actuation profiles 
as a function of the gait cycle (a standard time-normalized period 
that stretches from one heel strike to the next). Thus, parallels can 
be drawn between controllers, biological kinematics and kinetics. 
Heel-strike events can be assessed via the measurement of the foot 
switch, by placing an instrumented insole inside the shoe. Although 
simple in their design, foot switches often have issues related to sizing 
(the sensor must align well with both the heel and the ball of the foot) 
and durability (loading well exceeds body weight with every stride). 
Alternatively, IMUs can be used to detect heel strikes82,124. Detection of 
gait events is easiest with IMUs placed at the ankle, where the impact 
from a heel strike is most apparent. The cyclical nature of the gait cycle 
can also be leveraged by identifying measures in the phase plane that 
remain invariant across walking speeds198,199. Devices not targeting the 
ankle can be equipped with an adaptive oscillator99,100,105–108,200, which 
takes cyclic measurements of the hip angle to estimate the gait cycle. 
Instead of measuring the gait cycle, devices can also be designed to 
actuate in reaction to specific events as they occur119. Recent work has 
used machine-learning techniques to automatically detect the gait 
cycle using sensors at the hip201,202 and ankle203, adapted to different 
terrains and walking speeds.

The cyclical nature of walking enables the detection of repeated 
phases; however, gait initiation, termination, speed changes or turns 
can happen at any point during the gait cycle and are thus more chal-
lenging to detect. Therefore, exoskeletons often rely on sensor input 
to measure intent of movement and to predict the wearer’s motion 
before it occurs, to appropriately adjust assistance. However, detect-
ing intent of movement is distinct from activity classification, in which 
heuristic methods or machine-learning techniques are used to identify 
activities beyond level-ground walking (such as walk-to-run transitions; 
or walking on terrains such as ramps or stairs204,205). Similar to detect-
ing the gait phase, the intent of stepping can be detected using IMUs 
that measure joint angles and angular velocities206 and that estimate 
the centre-of-mass position64. Other motion-sensing modalities have 
also been integrated with lower-extremity exoskeletons to detect 
the intent of movement; for example, surface EMG can be applied to 
measure muscle activity and to administer proportional assistance at 
the ankle35. Myoelectric control can be further extended by integrating 

intricacies, such as adaptive gains137, and has been shown to be feasible 
in post-stroke gait207 across variable speeds208. However, surface EMG 
measures muscle activation rather than muscle motion, which may 
limit its ability to predict user intention. Alternatively, ultrasound 
imaging can be applied to sense differences in muscle dynamics for the 
detection of motor intent209. Such real-time estimation of muscle–ten-
don kinematic behaviour could be incorporated in exoskeleton-control 
schemes210. Although more common in upper-extremity exoskeletons, 
EEG for intent detection has also been explored in gait-related appli-
cations211. The NeuroRex was the first lower-extremity exoskeleton to 
integrate a brain–machine interface into its control loop, detecting a 
wearer’s motion intention to assist with sit-to-stand65 and walking66.

In functional electrical stimulation (FES), electrical impulses 
are delivered to a given muscle to generate involuntary contraction 
and to facilitate movement in paralyzed or weak limbs212–214. However, 
such external stimulation saturates muscle activation and can rapidly 
induce muscle fatigue, which increases the metabolic cost of walking 
compared with walking with an exoskeleton215. However, electrical 
stimulation can be combined with mechanical assistance. Although 
more common in upper-limb exoskeletons, electrical stimulation can 
also be integrated in lower-extremity exoskeletons to create hybrid 
systems for gait assistance216, particularly in people with paraplegia. 
The Vanderbilt Exoskeleton was the first hybrid system for paraplegic 
individuals. This hip-and-knee joint-coupled exoskeleton contains a 
push-button control to stimulate the quadriceps and to generate hip 
flexion and knee extension62. Kinesis, a knee-ankle-foot exoskeleton, 
similarly combines FES and mechanical assistance to balance the power 
contribution of the exoskeleton and muscle stimulation. Here, the 
closed-loop control of FES is based on EMG-estimated muscle fatigue217. 
Such hybrid systems are promising for promoting neuroplasticity 
because FES interfaces directly with the neuromuscular system and 
exoskeletons enable high training intensity. Hybrid FES–exoskeleton 
systems have mainly been explored for paraplegic applications thus 
far but may also benefit populations with more residual volitional 
contribution, such as people post-stroke.

Actuators
Actuator choice for exoskeletons is targeted towards limiting the dis-
tal mass and its costly metabolic impact218. Accordingly, actuators 
have been designed to minimize weight and to maximize power. For 
example, conventional motors can be applied to actuate rigid links 
and to establish sophisticated interfaces between exoskeletons and 
the body104,219,220. Bowden cables, which can transmit forces from a 
heavy actuator to lighter-weight distal components, have been applied 
in both autonomous117,118,145 and offboard devices77,79,82,85,115. Alterna-
tively, McKibben-type pneumatic artificial muscles can distally apply 
sagittal-plane assistance34, with updated versions demonstrating 
metabolic benefit67,68,138,207. Other artificial-muscle technologies have 
also shown promise for reducing drop foot in people post-stroke221. 
Such soft inflatable actuators have been integrated into research 
devices for lateral ankle support222,223 and in commercial devices for 
recreational knee-injury prevention224. As a semi-active extension of a 
passive exoskeleton45, a proof-of-concept electroadhesive clutch has 
been designed to actively engage or disengage a spring when voltage 
is applied across a stack of thin electrode sheets225,226. These contrast 
with traditional mechanical clutches, which require a physical latch to 
engage or disengage a spring, requiring much more elaborate mech-
anisms. Electrostatic clutches could allow for the design of passive 
joint-targeting exoskeletons that adapt to changes in speed, movement 
and the environment.

Simulation of forward dynamics
High-fidelity simulations are an important tool for estimating the meta-
bolic benefit of exoskeleton devices. Empirical techniques, such as 
HIL optimization, can optimize assistance in response to real-time 
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measurements. In addition, the simulation of forward dynamics can be 
applied to analytically estimate the impact of exoskeletons, primarily 
in unimpaired users, but also in rehabilitation227. Forward-dynamics 
simulation can aid in the prototyping of new designs or modes of assis-
tance, and in gaining insight into the biological mechanisms leading to 
empirical results. For example, exoskeletons have had limited success in 
lowering the metabolic cost of running; however, a simulation applying 
ideal torque actuators in seven different configurations to a running 
model228 could confirm experimentally observed phenomena, such 
as a decrease in muscle activation at unassisted joints115. A simulation 
of walking with heavy load suggested, somewhat surprisingly, that 
hip-abduction assistance could lower the metabolic cost of walking 
more than (the well-studied) ankle plantarflexion; however, this result 
remains to be experimentally confirmed153.

Machine learning for patient selection
Machine-learning techniques will allow researchers and clinicians 
to more efficiently identify people who could benefit from wearable 
devices. Machine learning can be applied to identify deficits in indi-
viduals and to predict the response to robotic interventions; this has 
been shown in upper-limb exoskeletons and could also be applied to 
lower-limb devices. For example, in upper-limb rehabilitation, an artifi-
cial neural network could predict changes in clinical scores throughout 
an 80-day exoskeleton-enabled training period in people post-stroke229. 
Similarly, baseline data from individuals with MS have been used to 
predict changes in clinical measures after 8 weeks of conventional 
rehabilitation230. A combination of movement presentations and demo-
graphic data has allowed for the subgrouping of patients to identify 
deficits in individuals231,232 and to find characteristic mechanisms that 
can explain differences between subgroups within a larger clinical 
population. These data-driven methods can also distinguish between 
categories of impairments233, and automated subgrouping methods 
can be applied to recruit representative participants for in-depth stud-
ies (for example, by using machine learning for patient selection234).

Outlook
Advances in exoskeleton technology at the system and component 
levels have contributed to the design of exoskeletons that are ready for 
clinical integration. Commercial devices are now available for clinical 
rehabilitation, and Food and Drug Administration (FDA)-approved 
exoskeletons can return walking ability to individuals who otherwise 
are unable to walk. Various research-grade exoskeleton devices have 
contributed to the understanding of the mechanisms by which users 
can leverage exoskeleton technology. However, clinical and commercial 
acceptance of exoskeletons remains limited; large-scale RCTs have 
shown inconclusive results, causing some clinical guidelines to recom-
mend against the use of exoskeletons in gait-training applications for 
chronic stroke, SCI-i and TBI180. Moreover, the vision for recreational 
exoskeletons to extend walking capacity of unimpaired users remains 
to be fulfilled, and the driving factors for users to choose exoskeletons 
remain an important consideration.

Unimpaired users
Advances in sensing technologies and their integration with wearable 
devices will help reveal biological mechanisms to enable optimized 
control. For example, ultrasound imaging has been used with a soft 
exosuit to reduce the metabolic cost of walking by detecting instantane-
ous changes in muscle function and by modulating exosuit assistance 
accordingly210. Similar technologies could enable wearable devices to 
quickly adapt to individual wearers or unknown environments. Small 
body-worn sensors can measure muscle–tendon forces in real time 
in vivo235; if implemented in wearable robots, they could offer a met-
ric of user effort and provide insight into how wearable devices can 
offload stress on soft tissue. Lightweight wearable sensors could be 
combined with exoskeletons to adapt body-worn devices to a range of 

activities, environments and wearers, by estimating kinematics during 
movement, as already demonstrated in the upper extremity with a soft 
sensing shirt236. Indeed, recent work with a joint-targeting autonomous 
ankle exoskeleton used wearable sensors and a data-driven model to 
predict the metabolic benefit of a particular control configuration. 
Using HIL optimization, exoskeleton assistance was adapted as the 
wearer walked outside the lab237. Real-time inverse-dynamics feedback 
has further been applied to show that healthy adults can accurately 
target a specified amount of ankle power238. Although limited to an 
instrumented treadmill and not yet suitable for autonomous exoskel-
etons, similar approaches may increase the understanding of how 
exoskeletons, which often augment the production of ankle power, 
interact with the body. Recent work has also used machine-learning 
techniques to estimate hip moments without requiring an instru-
mented treadmill239.

In addition to sensing modalities, new approaches to actuation 
and control can be integrated into exoskeletons. Muscle-inspired 
technologies, such as fibre-based actuators240 and other compliant 
actuators218, would enable soft actuators with an efficiency similar to 
biological actuators. Adding machine-learning techniques on top of 
more conventional control schemes such as adaptive oscillators may 
allow devices to quickly adapt to changes in walking condition241. The 
availability of more commercial devices will certainly contribute to a 
better understanding of the physiological impact of exoskeletons. Fur-
thermore, accurate metabolic-cost estimates have to be implemented 
as real-time input to exoskeleton-control schemes to better prescribe 
assistance and to maximize individual metabolic-cost reductions. 
Ultimately, long-term investigations will be required to determine the 
relation of metabolic-cost reduction to a reduction in injury risk, an 
increase in wearer performance and an improvement in recreational 
capacity. These are especially important factors because it is unclear 
how sensitive individual wearers are to changes in metabolic cost242. 
Additional work may extend beyond metabolic cost to incorporate 
user preferences to rapidly adapt assistance to particular individuals 
and walking conditions243.

Patient populations
Multicentre RCTs are informative but are time-consuming and 
resource-consuming, which is not conducive to rapid prototype 
development244,245. Collaborations between clinicians and exoskel-
eton designers will enable targeted case studies with a small number 
of selected participants to inform biological mechanisms that war-
rant larger clinical trials and drive changes in functional outcomes, 
to enable the design of optimization algorithms for individualized 
assistance. Understanding disconnects between device function and 
clinical-trial goals, and quantifying challenges in clinical implemen-
tation will be instrumental in directing future studies. Importantly, 
patients should be included in the design of well-controlled case 
studies to understand how the devices can improve engagement in 
the clinical process, for example by following policies established 
for pharmaceutics246.

Rehabilitation studies with exoskeletons typically have the aim 
of demonstrating clinical efficacy (for example, an increase in walk-
ing speed) in a broad patient population, which is often divided into 
‘responders’ and ‘non-responders’. A thorough understanding of the 
biomechanical and neurological mechanisms contributing to clinical 
outcomes in each subgroup would allow for the grouping of partici-
pants before recruitment. For example, machine-learning approaches 
may be applied to help clinicians prescribe a type of exoskeleton or a 
particular mode of assistance that will most probably improve walking 
for an individual user. Industry-wide standards for reproducibility that 
benchmark device comfort and utility will also give clinicians a clearer 
understanding of what clinical changes to expect247–249.

Online optimization methods that can identify optimal assis-
tance profiles in healthy individuals78,85,250 may also apply to clinical 
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populations. However, HIL techniques typically demand long experi-
ment times, often requiring hours of continuous walking. For wide-
spread application in the clinic, efficient automatic tuning algorithms 
will be needed that can tailor exoskeleton assistance to a single user.

Using kinematics data from an individual’s prior walking sessions 
with an exoskeleton may enable exoskeleton-assistance tuning with-
out online optimization. This strategy has been employed for people 
post-stroke walking with an ankle-assisting wearable robot, where 
their pre-recorded walking data were used to selectively apply either 
positive or negative augmentation power251. However, to define opti-
mal clinical outcomes, more than a single biomechanical objective is 
required. Therefore, appropriate clinical objectives that can be meas-
ured by devices need to be defined to be able to automatically modulate 
exoskeleton assistance to an individual patient’s goals. Warm-starting 
HIL algorithms with baseline data may enable devices to adapt to exo-
skeleton users as their gait changes across environments or with time. 
It may also be possible to predict the impact of robotic exoskeleton 
training before completing a full protocol, although such approaches 
have been validated only in the upper limb252. Ideally, the rehabilitation 
goals set by patients and clinicians will be achieved by automatic tun-
ing of wearable-device settings. Individualizing assistance by tailoring 
physical designs to particular wearers through modular systems that 
can quickly switch from one target joint to another has proven encour-
aging in an early feasibility study253.

In addition to efficient patient selection, the temporal changes 
in the interaction between an individual and an exoskeleton need 
to be understood to be able to tailor individual training regimens. 
Neuromuscular studies provided insight into how individuals adapt 
to new environments, including the influence of wearable devices on 
ankle impedance254. This knowledge could be integrated in robotic 
rehabilitation. Studies of upper-limb rehabilitation have shown that it 
may be possible to distinguish between motor learning and adaptation 
to a device. Such data would allow for the interpretation of changes in 
response to training with an exoskeleton to address baseline impair-
ment255. Locomotor-adaptation studies using the split-belt treadmill 
have revealed that people post-stroke showed improvements in gait 
symmetry after training with error augmentation in the short-term256, 
which can be extended to long-term retention by increasing train-
ing257 and translated to overground environments258. Furthermore, 
learning outcomes may be improved by appropriate intervention 
scheduling259 through intermittent exposure and by increasing the 
variability of training through the introduction of perturbations260,261. 
Challenging the user is also important, and an ‘optimal’ challenge may 
maximize retention261; for example, increasing propulsion demands 
using inclined split-belt treadmill training improves gait symmetry 
post-adaptation more than flat split-belt treadmill training in peo-
ple post-stroke262; also, high-intensity robot-assisted gait training 
increases walking speed263. In addition to implicit learning pathways, 
rehabilitation schemes often also incorporate explicit learning through 
task-specific instructions or biofeedback, which are known to improve 
learning and rehabilitation outcomes264,265. Further investigating these 
variables in exoskeleton-enabled rehabilitation and long-term exoskel-
eton use will enable the design and development of training regimes 
that promote neuromotor recovery.

Interaction between clinicians and patients is often limited, with 
supervised therapy in the United States typically ending 6 months 
after a stroke, despite evidence of the benefits of long-term exer-
cise266–268. The American Physical Therapy Association, an advocate 
of telehealth practices, recognizes the potential of expanded access 
to physical-therapy services269. Telehealth practices have been widely 
used in response to the COVID-19 pandemic and may continue to be 
applied. Determining how gait training is administered and monitored 
outside of the laboratory and the clinic becomes increasingly impor-
tant270. Exoskeletons have the potential to be remote gait-training tools 
that supplement in-person therapy.

Devices designed for remote use could include real-time biometric 
monitoring of the wearer’s response; for example, skin-adhering flex-
ible sensors can measure vital signs271. In addition to monitoring wearer 
safety, such sensor systems may be especially valuable in home or com-
munity environments for device control; that is, to modulate assistance 
and to encourage more user effort; or for user feedback, for example by 
providing a summary of exertion during walking. Integrating wearable 
sensors272 into wearable devices will enable more individualized and 
robust exoskeleton control, and improve remote-activity monitoring 
and performance reporting.

Ensuring user safety is a key exoskeleton-design considera-
tion for unsupervised or remotely supervised community-based or 
home-based gait training. Unlike upper-extremity training, gait training 
inherently incurs a fall risk. Importantly, for gait training with a powered 
exoskeleton, wearer instability must be limited in the case of device 
failure. The unsupervised use of exoskeletons requires the design of 
streamlined devices that can be donned and operated by the wearer. 
Especially at the ankle, designers may wish to introduce additional 
active degrees of freedom to promote natural joint motion without 
sacrificing stability273. Improvements in adaptability and comfort 
will make future exoskeletons not only tools for gait training, but also 
all-day wear devices that increase the performance of everyday walk-
ing. To determine the fit and comfort during extended wear, metrics 
are needed that quantify device component fit274, and techniques 
are required to quantify the pressure exerted by exoskeleton attach-
ments275. In addition, the human–machine interface needs to be closely 
monitored, in particular for users with reduced sensation in their 
impaired lower extremities.

Advances in exoskeleton technology will allow the integration 
of wearable devices in the daily lives of patients, clinicians and rec-
reational users. Pioneering work in exoskeleton technology revealed 
how exoskeletons interact with (and modify) the basic physiological 
mechanisms of walking. This physiological understanding has made 
it possible for wearable robotic exoskeletons to reach clinical use. We 
believe that new component technologies will underpin the next dec-
ade of wearable robotics, and envision that exoskeletons will become 
an integral part of daily life.
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