Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Venus as an anchor point for planetary habitability

Abstract

A major focus of the planetary science and astrobiology community is understanding planetary habitability, including the myriad factors that control the evolution and sustainability of temperate surface environments such as that of Earth. The few substantial terrestrial planetary atmospheres within the Solar System serve as a critical resource for studying these habitability factors, from which models can be constructed for application to extrasolar planets. The recent astronomy and astrophysics and planetary science and astrobiology decadal surveys both emphasize the need for an improved understanding of planetary habitability as an essential goal within the context of astrobiology. The divergence in climate evolution of Venus and Earth provides a major accessible basis for understanding how the habitability of large rocky worlds evolves with time and what conditions limit the boundaries of habitability. Here we argue that Venus can be considered an ‘anchor point’ for understanding planetary habitability within the context of the evolution of terrestrial planets. We discuss the major factors that have influenced the respective evolutionary pathways of Venus and Earth, how these factors might be weighted in their overall influence and the measurements that will shed further light on their impacts on these worlds’ histories. We further discuss the importance of Venus with respect to both the recent decadal surveys and how these community consensus reports can help shape the exploration of Venus in the coming decades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The various factors that influence the surface conditions of a planet and their sustainability through time.
Fig. 2: Schematic cross-sections of Earth and Venus, showing the major internal components and atmospheric components, to scale.
Fig. 3: A representation of the Venus zone and the habitable zone as a function of stellar effective temperature and insolation flux received by the planet.

Similar content being viewed by others

References

  1. Borucki, W. J. KEPLER Mission: development and overview. Rep. Prog. Phys. 79, 036901 (2016).

    ADS  Google Scholar 

  2. Winn, J. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409 (2015).

    ADS  Google Scholar 

  3. Horner, J. et al. Solar System physics for exoplanet research. Publ. Astron. Soc. Pac. 132, 102001 (2020).

    ADS  Google Scholar 

  4. Kane, S. R. et al. The fundamental connections between the Solar System and exoplanetary science. J. Geophys. Res. Planets 126, e06643 (2021).

    Google Scholar 

  5. Kane, S. R. Atmospheric dynamics of a near tidally locked Earth-sized planet. Nat. Astron. 6, 420 (2022).

    ADS  Google Scholar 

  6. O’Rourke, J. G. et al. Venus, the planet: introduction to the evolution of Earth’s sister planet. Space Sci. Rev. 219, 10 (2023).

    ADS  Google Scholar 

  7. Smrekar, S. E., Davaille, A. & Sotin, C. Venus interior structure and dynamics. Space Sci. Rev. 214, 88 (2018).

    ADS  Google Scholar 

  8. Taylor, F. W., Svedham, H. & Head, J. W. Venus: the atmosphere, climate, surface, interior and near-space environment of an Earth-Like planet. Space Sci. Rev. 214, 35 (2018).

    ADS  Google Scholar 

  9. Goldblatt, C. & Watson, A. J. J. The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres. Phil. Trans. R. Soc. A 370, 4197 (2012).

    ADS  Google Scholar 

  10. Goldblatt, C., Robinson, T. D., Zahnle, K. J. & Crisp, D. Low simulated radiation limit for runaway greenhouse climates. Nat. Geosci. 6, 661 (2013).

    ADS  Google Scholar 

  11. Ingersoll, A. P. The runaway greenhouse: a history of water on Venus. J. Atmos. Sci. 26, 1191 (1969).

    ADS  Google Scholar 

  12. Nakajima, S., Hayashi, Y.-Y. & Abe, Y. A study on the ‘runaway greenhouse effect’ with a one-dimensional radiative-convective equilibrium model. J. Atmos. Sci. 49, 2256 (1992).

    ADS  Google Scholar 

  13. Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences, Engineering, and Medicine, 2023); https://doi.org/10.17226/26141

  14. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032 (National Academies of Sciences, Engineering, and Medicine, 2023); https://doi.org/10.17226/26522

  15. Benner, S. A. Defining life. Astrobiology 10, 1021 (2010).

    ADS  Google Scholar 

  16. Cleland, C. E. & Chyba, C. F. Defining ‘life’. Orig. Life Evol. Biosph. 32, 387 (2002).

    ADS  Google Scholar 

  17. Hill, M. L. et al. A catalog of habitable zone exoplanets. Astron. J. 165, 34 (2023).

    ADS  Google Scholar 

  18. Kane, S. R. et al. A catalog of Kepler habitable zone exoplanet candidates. Astrophys. J. 830, 1 (2016).

    ADS  Google Scholar 

  19. Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108 (1993).

    ADS  Google Scholar 

  20. Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013).

    ADS  Google Scholar 

  21. Kopparapu, R. K. et al. Habitable zones around main-sequence stars: dependence on planetary mass. Astrophys. J. Lett. 787, L29 (2014).

    ADS  Google Scholar 

  22. Brack, A. Liquid water and the origin of life. Orig. Life Evol. Biosph. 23, 3 (1993).

    ADS  Google Scholar 

  23. O’Rourke, J. G. et al. Detectability of remanent magnetism in the crust of Venus. Geophys. Res. Lett. 46, 5768 (2019).

    ADS  Google Scholar 

  24. Donahue, T. M. et al. Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216, 630 (1982).

    ADS  Google Scholar 

  25. Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181 (2008).

    ADS  Google Scholar 

  26. Lebrun, T. et al. Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res. Planets 118, 1155 (2013).

    ADS  Google Scholar 

  27. Hamano, K., Abe, Y. & Genda, H. Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607 (2013).

    ADS  Google Scholar 

  28. Way, M. J. et al. Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43, 8376 (2016).

    ADS  Google Scholar 

  29. Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets 125, e06276 (2020).

    Google Scholar 

  30. Krissansen-Totton, J. et al. Was Venus ever habitable? Constraints from a coupled interior–atmosphere–redox evolution model. Planet. Sci. J. 2, 216 (2021).

    Google Scholar 

  31. Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119 (2015).

    ADS  Google Scholar 

  32. Kane, S. R., Kopparapu, R. K. & Domagal-Goldman, S. D. On the frequency of potential Venus analogs from Kepler data. Astrophys. J. Lett. 794, L5 (2014).

    ADS  Google Scholar 

  33. Gillmann, C., Chassefière, E. & Lognonné, P. A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503 (2009).

    ADS  Google Scholar 

  34. Kane, S. R. et al. Venus as a laboratory for exoplanetary science. J. Geophys. Res. Planets 124, 2015 (2019).

    ADS  Google Scholar 

  35. Byrne, P. K. & Krishnamoorthy, S. Estimates on the frequency of volcanic eruptions on Venus. J. Geophys. Res. 127, e2021JE007040 (2022).

    ADS  Google Scholar 

  36. Driscoll, P. E. in Handbook of Exoplanets (eds Deeg, H. & Belmonte, J.) 2917–2935 (Springer, 2018).

  37. Walker, J. C. G. et al. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776 (1981).

    ADS  Google Scholar 

  38. Davaille, A. et al. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349 (2017).

    ADS  Google Scholar 

  39. Tikoo, S. M. & Elkins-Tanton, L. T. The fate of water within Earth and super-Earths and implications for plate tectonics. Phil. Trans. R. Soc. A 375, 20150394 (2017).

    ADS  Google Scholar 

  40. Barsukov, V. L. et al. The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16. J. Geophys. Res. Solid Earth 91, 378 (1986).

    Google Scholar 

  41. Hashimoto, G. L. et al. Felsic highland crust on Venus suggested by Galileo near-infrared mapping spectrometer data. J. Geophys. Res. Planets 113, E00B24 (2008).

    Google Scholar 

  42. Romeo, I. & Turcotte, D. L. Pulsating continents on Venus: an explanation for crustal plateaus and tessera terrains. Earth Planet. Sci. Lett. 276, 85 (2008).

    ADS  Google Scholar 

  43. Campbell, I. H. & Taylor, S. R. No water, no granites—no oceans, no continents. Geophys. Res. Lett. 10, 1061 (1983).

    ADS  Google Scholar 

  44. Ostberg, C. et al. The demographics of terrestrial planets in the Venus zone. Astron. J. 165, 168 (2023).

    ADS  Google Scholar 

  45. Borucki, W. J. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977 (2010).

    ADS  Google Scholar 

  46. Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).

    ADS  Google Scholar 

  47. Bryson, S. et al. The occurrence of rocky habitable-zone planets around solar-like stars from Kepler data. Astron. J. 161, 36 (2021).

    ADS  Google Scholar 

  48. Dressing, C. D. & Charbonneau, D. The occurrence rate of small planets around small stars. Astrophys. J. 767, 95 (2013).

    ADS  Google Scholar 

  49. Kopparapu, R. K. A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around Kepler M-dwarfs. Astrophys. J. Lett. 767, L8 (2013).

    ADS  Google Scholar 

  50. Kane, S. R. & von Braun, K. Constraining orbital parameters through planetary transit monitoring. Astrophys. J. 689, 492 (2008).

    ADS  Google Scholar 

  51. Foley, B. J. The role of plate tectonic-climate coupling and exposed land area in the development of habitable climates on rocky planets. Astrophys. J. 812, 36 (2015).

    ADS  Google Scholar 

  52. Ostberg, C. & Kane, S. R. Predicting the yield of potential Venus analogs from TESS and their potential for atmospheric characterization. Astron. J. 158, 195 (2019).

    ADS  Google Scholar 

  53. Barstow, J. K. et al. Telling twins apart: exo-Earths and Venuses with transit spectroscopy. Mon. Not. R. Astron. Soc. 458, 2657 (2016).

    ADS  Google Scholar 

  54. Ehrenreich, D. et al. Transmission spectrum of Venus as a transiting exoplanet. Astron. Astrophys. 537, L2 (2012).

    ADS  Google Scholar 

  55. Schwieterman, E. W. et al. Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18, 663 (2018).

    ADS  Google Scholar 

  56. Cowan, N. B. & Strait, T. E. Determining reflectance spectra of surfaces and clouds on exoplanets. Astrophys. J. Lett. 765, L17 (2013).

    ADS  Google Scholar 

  57. Madhusudhan, N. Exoplanetary atmospheres: key insights, challenges, and prospects. Annu. Rev. Astron. Astrophys. 57, 617 (2019).

    ADS  Google Scholar 

  58. Arney, G. et al. Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near-infrared spectral windows. J. Geophys. Res. Planets 119, 1860 (2014).

    ADS  Google Scholar 

  59. Bezard, B., de Bergh, C., Crisp, D. & Mallard, J.-P. The deep atmosphere of Venus revealed by high-resolution nightside spectra. Nature 345, 508 (1990).

    ADS  Google Scholar 

  60. Cascioli, G. et al. The determination of the rotational state and interior structure of Venus with VERITAS. Planet. Sci. J. 2, 220 (2021).

    Google Scholar 

  61. Garvin, J. B. et al. Revealing the mysteries of Venus: the DAVINCI mission. Planet. Sci. J. 3, 117 (2022).

    Google Scholar 

  62. Widemann, T. et al. Venus evolution through time: key science questions, selected mission concepts and future investigations. Space Sci. Rev. 219, 56 (2023).

    ADS  Google Scholar 

  63. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Int. 25, 297–356 (1981).

    ADS  Google Scholar 

  64. James, P. B., Zuber, M. T. & Phillips, R. J. Crustal thickness and support of topography on Venus. J. Geophys. Res. Planets 118, 859–875 (2013).

    ADS  Google Scholar 

  65. Aitta, A. Venus’ internal structure temperature and core composition. ICARUS 218, 967–974 (2012).

    ADS  Google Scholar 

Download references

Acknowledgements

S.R.K. acknowledges support from NASA grant number 80NSSC21K1797, funded through the NASA Habitable Worlds Program. The results reported herein benefited from collaborations and/or information exchange under NASA’s Nexus for Exoplanet System Science (NexSS) research coordination network, which is sponsored by NASA’s Science Mission Directorate. P.K.B. acknowledges support from Washington University in St. Louis. This research made use of NASA’s Astrophysics Data System.

Author information

Authors and Affiliations

Authors

Contributions

S.R.K. and P.K.B. conceived the idea of this Perspective. S.R.K. led the writing and the production of the figures, and P.K.B. contributed to the writing and the production of the figures.

Corresponding author

Correspondence to Stephen R. Kane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Elizabeth Tasker and Daniel Nunes for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kane, S.R., Byrne, P.K. Venus as an anchor point for planetary habitability. Nat Astron 8, 417–424 (2024). https://doi.org/10.1038/s41550-024-02228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02228-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing