Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical and stellar properties of early-type dwarf galaxies around the Milky Way

Abstract

Early-type dwarf galaxies (ETDs) are the end-points of the evolution of low-mass galaxies whose gas supplies have been extinguished. The cessation of star formation lays bare the ancient stellar populations. A wealth of information is stored in the colours, magnitudes, metallicities and abundances of resolved stars of the dwarf spheroidal and ultrafaint galaxies around the Milky Way, allowing their chemistry and stellar populations to be studied in great detail. Here we summarize our current understanding, which has advanced rapidly over the past decade owing to flourishing large-scale astrometric, photometric and spectroscopic surveys. We emphasize that the primeval stellar populations in ETDs provide a unique laboratory for studying the physical conditions on small scales at epochs beyond redshift z = 2. We also highlight the observed diversity of star-formation and chemical-enrichment histories in nearby dwarfs. These data cannot yet be fully deciphered to reveal the key processes in dwarf evolution, but the first successful attempts to pin down the sites of heavy-element production have been made.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The size–luminosity relation for Milky Way satellites.
Fig. 2: The (stellar) mass–metallicity relation for Milky Way satellites.
Fig. 3: Dwarf galaxy sequences in stellar chemical abundance space.

Similar content being viewed by others

References

  1. Hodge, P. W. Dwarf galaxies. Annu. Rev. Astron. Astrophys. 9, 35–66 (1971).

    Article  ADS  Google Scholar 

  2. Walker, M. G. et al. A universal mass profile for dwarf spheroidal galaxies? Astrophys. J. 704, 1274–1287 (2009).

    Article  ADS  Google Scholar 

  3. Amorisco, N. C. & Evans, N. W. Phase-space models of the dwarf spheroidals. Mon. Not. R. Astron. Soc. 411, 2118–2136 (2011).

    Article  ADS  Google Scholar 

  4. Read, J. I., Iorio, G., Agertz, O. & Fraternali, F. The stellar mass-halo mass relation of isolated field dwarfs: a critical test of ΛCDM at the edge of galaxy formation. Mon. Not. R. Astron. Soc. 467, 2019–2038 (2017).

    ADS  Google Scholar 

  5. Jethwa, P., Erkal, D. & Belokurov, V. The upper bound on the lowest mass halo. Mon. Not. R. Astron. Soc. 473, 2060–2083 (2018).

    Article  ADS  Google Scholar 

  6. Schaye, J. Star formation thresholds and galaxy edges: why and where. Astrophys. J. 609, 667–682 (2004).

    Article  ADS  Google Scholar 

  7. Ryan-Weber, E. V. et al. The Local Group dwarf Leo T: H I on the brink of star formation. Mon. Not. R. Astron. Soc. 384, 535–540 (2008).

    Article  ADS  Google Scholar 

  8. Wise, J. H., Turk, M. J., Norman, M. L. & Abel, T. The birth of a galaxy: primordial metal enrichment and stellar populations. Astrophys. J. 745, 50 (2012).

    Article  ADS  Google Scholar 

  9. Skillman, E. D. et al. ALFALFA discovery of the nearby gas-rich dwarf galaxy Leo P. III. An extremely metal deficient galaxy. Astron. J. 146, 3 (2013).

    Article  ADS  Google Scholar 

  10. Simon, J. D. The faintest dwarf galaxies. Annu. Rev. Astron. Astrophys. 57, 375–415 (2019).

    Article  ADS  Google Scholar 

  11. Torrealba, G., Koposov, S. E., Belokurov, V. & Irwin, M. The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater. Mon. Not. R. Astron. Soc. 459, 2370–2378 (2016).

    Article  ADS  Google Scholar 

  12. Torrealba, G. et al. The hidden giant: discovery of an enormous Galactic dwarf satellite in Gaia DR2. Mon. Not. R. Astron. Soc. 488, 2743–2766 (2019).

    Article  ADS  Google Scholar 

  13. Bothun, G., Impey, C. & McGaugh, S. Low-surface-brightness galaxies: hidden galaxies revealed. Publ. Astron. Soc. Pac. 109, 745–758 (1997).

    Article  ADS  Google Scholar 

  14. van Dokkum, P. G. et al. Forty-seven Milky Way-sized, extremely diffuse galaxies in the Coma cluster. Astrophys. J. Lett. 798, L45 (2015).

    Article  ADS  Google Scholar 

  15. Koda, J., Yagi, M., Yamanoi, H. & Komiyama, Y. Approximately a thousand ultra-diffuse galaxies in the Coma cluster. Astrophys. J. Lett. 807, L2 (2015).

    Article  ADS  Google Scholar 

  16. Kormendy, J. Families of ellipsoidal stellar systems and the formation of dwarf elliptical galaxies. Astrophys. J. 295, 73–79 (1985).

    Article  ADS  Google Scholar 

  17. Grebel, E. K., Gallagher, I., John, S. & Harbeck, D. The progenitors of dwarf spheroidal galaxies. Astron. J. 125, 1926–1939 (2003).

    Article  ADS  Google Scholar 

  18. Boselli, A. & Gavazzi, G. On the origin of the faint-end of the red sequence in high-density environments. Astron. Astrophys. Rev. 22, 74 (2014).

    Article  ADS  Google Scholar 

  19. Venhola, A. et al. The Fornax Deep Survey (FDS) with VST. VI. Optical properties of the dwarf galaxies in the Fornax cluster. Astron. Astrophys. 625, A143 (2019).

    Article  Google Scholar 

  20. Carlsten, S. G., Greene, J. E., Greco, J. P., Beaton, R. L. & Kado-Fong, E. ELVES I: structures of dwarf satellites of MW-like galaxies; morphology, scaling relations, and intrinsic shapes. Astrophys. J. 922, 267 (2021).

    Article  ADS  Google Scholar 

  21. Kaufmann, T., Wheeler, C. & Bullock, J. S. On the morphologies, gas fractions, and star formation rates of small galaxies. Mon. Not. R. Astron. Soc. 382, 1187–1195 (2007).

    Article  ADS  Google Scholar 

  22. Agertz, O. & Kravtsov, A. V. The impact of stellar feedback on the structure, size, and morphology of galaxies in Milky-Way-sized dark matter halos. Astrophys. J. 824, 79 (2016).

    Article  ADS  Google Scholar 

  23. Dekel, A. et al. A mass threshold for galactic gas discs by spin flips. Mon. Not. R. Astron. Soc. 493, 4126–4142 (2020).

    Article  ADS  Google Scholar 

  24. Mac Low, M.-M. & Ferrara, A. Starburst-driven mass loss from dwarf galaxies: efficiency and metal ejection. Astrophys. J. 513, 142–155 (1999).

    Article  ADS  Google Scholar 

  25. Stinson, G. S., Dalcanton, J. J., Quinn, T., Kaufmann, T. & Wadsley, J. Breathing in low-mass galaxies: a study of episodic star formation. Astrophys. J. 667, 170–175 (2007).

    Article  ADS  Google Scholar 

  26. Revaz, Y. et al. The dynamical and chemical evolution of dwarf spheroidal galaxies. Astron. Astrophys. 501, 189–206 (2009).

    Article  ADS  Google Scholar 

  27. Shen, S., Madau, P., Conroy, C., Governato, F. & Mayer, L. The baryon cycle of dwarf galaxies: dark, bursty, gas-rich polluters. Astrophys. J. 792, 99 (2014).

    Article  ADS  Google Scholar 

  28. Muratov, A. L. et al. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback. Mon. Not. R. Astron. Soc. 454, 2691–2713 (2015).

    Article  ADS  Google Scholar 

  29. Read, J. I. & Gilmore, G. Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 356, 107–124 (2005).

    Article  ADS  Google Scholar 

  30. Mashchenko, S., Couchman, H. M. P. & Wadsley, J. The removal of cusps from galaxy centres by stellar feedback in the early Universe. Nature 442, 539–542 (2006).

    Article  ADS  Google Scholar 

  31. Pontzen, A. & Governato, F. How supernova feedback turns dark matter cusps into cores. Mon. Not. R. Astron. Soc. 421, 3464–3471 (2012).

    Article  ADS  Google Scholar 

  32. Governato, F. et al. Cuspy no more: how outflows affect the central dark matter and baryon distribution in Λ cold dark matter galaxies. Mon. Not. R. Astron. Soc. 422, 1231–1240 (2012).

    Article  ADS  Google Scholar 

  33. Di Cintio, A. et al. The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 437, 415–423 (2014).

    Article  ADS  Google Scholar 

  34. Brooks, A. M. & Zolotov, A. Why baryons matter: the kinematics of dwarf spheroidal satellites. Astrophys. J. 786, 87 (2014).

    Article  ADS  Google Scholar 

  35. Oñorbe, J. et al. Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 454, 2092–2106 (2015).

    Article  ADS  Google Scholar 

  36. Klimentowski, J., Łokas, E. L., Kazantzidis, S., Mayer, L. & Mamon, G. A. Tidal evolution of discy dwarf galaxies in the Milky Way potential: the formation of dwarf spheroidals. Mon. Not. R. Astron. Soc. 397, 2015–2029 (2009).

    Article  ADS  Google Scholar 

  37. Kazantzidis, S., Łokas, E. L., Callegari, S., Mayer, L. & Moustakas, L. A. On the efficiency of the tidal stirring mechanism for the origin of dwarf spheroidals: dependence on the orbital and structural parameters of the progenitor disky dwarfs. Astrophys. J. 726, 98 (2011).

    Article  ADS  Google Scholar 

  38. Rees, M. J. Lyman absorption lines in quasar spectra: evidence for gravitationally-confined gas in dark minihaloes. Mon. Not. R. Astron. Soc. 218, 25P–30P (1986).

    Article  ADS  Google Scholar 

  39. Efstathiou, G. Suppressing the formation of dwarf galaxies via photoionization. Mon. Not. R. Astron. Soc. 256, 43P–47P (1992).

    Article  ADS  Google Scholar 

  40. Bullock, J. S., Kravtsov, A. V. & Weinberg, D. H. Reionization and the abundance of galactic satellites. Astrophys. J. 539, 517–521 (2000).

    Article  ADS  Google Scholar 

  41. Benson, A. J., Lacey, C. G., Baugh, C. M., Cole, S. & Frenk, C. S. The effects of photoionization on galaxy formation - I. Model and results at z=0. Mon. Not. R. Astron. Soc. 333, 156–176 (2002).

    Article  ADS  Google Scholar 

  42. Ricotti, M. & Gnedin, N. Y. Formation histories of dwarf galaxies in the Local Group. Astrophys. J. 629, 259–267 (2005).

    Article  ADS  Google Scholar 

  43. Katz, H. et al. How to quench a dwarf galaxy: the impact of inhomogeneous reionization on dwarf galaxies and cosmic filaments. Mon. Not. R. Astron. Soc. 494, 2200–2220 (2020).

    Article  ADS  Google Scholar 

  44. Gunn, J. E., Gott, I. & Richard, J. On the infall of matter into clusters of galaxies and some effects on their evolution. Astrophys. J. 176, 1 (1972).

    Article  ADS  Google Scholar 

  45. Mayer, L., Mastropietro, C., Wadsley, J., Stadel, J. & Moore, B. Simultaneous ram pressure and tidal stripping; how dwarf spheroidals lost their gas. Mon. Not. R. Astron. Soc. 369, 1021–1038 (2006).

    Article  ADS  Google Scholar 

  46. Nichols, M. & Bland-Hawthorn, J. Gas depletion in Local Group dwarfs on ~250 kpc scales: ram pressure stripping assisted by internal heating at early times. Astrophys. J. 732, 17 (2011).

    Article  ADS  Google Scholar 

  47. Fillingham, S. P. et al. Under pressure: quenching star formation in low-mass satellite galaxies via stripping. Mon. Not. R. Astron. Soc. 463, 1916–1928 (2016).

    Article  ADS  Google Scholar 

  48. Simpson, C. M. et al. Quenching and ram pressure stripping of simulated Milky Way satellite galaxies. Mon. Not. R. Astron. Soc. 478, 548–567 (2018).

    Article  ADS  Google Scholar 

  49. Mayer, L. et al. The metamorphosis of tidally stirred dwarf galaxies. Astrophys. J. 559, 754–784 (2001).

    Article  ADS  Google Scholar 

  50. Amorisco, N. C., Evans, N. W. & van de Ven, G. The remnant of a merger between two dwarf galaxies in Andromeda II. Nature 507, 335–337 (2014).

    Article  ADS  Google Scholar 

  51. Rey, M. P. et al. EDGE: the origin of scatter in ultra-faint dwarf stellar masses and surface brightnesses. Astrophys. J. Lett. 886, L3 (2019).

    Article  ADS  Google Scholar 

  52. Fitts, A. et al. No assembly required: mergers are mostly irrelevant for the growth of low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 479, 319–331 (2018).

    Article  ADS  Google Scholar 

  53. McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).

    Article  ADS  Google Scholar 

  54. Martin, N. F., de Jong, J. T. A. & Rix, H.-W. A comprehensive maximum likelihood analysis of the structural properties of faint Milky Way satellites. Astrophys. J. 684, 1075–1092 (2008).

    Article  ADS  Google Scholar 

  55. Grcevich, J. & Putman, M. E. H I in Local Group dwarf galaxies and stripping by the galactic halo. Astrophys. J. 696, 385–395 (2009).

    Article  ADS  Google Scholar 

  56. Spekkens, K., Urbancic, N., Mason, B. S., Willman, B. & Aguirre, J. E. The dearth of neutral hydrogen in galactic dwarf spheroidal galaxies. Astrophys. J. Lett. 795, L5 (2014).

    Article  ADS  Google Scholar 

  57. Weisz, D. R. et al. The ACS Nearby Galaxy Survey Treasury. VIII. The global star formation histories of 60 dwarf galaxies in the Local Volume. Astrophys. J. 739, 5 (2011).

    Article  ADS  Google Scholar 

  58. Weisz, D. R. et al. The star formation histories of Local Group dwarf galaxies. I. Hubble Space Telescope/Wide Field Planetary Camera 2 Observations. Astrophys. J. 789, 147 (2014).

    Article  ADS  Google Scholar 

  59. Weisz, D. R. et al. The star formation histories of Local Group dwarf galaxies. III. Characterizing quenching in low-mass galaxies. Astrophys. J. 804, 136 (2015).

    Article  ADS  Google Scholar 

  60. Gaia Collaboration Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron. Astrophys. 616, A12 (2018).

    Article  Google Scholar 

  61. Fritz, T. K. et al. Gaia DR2 proper motions of dwarf galaxies within 420 kpc. Orbits, Milky Way mass, tidal influences, planar alignments, and group infall. Astron. Astrophys. 619, A103 (2018).

    Article  Google Scholar 

  62. Miyoshi, T. & Chiba, M. Long-term orbital evolution of galactic satellites and the effects on their star formation histories. Astrophys. J. 905, 109 (2020).

    Article  ADS  Google Scholar 

  63. Kallivayalil, N. et al. The proper motion of the Large Magellanic Cloud using HST. Astrophys. J. 638, 772–785 (2006).

    Article  ADS  Google Scholar 

  64. Besla, G. et al. Are the Magellanic Clouds on their first passage about the Milky Way? Astrophys. J. 668, 949–967 (2007).

    Article  ADS  Google Scholar 

  65. Piatek, S., Pryor, C. & Olszewski, E. W. Proper motions of the Large Magellanic Cloud and Small Magellanic Cloud: re-analysis of Hubble Space Telescope data. Astron. J. 135, 1024–1038 (2008).

    Article  ADS  Google Scholar 

  66. Kallivayalil, N., van der Marel, R. P., Besla, G., Anderson, J. & Alcock, C. Third-epoch Magellanic Cloud proper motions. I. Hubble Space Telescope/WFC3 data and orbit implications. Astrophys. J. 764, 161 (2013).

    Article  ADS  Google Scholar 

  67. Hoessel, J. G., Schommer, R. A. & Danielson, G. E. Photometry of resolved galaxies. II. Sextans A. Astrophys. J. 274, 577–594 (1983).

    Article  ADS  Google Scholar 

  68. Freedman, W. L. Stellar content of nearby galaxies. I. BVRI CCD photometry for IC 1613. Astron. J. 96, 1248 (1988).

    Article  ADS  Google Scholar 

  69. Tosi, M., Greggio, L., Marconi, G. & Focardi, P. Star formation in dwarf irregular galaxies: Sextans B. Astron. J. 102, 951 (1991).

    Article  ADS  Google Scholar 

  70. Tolstoy, E. & Saha, A. The interpretation of color-magnitude diagrams through numerical simulation and Bayesian inference. Astrophys. J. 462, 672 (1996).

    Article  ADS  Google Scholar 

  71. Dolphin, A. A new method to determine star formation histories of nearby galaxies. New Astron. 2, 397–409 (1997).

    Article  ADS  Google Scholar 

  72. Hernandez, X., Gilmore, G. & Valls-Gabaud, D. Non-parametric star formation histories for four dwarf spheroidal galaxies of the Local Group. Mon. Not. R. Astron. Soc. 317, 831–842 (2000).

    Article  ADS  Google Scholar 

  73. Gallart, C., Zoccali, M. & Aparicio, A. The adequacy of stellar evolution models for the interpretation of the color-magnitude diagrams of resolved stellar populations. Annu. Rev. Astron. Astrophys. 43, 387–434 (2005).

    Article  ADS  Google Scholar 

  74. Tolstoy, E., Hill, V. & Tosi, M. Star-formation histories, abundances, and kinematics of dwarf galaxies in the Local Group. Annu. Rev. Astron. Astrophys. 47, 371–425 (2009).

    Article  ADS  Google Scholar 

  75. de Boer, T. J. L. et al. The star formation and chemical evolution history of the Fornax dwarf spheroidal galaxy. Astron. Astrophys. 544, A73 (2012).

    Article  Google Scholar 

  76. Hidalgo, S. L. et al. The ACS LCID Project. V. The star formation history of the dwarf galaxy LGS-3: clues to cosmic reionization and feedback. Astrophys. J. 730, 14 (2011).

    Article  ADS  Google Scholar 

  77. Brown, T. M. et al. The primeval populations of the ultra-faint dwarf galaxies. Astrophys. J. Lett. 753, L21 (2012).

    Article  ADS  Google Scholar 

  78. Rusakov, V. et al. The bursty star formation history of the Fornax dwarf spheroidal galaxy revealed with the HST. Mon. Not. R. Astron. Soc. 502, 642–661 (2021).

    Article  ADS  Google Scholar 

  79. Seljak, U. Analytic model for galaxy and dark matter clustering. Mon. Not. R. Astron. Soc. 318, 203–213 (2000).

    Article  ADS  Google Scholar 

  80. Berlind, A. A. & Weinberg, D. H. The Halo occupation distribution: toward an empirical determination of the relation between galaxies and mass. Astrophys. J. 575, 587–616 (2002).

    Article  ADS  Google Scholar 

  81. Vale, A. & Ostriker, J. P. Linking halo mass to galaxy luminosity. Mon. Not. R. Astron. Soc. 353, 189–200 (2004).

    Article  ADS  Google Scholar 

  82. Conroy, C. & Wechsler, R. H. Connecting galaxies, halos, and star formation rates across cosmic time. Astrophys. J. 696, 620–635 (2009).

    Article  ADS  Google Scholar 

  83. Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387 (2017).

    Article  ADS  Google Scholar 

  84. Wechsler, R. H. & Tinker, J. L. The connection between galaxies and their dark matter halos. Annu. Rev. Astron. Astrophys. 56, 435–487 (2018).

    Article  ADS  Google Scholar 

  85. Garrison-Kimmel, S., Bullock, J. S., Boylan-Kolchin, M. & Bardwell, E. Organized chaos: scatter in the relation between stellar mass and halo mass in small galaxies. Mon. Not. R. Astron. Soc. 464, 3108–3120 (2017).

    Article  ADS  Google Scholar 

  86. Nadler, E. O., Mao, Y.-Y., Green, G. M. & Wechsler, R. H. Modeling the connection between subhalos and satellites in Milky Way-like systems. Astrophys. J. 873, 34 (2019).

    Article  ADS  Google Scholar 

  87. Munshi, F. et al. Quantifying scatter in galaxy formation at the lowest masses. Astrophys. J. 923, 35 (2021).

    Article  ADS  Google Scholar 

  88. Gnedin, N. Y. Effect of reionization on structure formation in the Universe. Astrophys. J. 542, 535–541 (2000).

    Article  ADS  Google Scholar 

  89. Okamoto, T., Gao, L. & Theuns, T. Mass loss of galaxies due to an ultraviolet background. Mon. Not. R. Astron. Soc. 390, 920–928 (2008).

    Article  ADS  Google Scholar 

  90. Kravtsov, A. & Manwadkar, V. GRUMPY: a simple framework for realistic forward-modelling of dwarf galaxies. Mon. Not. R. Astron. Soc. 514, 2667–2691 (2022).

    Article  ADS  Google Scholar 

  91. Starkenburg, E. et al. The NIR Ca II triplet at low metallicity. Searching for extremely low-metallicity stars in classical dwarf galaxies. Astron. Astrophys. 513, A34 (2010).

    Article  Google Scholar 

  92. Frebel, A. & Norris, J. E. Near-field cosmology with extremely metal-poor stars. Annu. Rev. Astron. Astrophys. 53, 631–688 (2015).

    Article  ADS  Google Scholar 

  93. Fakhouri, O., Ma, C.-P. & Boylan-Kolchin, M. The merger rates and mass assembly histories of dark matter haloes in the two Millennium simulations. Mon. Not. R. Astron. Soc. 406, 2267–2278 (2010).

    Article  ADS  Google Scholar 

  94. Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N. & Ohkubo, T. Galactic chemical evolution: carbon through zinc. Astrophys. J. 653, 1145–1171 (2006).

    Article  ADS  Google Scholar 

  95. Kobayashi, C., Karakas, A. I. & Lugaro, M. The origin of elements from carbon to uranium. Astrophys. J. 900, 179 (2020).

    Article  ADS  Google Scholar 

  96. Kirby, E. N. et al. Evidence for sub-Chandrasekhar type Ia supernovae from stellar abundances in dwarf galaxies. Astrophys. J. 881, 45 (2019).

    Article  ADS  Google Scholar 

  97. de los Reyes, M. A. C., Kirby, E. N., Seitenzahl, I. R. & Shen, K. J. Manganese indicates a transition from sub- to near-Chandrasekhar type Ia supernovae in dwarf galaxies. Astrophys. J. 891, 85 (2020).

    Article  ADS  Google Scholar 

  98. Sanders, J. L., Belokurov, V. & Man, K. T. F. Evidence for sub-Chandrasekhar type Ia supernovae from the last major merger. Mon. Not. R. Astron. Soc. 506, 4321–4343 (2021).

    Article  ADS  Google Scholar 

  99. Tinsley, B. M. Stellar lifetimes and abundance ratios in chemical evolution. Astrophys. J. 229, 1046–1056 (1979).

    Article  ADS  Google Scholar 

  100. Gilmore, G. & Wyse, R. F. G. Chemical evolution with bursts of star formation: element ratios in dwarf galaxies. Astrophys. J. Lett. 367, L55 (1991).

    Article  ADS  Google Scholar 

  101. McWilliam, A. Abundance ratios and galactic chemical evolution. Annu. Rev. Astron. Astrophys. 35, 503–556 (1997).

    Article  ADS  Google Scholar 

  102. Venn, K. A. et al. Stellar chemical signatures and hierarchical galaxy formation. Astron. J. 128, 1177–1195 (2004).

    Article  ADS  Google Scholar 

  103. Kromer, M. et al. 3D deflagration simulations leaving bound remnants: a model for 2002cx-like type Ia supernovae. Mon. Not. R. Astron. Soc. 429, 2287–2297 (2013).

    Article  ADS  Google Scholar 

  104. Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957).

    Article  ADS  Google Scholar 

  105. Iben, I., Jr.& Renzini, A. Asymptotic giant branch evolution and beyond. Annu. Rev. Astron. Astrophys. 21, 271–342 (1983).

    Article  ADS  Google Scholar 

  106. Gallino, R. et al. Evolution and nucleosynthesis in low-mass asymptotic giant branch stars. II. Neutron capture and the s-process. Astrophys. J. 497, 388–403 (1998).

    Article  ADS  Google Scholar 

  107. Busso, M., Gallino, R. & Wasserburg, G. J. Nucleosynthesis in asymptotic giant branch stars: relevance for galactic enrichment and solar system formation. Annu. Rev. Astron. Astrophys. 37, 239–309 (1999).

    Article  ADS  Google Scholar 

  108. Karakas, A. I. Updated stellar yields from asymptotic giant branch models. Mon. Not. R. Astron. Soc. 403, 1413–1425 (2010).

    Article  ADS  Google Scholar 

  109. Thielemann, F.-K., Wehmeyer, B. & Wu, M.-R. r-Process sites, their ejecta composition, and their imprint in galactic chemical evolution. J. Phys. Conf. Ser. 1668, 012044 (2020).

    Article  Google Scholar 

  110. Cowan, J. J. et al. Origin of the heaviest elements: the rapid neutron-capture process. Rev. Mod. Phys. 93, 015002 (2021).

    Article  ADS  Google Scholar 

  111. Hillebrandt, W. The rapid neutron-capture process and the synthesis of heavy and neutron-rich elements. Space Sci. Rev. 21, 639–702 (1978).

    Article  ADS  Google Scholar 

  112. Takahashi, K., Witti, J. & Janka, H. T. Nucleosynthesis in neutrino-driven winds from protoneutron stars II. The r-process. Astron. Astrophys. 286, 857–869 (1994).

    ADS  Google Scholar 

  113. Wanajo, S., Kajino, T., Mathews, G. J. & Otsuki, K. The r-process in neutrino-driven winds from nascent, ‘compact’ neutron stars of core-collapse supernovae. Astrophys. J. 554, 578–586 (2001).

    Article  ADS  Google Scholar 

  114. Farouqi, K. et al. Charged-particle and neutron-capture processes in the high-entropy wind of core-collapse supernovae. Astrophys. J. 712, 1359–1377 (2010).

    Article  ADS  Google Scholar 

  115. Curtis, S. et al. PUSHing core-collapse supernovae to explosions in spherical symmetry. III. Nucleosynthesis yields. Astrophys. J. 870, 2 (2019).

    Article  ADS  Google Scholar 

  116. Bisnovatyi-Kogan, G. S. The explosion of a rotating star as a supernova mechanism. Soviet Astron. 47, 813–816 (1970).

    Google Scholar 

  117. Nishimura, N., Sawai, H., Takiwaki, T., Yamada, S. & Thielemann, F. K. The intermediate r-process in core-collapse supernovae driven by the magneto-rotational instability. Astrophys. J. Lett. 836, L21 (2017).

    Article  ADS  Google Scholar 

  118. Halevi, G. & Mösta, P. r-Process nucleosynthesis from three-dimensional jet-driven core-collapse supernovae with magnetic misalignments. Mon. Not. R. Astron. Soc. 477, 2366–2375 (2018).

    Article  ADS  Google Scholar 

  119. Lattimer, J. M. & Schramm, D. N. Black-hole-neutron-star collisions. Astrophys. J. Lett. 192, L145 (1974).

    Article  ADS  Google Scholar 

  120. Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989).

    Article  ADS  Google Scholar 

  121. Freiburghaus, C., Rosswog, S. & Thielemann, F. K. r-Process in neutron star mergers. Astrophys. J. Lett. 525, L121–L124 (1999).

    Article  ADS  Google Scholar 

  122. Wanajo, S. et al. Production of all the r-process nuclides in the dynamical ejecta of neutron star mergers. Astrophys. J. Lett. 789, L39 (2014).

    Article  ADS  Google Scholar 

  123. Rosswog, S., Korobkin, O., Arcones, A., Thielemann, F. K. & Piran, T. The long-term evolution of neutron star merger remnants - I. The impact of r-process nucleosynthesis. Mon. Not. R. Astron. Soc. 439, 744–756 (2014).

    Article  ADS  Google Scholar 

  124. Helmi, A. et al. A new view of the dwarf spheroidal satellites of the Milky Way from VLT FLAMES: where are the very metal-poor stars? Astrophys. J. Lett. 651, L121–L124 (2006).

    Article  ADS  Google Scholar 

  125. Kirby, E. N., Simon, J. D., Geha, M., Guhathakurta, P. & Frebel, A. Uncovering extremely metal-poor stars in the Milky Way’s ultrafaint dwarf spheroidal satellite galaxies. Astrophys. J. Lett. 685, L43 (2008).

    Article  ADS  Google Scholar 

  126. Youakim, K. et al. The Pristine Survey - VIII. The metallicity distribution function of the Milky Way halo down to the extremely metal-poor regime. Mon. Not. R. Astron. Soc. 492, 4986–5002 (2020).

    Article  ADS  Google Scholar 

  127. Shetrone, M. D., Bolte, M. & Stetson, P. B. Keck HIRES abundances in the dwarf spheroidal galaxy Draco. Astron. J. 115, 1888–1893 (1998).

    Article  ADS  Google Scholar 

  128. Tolstoy, E. et al. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. II. Implications for understanding galaxy evolution. Astron. J. 125, 707–726 (2003).

    Article  ADS  Google Scholar 

  129. Belokurov, V. et al. A faint new Milky Way satellite in Bootes. Astrophys. J. Lett. 647, L111–L114 (2006).

    Article  ADS  Google Scholar 

  130. Belokurov, V. et al. Cats and dogs, hair and a hero: a quintet of new Milky Way companions. Astrophys. J. 654, 897–906 (2007).

    Article  ADS  Google Scholar 

  131. Zucker, D. B. et al. A new Milky Way dwarf satellite in Canes Venatici. Astrophys. J. Lett. 643, L103–L106 (2006).

    Article  ADS  Google Scholar 

  132. Koposov, S. E., Belokurov, V., Torrealba, G. & Evans, N. W. Beasts of the southern wild: discovery of nine ultra faint satellites in the vicinity of the Magellanic Clouds. Astrophys. J. 805, 130 (2015).

    Article  ADS  Google Scholar 

  133. Drlica-Wagner, A. et al. Eight ultra-faint galaxy candidates discovered in year two of the Dark Energy Survey. Astrophys. J. 813, 109 (2015).

    Article  ADS  Google Scholar 

  134. Homma, D. et al. Boötes. IV. A new Milky Way satellite discovered in the Subaru Hyper Suprime-Cam Survey and implications for the missing satellite problem. Publ. Astron. Soc. Jpn 71, 94 (2019).

    Article  ADS  Google Scholar 

  135. Deason, A. J., Belokurov, V., Evans, N. W. & Johnston, K. V. Broken and unbroken: the Milky Way and M31 stellar halos. Astrophys. J. 763, 113 (2013).

    Article  ADS  Google Scholar 

  136. Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E. & Deason, A. J. Co-formation of the disc and the stellar halo. Mon. Not. R. Astron. Soc. 478, 611–619 (2018).

    Article  ADS  Google Scholar 

  137. Haywood, M. et al. In disguise or out of reach: first clues about in situ and accreted stars in the stellar halo of the Milky Way from Gaia DR2. Astrophys. J. 863, 113 (2018).

    Article  ADS  Google Scholar 

  138. Helmi, A. et al. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 563, 85–88 (2018).

    Article  ADS  Google Scholar 

  139. Evans, N. W. in Galactic Dynamics in the Era of Large Surveys Vol. 353 (eds Valluri, M. & Sellwood, J. A.) 113–120 (Cambridge Univ. Press, 2020).

  140. Bonaca, A. et al. Timing the early assembly of the Milky Way with the H3 Survey. Astrophys. J. Lett. 897, L18 (2020).

    Article  ADS  Google Scholar 

  141. Montalbán, J. et al. Chronologically dating the early assembly of the Milky Way. Nat. Astron. 5, 640–647 (2021).

    Article  ADS  Google Scholar 

  142. Nissen, P. E. & Schuster, W. J. Two distinct halo populations in the solar neighborhood. Evidence from stellar abundance ratios and kinematics. Astron. Astrophys. 511, L10 (2010).

    Article  ADS  Google Scholar 

  143. Gallart, C. et al. Uncovering the birth of the Milky Way through accurate stellar ages with Gaia. Nat. Astron. 3, 932–939 (2019).

    Article  ADS  Google Scholar 

  144. Di Matteo, P. et al. The Milky Way has no in-situ halo other than the heated thick disc. Composition of the stellar halo and age-dating the last significant merger with Gaia DR2 and APOGEE. Astron. Astrophys. 632, A4 (2019).

    Article  Google Scholar 

  145. Belokurov, V. et al. The biggest splash. Mon. Not. R. Astron. Soc. 494, 3880–3898 (2020).

    Article  ADS  Google Scholar 

  146. Amorisco, N. C. & Evans, N. W. A troublesome past: chemodynamics of the Fornax dwarf spheroidal. Astrophys. J. Lett. 756, L2 (2012).

    Article  ADS  Google Scholar 

  147. Pace, A. B. et al. Spectroscopic confirmation of the sixth globular cluster in the Fornax dwarf spheroidal galaxy. Astrophys. J. 923, 77 (2021).

    Article  ADS  Google Scholar 

  148. Stetson, P. B. et al. The Carina dwarf spheroidal galaxy: a goldmine for cosmology and stellar astrophysics. Messenger 144, 32–37 (2011).

    ADS  Google Scholar 

  149. de Boer, T. J. L. et al. The episodic star formation history of the Carina dwarf spheroidal galaxy. Astron. Astrophys. 572, A10 (2014).

    Article  Google Scholar 

  150. Kordopatis, G., Amorisco, N. C., Evans, N. W., Gilmore, G. & Koposov, S. E. Chemodynamic subpopulations of the Carina dwarf galaxy. Mon. Not. R. Astron. Soc. 457, 1299–1307 (2016).

    Article  ADS  Google Scholar 

  151. de Boer, T. J. L. et al. The star formation and chemical evolution history of the Sculptor dwarf spheroidal galaxy. Astron. Astrophys. 539, A103 (2012).

    Article  Google Scholar 

  152. Bettinelli, M. et al. The star formation history of the Sculptor dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 487, 5862–5873 (2019).

    Article  ADS  Google Scholar 

  153. de los Reyes, M. A. C., Kirby, E. N., Ji, A. P. & Nuñez, E. H. Simultaneous constraints on the star formation history and nucleosynthesis of Sculptor. Astrophys. J. 925, 66 (2022).

    Article  ADS  Google Scholar 

  154. Evans, N. W., An, J. & Walker, M. G. Cores and cusps in the dwarf spheroidals. Mon. Not. R. Astron. Soc. 393, L50–L54 (2009).

    Article  ADS  Google Scholar 

  155. Walker, M. G. & Peñarrubia, J. A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. Astrophys. J. 742, 20 (2011).

    Article  ADS  Google Scholar 

  156. Amorisco, N. C. & Evans, N. W. Dark matter cores and cusps: the case of multiple stellar populations in dwarf spheroidals. Mon. Not. R. Astron. Soc. 419, 184–196 (2012).

    Article  ADS  Google Scholar 

  157. Kirby, E. N., Lanfranchi, G. A., Simon, J. D., Cohen, J. G. & Guhathakurta, P. Multi-element abundance measurements from medium-resolution spectra. III. Metallicity distributions of Milky Way dwarf satellite galaxies. Astrophys. J. 727, 78 (2011).

    Article  ADS  Google Scholar 

  158. Bettinelli, M., Hidalgo, S. L., Cassisi, S., Aparicio, A. & Piotto, G. The star formation history of the Sextans dwarf spheroidal galaxy: a true fossil of the pre-reionization era. Mon. Not. R. Astron. Soc. 476, 71–79 (2018).

    Article  ADS  Google Scholar 

  159. Aparicio, A., Carrera, R. & Martínez-Delgado, D. The star formation history and morphological evolution of the Draco dwarf spheroidal galaxy. Astron. J. 122, 2524–2537 (2001).

    Article  ADS  Google Scholar 

  160. Carrera, R., Aparicio, A., Martínez-Delgado, D. & Alonso-García, J. The star formation history and spatial distribution of stellar populations in the Ursa Minor dwarf spheroidal galaxy. Astron. J. 123, 3199–3209 (2002).

    Article  ADS  Google Scholar 

  161. Walker, A. R. et al. A DECam view of the diffuse dwarf galaxy Crater II: the colour-magnitude diagram. Mon. Not. R. Astron. Soc. 490, 4121–4132 (2019).

    Article  ADS  Google Scholar 

  162. Brown, T. M. et al. The quenching of the ultra-faint dwarf galaxies in the reionization era. Astrophys. J. 796, 91 (2014).

    Article  ADS  Google Scholar 

  163. Sacchi, E. et al. Star formation histories of ultra-faint dwarf galaxies: environmental differences between Magellanic and non-Magellanic Ssatellites? Astrophys. J. Lett. 920, L19 (2021).

    Article  ADS  Google Scholar 

  164. Gallart, C. et al. The star formation history of Eridanus II: On the role of supernova feedback in the quenching of ultrafaint dwarf galaxies. Astrophys. J. 909, 192 (2021).

    Article  ADS  Google Scholar 

  165. Kirby, E. N. et al. The universal stellar mass-stellar metallicity relation for dwarf galaxies. Astrophys. J. 779, 102 (2013).

    Article  ADS  Google Scholar 

  166. Tremonti, C. A. et al. The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the Sloan Digital Sky Survey. Astrophys. J. 613, 898–913 (2004).

    Article  ADS  Google Scholar 

  167. Kewley, L. J. & Ellison, S. L. Metallicity calibrations and the mass-metallicity relation for star-forming galaxies. Astrophys. J. 681, 1183–1204 (2008).

    Article  ADS  Google Scholar 

  168. Mannucci, F., Cresci, G., Maiolino, R., Marconi, A. & Gnerucci, A. A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies. Mon. Not. R. Astron. Soc. 408, 2115–2127 (2010).

    Article  ADS  Google Scholar 

  169. Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M. & Tremonti, C. A. The ages and metallicities of galaxies in the local universe. Mon. Not. R. Astron. Soc. 362, 41–58 (2005).

    Article  ADS  Google Scholar 

  170. Zahid, H. J., Kudritzki, R.-P., Conroy, C., Andrews, B. & Ho, I. T. Stellar absorption line analysis of local star-forming galaxies: the relation between stellar mass, metallicity, dust attenuation, and star formation rate. Astrophys. J. 847, 18 (2017).

    Article  ADS  Google Scholar 

  171. Jeon, M., Besla, G. & Bromm, V. Connecting the first galaxies with ultrafaint dwarfs in the Local Group: chemical signatures of Population III stars. Astrophys. J. 848, 85 (2017).

    Article  ADS  Google Scholar 

  172. Revaz, Y. & Jablonka, P. Pushing back the limits: detailed properties of dwarf galaxies in a ΛCDM universe. Astron. Astrophys. 616, A96 (2018).

    Article  ADS  Google Scholar 

  173. Wheeler, C. et al. Be it therefore resolved: cosmological simulations of dwarf galaxies with 30 solar mass resolution. Mon. Not. R. Astron. Soc. 490, 4447–4463 (2019).

    Article  ADS  Google Scholar 

  174. Applebaum, E. et al. Ultrafaint dwarfs in a Milky Way context: introducing the Mint Condition DC Justice League Simulations. Astrophys. J. 906, 96 (2021).

    Article  ADS  Google Scholar 

  175. Grand, R. J. J. et al. Determining the full satellite population of a Milky Way-mass halo in a highly resolved cosmological hydrodynamic simulation. Mon. Not. R. Astron. Soc. 507, 4953–4967 (2021).

    Article  ADS  Google Scholar 

  176. de Boer, T. J. L., Belokurov, V., Beers, T. C. & Lee, Y. S. The α-element knee of the Sagittarius stream. Mon. Not. R. Astron. Soc. 443, 658–663 (2014).

    Article  ADS  Google Scholar 

  177. Reichert, M. et al. Neutron-capture elements in dwarf galaxies. III. A homogenized analysis of 13 dwarf spheroidal and ultra-faint galaxies. Astron. Astrophys. 641, A127 (2020).

    Article  Google Scholar 

  178. Nidever, D. L. et al. The lazy giants: APOGEE abundances reveal low star formation efficiencies in the Magellanic Clouds. Astrophys. J. 895, 88 (2020).

    Article  ADS  Google Scholar 

  179. Hasselquist, S. et al. APOGEE chemical abundance patterns of the massive Milky Way satellites. Astrophys. J. 923, 172 (2021).

    Article  ADS  Google Scholar 

  180. de Boer, T. J. L., Belokurov, V. & Koposov, S. The star formation history of the Sagittarius stream. Mon. Not. R. Astron. Soc. 451, 3489–3503 (2015).

    Article  ADS  Google Scholar 

  181. Gallart, C. et al. THE ACS LCID project: on the origin of dwarf galaxy types—a manifestation of the halo assembly bias? Astrophys. J. 811, L18 (2015).

    Article  ADS  Google Scholar 

  182. Sawala, T., Scannapieco, C., Maio, U. & White, S. Formation of isolated dwarf galaxies with feedback. Mon. Not. R. Astron. Soc. 402, 1599–1613 (2010).

    Article  ADS  Google Scholar 

  183. Kirby, E. N. et al. Multi-element abundance measurements from medium-resolution spectra. IV. Alpha element distributions in Milky Way satellite galaxies. Astrophys. J. 727, 79 (2011).

    Article  ADS  Google Scholar 

  184. Andrews, B. H., Weinberg, D. H., Schönrich, R. & Johnson, J. A. Inflow, outflow, yields, and stellar population mixing in chemical evolution models. Astrophys. J. 835, 224 (2017).

    Article  ADS  Google Scholar 

  185. Weinberg, D. H., Andrews, B. H. & Freudenburg, J. Equilibrium and sudden events in chemical evolution. Astrophys. J. 837, 183 (2017).

    Article  ADS  Google Scholar 

  186. Spitoni, E., Vincenzo, F. & Matteucci, F. New analytical solutions for chemical evolution models: characterizing the population of star-forming and passive galaxies. Astron. Astrophys. 599, A6 (2017).

    Article  Google Scholar 

  187. Kirby, E. N., Martin, C. L. & Finlator, K. Metals removed by outflows from Milky Way dwarf spheroidal galaxies. Astrophys. J. Lett. 742, L25 (2011).

    Article  ADS  Google Scholar 

  188. Escala, I. et al. Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion. Mon. Not. R. Astron. Soc. 474, 2194–2211 (2018).

    Article  ADS  Google Scholar 

  189. Umeda, H. & Nomoto, K. First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star. Nature 422, 871–873 (2003).

    Article  ADS  Google Scholar 

  190. Heger, A. & Woosley, S. E. Nucleosynthesis and evolution of massive metal-free stars. Astrophys. J. 724, 341–373 (2010).

    Article  ADS  Google Scholar 

  191. Ryan, S. G., Norris, J. E. & Beers, T. C. Extremely metal-poor stars. II. Elemental abundances and the early chemical enrichment of the galaxy. Astrophys. J. 471, 254 (1996).

    Article  ADS  Google Scholar 

  192. Cayrel, R. et al. First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy. Astron. Astrophys. 416, 1117–1138 (2004).

    Article  ADS  Google Scholar 

  193. Beers, T. C. & Christlieb, N. The discovery and analysis of very metal-poor stars in the galaxy. Annu. Rev. Astron. Astrophys. 43, 531–580 (2005).

    Article  ADS  Google Scholar 

  194. Pettini, M., Zych, B. J., Steidel, C. C. & Chaffee, F. H. C, N, O abundances in the most metal-poor damped Lyman alpha systems. Mon. Not. R. Astron. Soc. 385, 2011–2024 (2008).

    Article  ADS  Google Scholar 

  195. Cooke, R., Pettini, M., Steidel, C. C., Rudie, G. C. & Nissen, P. E. The most metal-poor damped Lyα systems: insights into chemical evolution in the very metal-poor regime. Mon. Not. R. Astron. Soc. 417, 1534–1558 (2011).

    Article  ADS  Google Scholar 

  196. Aoki, W. et al. Carbon-enhanced metal-poor stars. I. Chemical compositions of 26 stars. Astrophys. J. 655, 492–521 (2007).

    Article  ADS  Google Scholar 

  197. Yong, D. et al. The most metal-poor stars. II. Chemical abundances of 190 metal-poor stars including 10 new stars with [Fe/H] ≤ −3.5. Astrophys. J. 762, 26 (2013).

    Article  ADS  Google Scholar 

  198. Salvadori, S., Skúladóttir, Á. & Tolstoy, E. Carbon-enhanced metal-poor stars in dwarf galaxies. Mon. Not. R. Astron. Soc. 454, 1320–1331 (2015).

    Article  ADS  Google Scholar 

  199. Yoon, J. et al. Observational constraints on first-star nucleosynthesis. I. Evidence for multiple progenitors of CEMP-no stars. Astrophys. J. 833, 20 (2016).

    Article  ADS  Google Scholar 

  200. Sneden, C., Cowan, J. J. & Gallino, R. Neutron-capture elements in the early galaxy. Annu. Rev. Astron. Astrophys. 46, 241–288 (2008).

    Article  ADS  Google Scholar 

  201. Hansen, T., Andersen, J., Nordström, B., Buchhave, L. A. & Beers, T. C. The binary frequency of r-process-element-enhanced metal-poor stars and its implications: chemical tagging in the primitive halo of the Milky Way. Astrophys. J. Lett. 743, L1 (2011).

    Article  ADS  Google Scholar 

  202. Meynet, G. et al. Are C-rich ultra iron-poor stars also He-rich? Astron. Astrophys. 521, A30 (2010).

    Article  Google Scholar 

  203. Norris, J. E. et al. The most metal-poor stars. IV. The two populations with [Fe/H] −3.0. Astrophys. J. 762, 28 (2013).

    Article  ADS  Google Scholar 

  204. Abel, T., Bryan, G. L. & Norman, M. L. The formation of the first star in the Universe. Science 295, 93–98 (2002).

    Article  ADS  Google Scholar 

  205. Bromm, V. & Yoshida, N. The first galaxies. Annu. Rev. Astron. Astrophys. 49, 373–407 (2011).

    Article  ADS  Google Scholar 

  206. Stacy, A. & Bromm, V. The first stars: a low-mass formation mode. Astrophys. J. 785, 73 (2014).

    Article  ADS  Google Scholar 

  207. Tafelmeyer, M. et al. Extremely metal-poor stars in classical dwarf spheroidal galaxies: Fornax, Sculptor, and Sextans. Astron. Astrophys. 524, A58 (2010).

    Article  Google Scholar 

  208. Frebel, A., Kirby, E. N. & Simon, J. D. Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor. Nature 464, 72–75 (2010).

    Article  ADS  Google Scholar 

  209. Chiti, A. et al. Detection of a population of carbon-enhanced metal-poor stars in the Sculptor dwarf spheroidal galaxy. Astrophys. J. 856, 142 (2018).

    Article  ADS  Google Scholar 

  210. Hansen, C. J. et al. Ages and heavy element abundances from very metal-poor stars in the Sagittarius dwarf galaxy. Astrophys. J. 855, 83 (2018).

    Article  ADS  Google Scholar 

  211. Chiti, A., Hansen, K. Y. & Frebel, A. Discovery of 18 stars with -3.10 < [Fe/H] < -1.45 in the Sagittarius dwarf galaxy. Astrophys. J. 901, 164 (2020).

    Article  ADS  Google Scholar 

  212. Yoon, J. et al. Identification of a Group III CEMP-no star in the dwarf spheroidal galaxy Canes Venatici I. Astrophys. J. 894, 7 (2020).

    Article  ADS  Google Scholar 

  213. Yoon, J., Beers, T. C., Tian, D. & Whitten, D. D. Origin of the CEMP-no group morphology in the Milky Way. Astrophys. J. 878, 97 (2019).

    Article  ADS  Google Scholar 

  214. Norris, J. E. et al. Chemical enrichment in the faintest galaxies: the carbon and iron abundance spreads in the Boötes I dwarf spheroidal galaxy and the Segue 1 system. Astrophys. J. 723, 1632–1650 (2010).

    Article  ADS  Google Scholar 

  215. Sestito, F. et al. Tracing the formation of the Milky Way through ultra metal-poor stars. Mon. Not. R. Astron. Soc. 484, 2166–2180 (2019).

    Article  ADS  Google Scholar 

  216. Sestito, F. et al. The Pristine Survey - X. A large population of low-metallicity stars permeates the Galactic disc. Mon. Not. R. Astron. Soc. 497, L7–L12 (2020).

    Article  ADS  Google Scholar 

  217. Villalobos, Á. & Helmi, A. Simulations of minor mergers - I. General properties of thick discs. Mon. Not. R. Astron. Soc. 391, 1806–1827 (2008).

    Article  ADS  Google Scholar 

  218. Belokurov, V. & Kravtsov, A. Mon. Not. R. Astron. Soc. 514, 689–714 (2022).

  219. Caffau, E. et al. An extremely primitive star in the Galactic halo. Nature 477, 67–69 (2011).

    Article  ADS  Google Scholar 

  220. Starkenburg, E. et al. The Pristine Survey IV: approaching the Galactic metallicity floor with the discovery of an ultra-metal-poor star. Mon. Not. R. Astron. Soc. 481, 3838–3852 (2018).

    Article  ADS  Google Scholar 

  221. Skúladóttir, Á. et al. Zero-metallicity hypernova uncovered by an ultra-metal-poor star in the Sculptor dwarf spheroidal galaxy. Astrophys. J. Lett. 915, L30 (2021).

    Article  ADS  Google Scholar 

  222. Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  223. Perlmutter, S. et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    Article  ADS  MATH  Google Scholar 

  224. Whelan, J. & Iben, I., Jr. Binaries and supernovae of type I. Astrophys. J. 186, 1007–1014 (1973).

    Article  ADS  Google Scholar 

  225. Iben, I., Jr. & Tutukov, A. V. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass. Astrophys. J. Suppl. Ser. 54, 335–372 (1984).

    Article  ADS  Google Scholar 

  226. Webbink, R. F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 277, 355–360 (1984).

    Article  ADS  Google Scholar 

  227. Iben, I., Jr., Nomoto, K., Tornambe, A. & Tutukov, A. V. On interacting helium star–white dwarf pairs as supernova precursors. Astrophys. J. 317, 717 (1987).

    Article  ADS  Google Scholar 

  228. Woosley, S. E. & Weaver, T. A. Sub–Chandrasekhar mass models for type Ia aupernovae. Astrophys. J. 423, 371 (1994).

    Article  ADS  Google Scholar 

  229. Bildsten, L., Shen, K. J., Weinberg, N. N. & Nelemans, G. Faint thermonuclear supernovae from AM Canum Venaticorum binaries. Astrophys. J. Lett. 662, L95–L98 (2007).

    Article  ADS  Google Scholar 

  230. Pakmor, R., Kromer, M., Taubenberger, S. & Springel, V. Helium-ignited Violent mergers as a unified model for normal and rapidly declining type Ia supernovae. Astrophys. J. Lett. 770, L8 (2013).

    Article  ADS  Google Scholar 

  231. Shen, K. J. & Bildsten, L. The ignition of carbon detonations via converging shock waves in white dwarfs. Astrophys. J. 785, 61 (2014).

    Article  ADS  Google Scholar 

  232. Shen, K. J., Kasen, D., Miles, B. J. & Townsley, D. M. Sub-Chandrasekhar-mass white dwarf detonations revisited. Astrophys. J. 854, 52 (2018).

    Article  ADS  Google Scholar 

  233. Seitenzahl, I. R. et al. Three-dimensional delayed-detonation models with nucleosynthesis for type Ia supernovae. Mon. Not. R. Astron. Soc. 429, 1156–1172 (2013).

    Article  ADS  Google Scholar 

  234. McWilliam, A., Piro, A. L., Badenes, C. & Bravo, E. Evidence for a sub-Chandrasekhar-mass type Ia supernova in the Ursa Minor dwarf galaxy. Astrophys. J. 857, 97 (2018).

    Article  ADS  Google Scholar 

  235. Gronow, S., Collins, C. E., Sim, S. A. & Röpke, F. K. Double detonations of sub-MCh CO white dwarfs: variations in type Ia supernovae due to different core and He shell masses. Astron. Astrophys. 649, A155 (2021).

    Article  ADS  Google Scholar 

  236. Gronow, S. et al. Metallicity-dependent nucleosynthetic yields of type Ia supernovae originating from double detonations of sub-MCh white dwarfs. Astron. Astrophys. 656, A94 (2021).

    Article  Google Scholar 

  237. Skúladóttir, Á., Hansen, C. J., Salvadori, S. & Choplin, A. Neutron-capture elements in dwarf galaxies. I. Chemical clocks and the short timescale of the r-process. Astron. Astrophys. 631, A171 (2019).

    Article  ADS  Google Scholar 

  238. Bonifacio, P. et al. First results of UVES at VLT: abundances in the Sgr dSph. Astron. Astrophys. 359, 663–668 (2000).

    ADS  Google Scholar 

  239. Shetrone, M. et al. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. I. Nucleosynthesis and abundance ratios. Astron. J. 125, 684–706 (2003).

    Article  ADS  Google Scholar 

  240. Geisler, D., Smith, V. V., Wallerstein, G., Gonzalez, G. & Charbonnel, C. ‘Sculptor-ing’ the galaxy? The chemical compositions of red giants in the Sculptor dwarf spheroidal galaxy. Astron. J. 129, 1428–1442 (2005).

    Article  ADS  Google Scholar 

  241. Cohen, J. G. & Huang, W. The chemical evolution of the Draco dwarf spheroidal galaxy. Astrophys. J. 701, 1053–1075 (2009).

    Article  ADS  Google Scholar 

  242. Cohen, J. G. & Huang, W. The chemical evolution of the Ursa Minor dwarf spheroidal galaxy. Astrophys. J. 719, 931–949 (2010).

    Article  ADS  Google Scholar 

  243. Kirby, E. N. & Cohen, J. G. Detailed abundances of two very metal-poor stars in dwarf galaxies. Astron. J. 144, 168 (2012).

    Article  ADS  Google Scholar 

  244. McWilliam, A., Wallerstein, G. & Mottini, M. Chemistry of the Sagittarius dwarf galaxy: a top-light initial mass function, outflows, and the r-process. Astrophys. J. 778, 149 (2013).

    Article  ADS  Google Scholar 

  245. Jablonka, P. et al. The early days of the Sculptor dwarf spheroidal galaxy. Astron. Astrophys. 583, A67 (2015).

    Article  Google Scholar 

  246. Norris, J. E. et al. The Populations of Carina. II. Chemical enrichment. Astrophys. J. Suppl. Ser. 230, 28 (2017).

    Article  ADS  Google Scholar 

  247. Hill, V. et al. VLT/FLAMES high-resolution chemical abundances in Sculptor: a textbook dwarf spheroidal galaxy. Astron. Astrophys. 626, A15 (2019).

    Article  Google Scholar 

  248. Reichert, M., Hansen, C. J. & Arcones, A. Extreme r-process enhanced stars at high metallicity in Fornax. Astrophys. J. 912, 157 (2021).

    Article  ADS  Google Scholar 

  249. Ji, A. P., Simon, J. D., Frebel, A., Venn, K. A. & Hansen, T. T. Chemical abundances in the ultra-faint dwarf galaxies Grus I and Triangulum II: neutron-capture elements as a defining feature of the faintest dwarfs. Astrophys. J. 870, 83 (2019).

    Article  ADS  Google Scholar 

  250. Ji, A. P., Frebel, A., Chiti, A. & Simon, J. D. R-process enrichment from a single event in an ancient dwarf galaxy. Nature 531, 610–613 (2016).

    Article  ADS  Google Scholar 

  251. Roederer, I. U. et al. Detailed chemical abundances in the r-process-rich ultra-faint dwarf galaxy Reticulum 2. Astron. J. 151, 82 (2016).

    Article  ADS  Google Scholar 

  252. Hansen, T. T. et al. An r-process enhanced star in the dwarf galaxy Tucana III. Astrophys. J. 838, 44 (2017).

    Article  ADS  Google Scholar 

  253. Reggiani, H., Schlaufman, K. C., Casey, A. R., Simon, J. D. & Ji, A. P. The most metal-poor stars in the Magellanic Clouds are r-process enhanced. Astrophys. J. 925, 66 (2022).

    Google Scholar 

  254. Aguado, D. S. et al. Elevated r-process enrichment in Gaia Sausage and Sequoia. Astrophys. J. Lett. 908, L8 (2021).

    Article  ADS  Google Scholar 

  255. Matsuno, T. et al. R-process enhancements of Gaia-Enceladus in GALAH DR3. Astron. Astrophys. 650, A110 (2021).

    Article  Google Scholar 

  256. Koch, A., McWilliam, A., Grebel, E. K., Zucker, D. B. & Belokurov, V. The highly unusual chemical composition of the Hercules dwarf spheroidal galaxy. Astrophys. J. Lett. 688, L13 (2008).

    Article  ADS  Google Scholar 

  257. Frebel, A. & Bromm, V. Chemical signatures of the first galaxies: criteria for one-shot enrichment. Astrophys. J. 759, 115 (2012).

    Article  ADS  Google Scholar 

  258. Beniamini, P., Hotokezaka, K. & Piran, T. Natal kicks and time delays in merging neutron star binaries: implications for r-process nucleosynthesis in ultra-faint dwarfs and in the Milky Way. Astrophys. J. Lett. 829, L13 (2016).

    Article  ADS  Google Scholar 

  259. Safarzadeh, M. & Scannapieco, E. Simulating neutron star mergers as r-process sources in ultrafaint dwarf galaxies. Mon. Not. R. Astron. Soc. 471, 2088–2096 (2017).

    Article  ADS  Google Scholar 

  260. Tarumi, Y., Yoshida, N. & Inoue, S. R-process enrichment in ultrafaint dwarf galaxies. Mon. Not. R. Astron. Soc. 494, 120–128 (2020).

    Article  ADS  Google Scholar 

  261. Jeon, M., Besla, G. & Bromm, V. Highly r-process enhanced stars in ultra-faint dwarf galaxies. Mon. Not. R. Astron. Soc. 506, 1850–1861 (2021).

    Article  ADS  Google Scholar 

  262. Skúladóttir, Á. & Salvadori, S. Evidence for 4 Gyr timescales of neutron star mergers from Galactic archaeology. Astron. Astrophys. 634, L2 (2020).

    Article  ADS  Google Scholar 

  263. Matteucci, F., Romano, D., Arcones, A., Korobkin, O. & Rosswog, S. Europium production: neutron star mergers versus core-collapse supernovae. Mon. Not. R. Astron. Soc. 438, 2177–2185 (2014).

    Article  ADS  Google Scholar 

  264. Duggan, G. E., Kirby, E. N., Andrievsky, S. M. & Korotin, S. A. Neutron star mergers are the dominant source of the r-process in the early evolution of dwarf galaxies. Astrophys. J. 869, 50 (2018).

    Article  ADS  Google Scholar 

  265. De Silva, G. M. et al. The GALAH survey: scientific motivation. Mon. Not. R. Astron. Soc. 449, 2604–2617 (2015).

    Article  ADS  Google Scholar 

  266. Majewski, S. R. et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154, 94 (2017).

    Article  ADS  Google Scholar 

  267. Dalton, G. et al. Integration and early testing of WEAVE: the next-generation spectroscopy facility for the William Herschel Telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 11447, 1144714 (SPIE, 2020).

  268. DESI Collaboration et al.The DESI Experiment Part I: science,targeting, and survey design. Preprint at https://arxiv.org/abs/1611.00036 (2016).

  269. de Jong, R. S. et al. 4MOST: project overview and information for the first call for proposals. Messenger 175, 3–11 (2019).

    ADS  Google Scholar 

  270. Amorisco, N. C., Zavala, J. & de Boer, T. J. L. Dark matter cores in the Fornax and Sculptor dwarf galaxies: joining halo assembly and detailed star formation histories. Astrophys. J. Lett. 782, L39 (2014).

    Article  ADS  Google Scholar 

  271. Chiti, A. et al. An extended halo around an ancient dwarf galaxy. Nat. Astron. 5, 392–400 (2021).

    Article  ADS  Google Scholar 

  272. Deason, A. J. et al. Dwarf stellar haloes: a powerful probe of small-scale galaxy formation and the nature of dark matter. Mon. Not. R. Astron. Soc. 511, 4044–4059 (2022).

    Article  ADS  Google Scholar 

  273. Starkenburg, E. et al. The Pristine survey - I. Mining the Galaxy for the most metal-poor stars. Mon. Not. R. Astron. Soc. 471, 2587–2604 (2017).

    Article  ADS  Google Scholar 

  274. Myeong, G. C., Evans, N. W., Belokurov, V., Amorisco, N. C. & Koposov, S. E. Halo substructure in the SDSS-Gaia catalogue: streams and clumps. Mon. Not. R. Astron. Soc. 475, 1537–1548 (2018).

    Article  ADS  Google Scholar 

  275. Roederer, I. U., Sneden, C., Thompson, I. B., Preston, G. W. & Shectman, S. A. Characterizing the chemistry of the Milky Way stellar halo: detailed chemical analysis of a metal-poor stellar stream. Astrophys. J. 711, 573–596 (2010).

    Article  ADS  Google Scholar 

  276. Aguado, D. S. et al. The S2 stream: the shreds of a primitive dwarf galaxy. Mon. Not. R. Astron. Soc. 500, 889–910 (2021).

    ADS  Google Scholar 

  277. Casey, A. R., Keller, S. C., Da Costa, G., Frebel, A. & Maunder, E. Hunting the parent of the Orphan stream. II. The first high-resolution spectroscopic study. Astrophys. J. 784, 19 (2014).

    Article  ADS  Google Scholar 

  278. Hansen, T. T. et al. S5: the destruction of a bright dwarf galaxy as revealed by the chemistry of the Indus stellar stream. Astrophys. J. 915, 103 (2021).

    Article  ADS  Google Scholar 

  279. Weisz, D. R. et al. Comparing the quenching times of faint M31 and Milky Way satellite galaxies. Astrophys. J. Lett. 885, L8 (2019).

    Article  ADS  Google Scholar 

  280. Mutlu-Pakdil, B. et al. Hubble Space Telescope observations of NGC 253 dwarf satellites: discovery of three ultra-faint dwarf galaxies. Astrophys. J. 926, 77 (2022).

    Article  ADS  Google Scholar 

  281. Ando, S. et al. Discovery prospects of dwarf spheroidal galaxies for indirect dark matter searches. J. Cosmol. Astropart. Phys. 2019, 040 (2019).

    Article  Google Scholar 

  282. Tollerud, E. J., Bullock, J. S., Strigari, L. E. & Willman, B. Hundreds of Milky Way satellites? Luminosity bias in the satellite luminosity function. Astrophys. J. 688, 277–289 (2008).

    Article  ADS  Google Scholar 

  283. Patej, A. & Loeb, A. Detectability of Local Group dwarf galaxy analogues at high redshifts. Astrophys. J. Lett. 815, L28 (2015).

    Article  ADS  Google Scholar 

  284. Ji, A. et al. Local dwarf galaxy archaeology. Bull. Am. Astron. Soc. 51, 166 (2019).

    Google Scholar 

  285. Drlica-Wagner, A. et al. Milky Way satellite census. I. The observational selection function for Milky Way satellites in DES Y3 and Pan-STARRS DR1. Astrophys. J. 893, 47 (2020).

    Article  ADS  Google Scholar 

  286. Ji, A. P. et al. Kinematics of Antlia 2 and Crater 2 from the Southern Stellar Stream Spectroscopic Survey (S5). Astrophys. J. 921, 32 (2021).

    Article  ADS  Google Scholar 

  287. Mishenina, T. V. et al. Abundances of neutron-capture elements in stars of the galactic disk substructures. Astron. Astrophys. 552, A128 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Kravtsov, Á. Skúladóttir and H. Reggiani for kindly providing the data used in Figs. 1–3, and M. Walker and M. Irwin for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

V.B. and N.W.E. mapped out the scope of the review and edited the manuscript. V.B. provided the first draft of the introduction and ‘Nucleosynthetic trends’ section, collected the data and plotted Figs. 1–3. N.W.E. wrote the first draft of the ‘Generic trends in the Milky Way ETDs’ section and conclusions. Both authors revised the manuscript.

Corresponding authors

Correspondence to Vasily Belokurov or N. Wyn Evans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Evan Kirby, Alex Ji and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belokurov, V., Evans, N.W. Chemical and stellar properties of early-type dwarf galaxies around the Milky Way. Nat Astron 6, 911–922 (2022). https://doi.org/10.1038/s41550-022-01740-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01740-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing