Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GW190521 as a dynamical capture of two nonspinning black holes

Abstract

Gravitational waves from ~90 black hole binary systems have been detected and their progenitors' properties inferred1 so far by the Laser Interferometer Gravitational-Wave Observatory2 and Virgo3 experiments. This has allowed the scientific community to draw conclusions on the formation channels of black holes in binaries, informing population models and at times defying our understanding of black hole astrophysics. The most challenging event detected so far is the short-duration gravitational-wave transient GW190521 (refs. 4,5). We analyse this signal under the hypothesis that it was generated by the merger of two nonspinning black holes on hyperbolic orbits. The configuration best matching the data corresponds to two black holes of source-frame masses of \(8{1}_{-25}^{+62}{M}_{\odot }\) and \(5{2}_{-32}^{+32}{M}_{\odot }\) undergoing two encounters and then merging into an intermediate-mass black hole. We find that the hyperbolic merger hypothesis is favoured with respect to a quasi-circular merger with precessing spins with Bayes' factors larger than 4,300 to 1, although this number will be reduced by the currently uncertain prior odds. Our results suggest that GW190521 might be the first gravitational wave detection from the dynamical capture of two stellar-mass nonspinning black holes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Number of encounters as a function of the initial energy and angular momentum.
Fig. 2: Energy–angular momentum marginalized two-dimensional posterior.
Fig. 3: Maximum likelihood (Max L) configurations with the two different energy priors.

Similar content being viewed by others

Data availability

The data are available on Zenodo at https://doi.org/10.5281/zenodo.7081337.

Code availability

The eccentric waveform model used in this work, TEOBResumS, is publicly available at https://bitbucket.org/eob_ihes/teobresums/ and results presented in this paper have been obtained with the version tagged eccentric.v0_a6c_c3_circularized. TEOBResumSP is publicly available at the same address, and results presented here have been obtained with the version having git hash 56f20ad.

References

  1. Abbott, R. et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. arXiv 2111.03606 (2021).

  2. Aasi, J. et al. Advanced LIGO. Class. Quantum Gravity 32, 074001 (2015).

    Article  ADS  Google Scholar 

  3. Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32, 024001 (2015).

    Article  ADS  Google Scholar 

  4. Abbott, R. et al. GW190521: a binary black hole merger with a total mass of 150 M. Phys. Rev. Lett. 125, 101102 (2020).

    Article  ADS  Google Scholar 

  5. Abbott, R. et al. Properties and astrophysical implications of the 150 M binary black hole merger GW190521. Astrophys. J. Lett. 900, L13 (2020).

    Article  ADS  Google Scholar 

  6. Abbott, R. et al. Population properties of compact objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. Astrophys. J. Lett. 913, L7 (2021).

    Article  ADS  Google Scholar 

  7. González, E. et al. Intermediate-mass black holes from high massive-star binary fractions in young star clusters. Astrophys. J. Lett. 908, L29 (2021).

    Article  ADS  Google Scholar 

  8. Belczynski, K. The most ordinary formation of the most unusual double black hole merger. Astrophys. J. Lett. 905, L15 (2020).

    Article  ADS  Google Scholar 

  9. Mapelli, M. et al. Hierarchical black hole mergers in young, globular and nuclear star clusters: the effect of metallicity, spin and cluster properties. Mon. Not. R. Astron. Soc. 505, 339–358 (2021).

    Article  ADS  Google Scholar 

  10. Sedda, M. A. et al. Breaching the limit: formation of GW190521-like and IMBH mergers in young massive clusters. Astrophys. J. 920, 2 (2021).

    Google Scholar 

  11. Tagawa, H., Haiman, Z., Bartos, I., Kocsis, B. & Omukai, K. Signatures of hierarchical mergers in black hole spin and mass distribution. Mon. Not. R. Astron. Soc. 507, 3362–3380 (2021).

    Article  ADS  Google Scholar 

  12. Dall’Amico, M. et al. GW190521 formation via three-body encounters in young massive star clusters. Mon. Not. R. Astron. Soc. 508, 3045–3054 (2021).

    Article  ADS  Google Scholar 

  13. Fragione, G., Loeb, A. & Rasio, F. A. On the origin of GW190521-like events from repeated black hole mergers in star clusters. Astrophys. J. Lett. 902, L26 (2020).

    Article  ADS  Google Scholar 

  14. Fragione, G., Kocsis, B., Rasio, F. A. & Silk, J. Repeated mergers, mass-gap black holes, and formation of intermediate-mass black holes in nuclear star clusters. Astrophys. J. 927, 2 (2022).

    Article  Google Scholar 

  15. Gayathri, V. et al. Eccentricity estimate for black hole mergers with numerical relativity simulations. Nat. Astron. 6, 344–349 (2022).

    Article  ADS  Google Scholar 

  16. Romero-Shaw, I. M., Lasky, P. D., Thrane, E. & Bustillo, J. C. GW190521: orbital eccentricity and signatures of dynamical formation in a binary black hole merger signal. Astrophys. J. Lett. 903, L5 (2020).

    Article  ADS  Google Scholar 

  17. Bustillo, J. C., Sanchis-Gual, N., Torres-Forné, A. & Font, J. A. Confusing head-on collisions with precessing intermediate-mass binary black hole mergers. Phys. Rev. Lett. 126, 201101 (2021).

    Article  ADS  Google Scholar 

  18. Bustillo, J. C. et al. GW190521 as a merger of Proca stars: a potential new vector boson of 8.7 × 10−13 eV. Phys. Rev. Lett. 126, 081101 (2021).

    Article  ADS  Google Scholar 

  19. Shibata, M., Kiuchi, K., Fujibayashi, S. & Sekiguchi, Y. Alternative possibility of GW190521: gravitational waves from high-mass black hole-disk systems. Phys. Rev. D 103, 063037 (2021).

    Article  ADS  Google Scholar 

  20. Nitz, A. H. & Capano, C. D. GW190521 may be an intermediate mass ratio inspiral. Astrophys. J. Lett. 907, L9 (2021).

    Article  ADS  Google Scholar 

  21. Estellés, H. et al. A detailed analysis of GW190521 with phenomenological waveform models. Astrophys. J. 924, 2 (2022).

    Article  Google Scholar 

  22. East, W. E., McWilliams, S. T., Levin, J. & Pretorius, F. Observing complete gravitational wave signals from dynamical capture binaries. Phys. Rev. D 87, 043004 (2013).

    Article  ADS  Google Scholar 

  23. Gold, R. & Brügmann, B. Eccentric black hole mergers and zoom-whirl behavior from elliptic inspirals to hyperbolic encounters. Phys. Rev. D 88, 064051 (2013).

    Article  ADS  Google Scholar 

  24. Loutrel, N. Repeated bursts: gravitational waves from highly eccentric binaries. arXiv 2009.11332 (2020).

  25. Rasskazov, A. & Kocsis, B. The rate of stellar mass black hole scattering in galactic nuclei. Astrophys. J. 881, 20 (2019).

    Article  ADS  Google Scholar 

  26. Tagawa, H., Haiman, Z. & Kocsis, B. Formation and evolution of compact object binaries in AGN disks. Astrophys. J. 898, 25 (2020).

    Article  ADS  Google Scholar 

  27. Rodriguez, C. L. et al. Post-Newtonian dynamics in dense star clusters: formation, masses, and merger rates of highly-eccentric black hole binaries. Phys. Rev. D. 98, 123005 (2018).

    Article  ADS  Google Scholar 

  28. Mukherjee, S., Mitra, S. & Chatterjee, S. Detectability of hyperbolic encounters of compact stars with ground-based gravitational waves detectors. Mon. Not. R. Astron. Soc. 508, 5064–5073 (2021).

    Article  ADS  Google Scholar 

  29. Mandel, I. & Broekgaarden, F. S. Rates of compact object coalescences. Living Rev. Relativ. 25, 1 (2022).

    Article  ADS  Google Scholar 

  30. Chiaramello, D. & Nagar, A. Faithful analytical effective-one-body waveform model for spin-aligned, moderately eccentric, coalescing black hole binaries. Phys. Rev. D. 101, 101501 (2020).

    Article  ADS  Google Scholar 

  31. Nagar, A., Rettegno, P., Gamba, R. & Bernuzzi, S. Effective-one-body waveforms from dynamical captures in black hole binaries. Phys. Rev. D. 103, 064013 (2021).

    Article  ADS  Google Scholar 

  32. Buonanno, A. & Damour, T. Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999).

    Article  ADS  Google Scholar 

  33. Blanchet, L. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014).

    Article  ADS  MATH  Google Scholar 

  34. Schaefer, G. & Jaranowski, P. Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries. Living Rev. Relativ. 21, 7 (2018).

    Article  ADS  Google Scholar 

  35. Nagar, A., Riemenschneider, G., Pratten, G., Rettegno, P. & Messina, F. Multipolar effective one body waveform model for spin-aligned black hole binaries. Phys. Rev. D. 102, 024077 (2020).

    Article  ADS  Google Scholar 

  36. Pretorius, F. & Khurana, D. Black hole mergers and unstable circular orbits. Class. Quantum Gravity 24, S83–S108 (2007).

    Article  ADS  MATH  Google Scholar 

  37. Healy, J., Levin, J. & Shoemaker, D. Zoom-whirl orbits in black hole binaries. Phys. Rev. Lett. 103, 131101 (2009).

    Article  ADS  Google Scholar 

  38. Sperhake, U. et al. Cross section, final spin and zoom-whirl behavior in high-energy black hole collisions. Phys. Rev. Lett. 103, 131102 (2009).

    Article  ADS  Google Scholar 

  39. Damour, T. et al. Strong-field scattering of two black holes: numerics versus analytics. Phys. Rev. D. 89, 081503 (2014).

    Article  ADS  Google Scholar 

  40. Hopper, S., Nagar, A. & Rettegno, P. Strong-field scattering of two spinning black holes: numerics versus analytics. 2204.10299 (2022).

  41. Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  42. Varma, V. et al. Surrogate models for precessing binary black hole simulations with unequal masses. Phys. Rev. Res. 1, 033015 (2019).

    Article  Google Scholar 

  43. Akcay, S., Gamba, R. & Bernuzzi, S. A hybrid post-Newtonian effective-one-body scheme for spin-precessing compact-binary waveforms. Phys. Rev. D. 103, 024014 (2021).

    Article  ADS  Google Scholar 

  44. Gamba, R., Akçay, S., Bernuzzi, S. & Williams, J. Effective-one-body waveforms for precessing coalescing compact binaries with post-Newtonian twist. Phys. Rev. D. 106, 024020 (2022).

    Article  ADS  Google Scholar 

  45. Breschi, M., Gamba, R. & Bernuzzi, S. Bayesian inference of multimessenger astrophysical data: methods and applications to gravitational waves. Phys. Rev. D. 104, 042001 (2021).

    Article  ADS  Google Scholar 

  46. Nagar, A., Bonino, A. & Rettegno, P. Effective one-body multipolar waveform model for spin-aligned, quasicircular, eccentric, hyperbolic black hole binaries. Phys. Rev. D. 103, 104021 (2021).

    Article  ADS  Google Scholar 

  47. Healy, J. & Lousto, C. O. The fourth RIT binary black hole simulations catalog: extension to eccentric orbits. Phys. Rev. D. 105, 124010 (2022).

    Article  ADS  Google Scholar 

  48. Harms, E., Bernuzzi, S., Nagar, A. & Zenginoglu, A. A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime. Class. Quantum Gravity 31, 245004 (2014).

    Article  ADS  MATH  Google Scholar 

  49. Albanesi, S., Nagar, A. & Bernuzzi, S. Effective one-body model for extreme-mass-ratio spinning binaries on eccentric equatorial orbits: testing radiation reaction and waveform. Phys. Rev. D. 104, 024067 (2021).

    Article  ADS  Google Scholar 

  50. Abbott, R. et al. Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo. 1912.11716 (2019).

  51. Speagle, J. S. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article  ADS  Google Scholar 

  52. Cao, Z. & Han, W.-B. Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism. Phys. Rev. D 96, 044028 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Damour, J. A. Font and T. Andrade for discussions. We are also grateful to D. Chiaramello for collaboration at the beginning of the project. We thank B. Daszuta, F. Zappa, W. Cook and D. Radice for supporting the development of the GR–Athena++ code and for help with the NR simulations presented in the Supplementary Information. R.G. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) under Grant No. 406116891 within the Research Training Group RTG 2522/1. M.B. and S.B. acknowledge support by the EU H2020 under ERC Starting Grant no. BinGraSp-714626. M.B. acknowledges partial support from the DFG under Grant No. 406116891 within the Research Training Group RTG 2522/1. G.C. acknowledges support by the Della Riccia Foundation under an Early Career Scientist Fellowship. Computations were performed on the national Hewlett Packard Enterprise Apollo Hawk at the High Performance Computing Center Stuttgart (HLRS), on the ARA cluster at Friedrich Schiller University Jena and on the Tullio sever at INFN Turin. The ARA cluster is funded in part by DFG grants INST 275/334-1 FUGG and INST 275/363-1 FUGG and by the ERC Starting Grant, grant agreement no. BinGraSp-714626. The authors acknowledge HLRS for funding this project by providing access to the supercomputer HPE Apollo Hawk under the grant number INTRHYGUE/44215. We thank E. Ferrari for speed-up coding work on Tullio. This research has made use of data, software and/or web tools obtained from the Gravitational Wave Open Science Center (https://www.gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO is funded by the US National Science Foundation. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institutes.

Author information

Authors and Affiliations

Authors

Contributions

S.B. and A.N. contributed to the origination of the idea. A.N., P.R., R.G. and S.B. developed and tested the waveform model. R.G., M.B. and G.C. performed the analyses and S.A. carried out numerical relativity simulations. R.G. produced all the figures. All authors worked out collaboratively the general details of the project. All authors helped edit the manuscript.

Corresponding author

Correspondence to A. Nagar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–3 and supplementary discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamba, R., Breschi, M., Carullo, G. et al. GW190521 as a dynamical capture of two nonspinning black holes. Nat Astron 7, 11–17 (2023). https://doi.org/10.1038/s41550-022-01813-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01813-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing