Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical and stellar properties of star-forming dwarf galaxies

Abstract

Dwarf galaxies are the least massive, most abundant and most widely distributed type of galaxy. Hence, they are key to testing theories of galaxy and Universe evolution. Dwarf galaxies sufficiently close to have their gas and stellar components studied in detail are of particular interest, because their properties and evolution can be inferred with accuracy. This Review summarizes what is known of the stellar and chemical properties of star-forming dwarf galaxies closer than ~20 Mpc. Given their low metallicity, high gas content and ongoing star formation, these objects are supposed to resemble the first galaxies that formed at the earliest epochs, and may thus represent a window on the distant, early Universe. We describe the major results obtained in the past decade on the star formation histories, chemical abundances, galaxy formation and evolution of star-forming dwarfs, and the uncertainties still affecting these results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of distance on observational CMDs.
Fig. 2: The sharp view from the HST of SFDs.
Fig. 3: The L–Z relation for SFDs.
Fig. 4: Element abundance ratios in SFDs.
Fig. 5: Examples of discovered dwarf–dwarf mergers.

Similar content being viewed by others

References

  1. White, S. D. M. & Rees, M. J. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978).

    Article  ADS  Google Scholar 

  2. Peebles, P. J. E. Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations. Astrophys. J. Lett. 263, L1–L5 (1982).

    Article  ADS  Google Scholar 

  3. Tolstoy, E., Hill, V. & Tosi, M. Star-formation histories, abundances, and kinematics of dwarf galaxies in the Local Group. Annu. Rev. Astron. Astrophys. 47, 371–425 (2009).

    Article  ADS  Google Scholar 

  4. Choi, Y. et al. Mapping the escape fraction of ionizing photons using resolved stars: a much higher escape fraction for NGC 4214. Astrophys. J. 902, 54 (2020).

    Article  ADS  Google Scholar 

  5. Efstathiou, G. Suppressing the formation of dwarf galaxies via photoionization. Mon. Not. R. Astron. Soc. 256, 43–47 (1992).

    Article  ADS  Google Scholar 

  6. Gallart, C. et al. The ACS LCID project: on the origin of dwarf galaxy types—a manifestation of the halo assembly bias? Astrophys. J. Lett. 811, L18 (2015).

    Article  ADS  Google Scholar 

  7. Matteucci, F. & Chiosi, C. Stochastic star formation and chemical evolution of dwarf irregular galaxies. Astron. Astrophys. 123, 121–134 (1983).

    ADS  Google Scholar 

  8. Marconi, G., Matteucci, F. & Tosi, M. Element abundances in blue compact galaxies. Mon. Not. R. Astron. Soc. 270, 35–45 (1994).

    Article  ADS  Google Scholar 

  9. Tosi, M., Greggio, L., Marconi, G. & Focardi, P. Star formation in dwarf irregular galaxies: Sextans B. Astron. J. 102, 951 (1991).

    Article  ADS  Google Scholar 

  10. Dolphin, A. E. Numerical methods of star formation history measurement and applications to seven dwarf spheroidals. Mon. Not. R. Astron. Soc. 332, 91–108 (2002).

    Article  ADS  Google Scholar 

  11. Gallart, C., Zoccali, M. & Aparicio, A. The adequacy of stellar evolution models for the interpretation of the color-magnitude diagrams of resolved stellar populations. Annu. Rev. Astron. Astrophys. 43, 387–434 (2005).

    Article  ADS  Google Scholar 

  12. Cignoni, M. & Tosi, M. Star formation histories of dwarf galaxies from the colour-magnitude diagrams of their resolved stellar populations. Adv. Astron. 2010, 3–27 (2010).

    Article  ADS  Google Scholar 

  13. Cignoni, M. et al. Hubble Tarantula Treasury Project. II. The star-formation history of the starburst region NGC 2070 in 30 Doradus. Astrophys. J. 811, 76 (2015).

    Article  ADS  Google Scholar 

  14. Chaboyer, B. Absolute ages of globular clusters and the age of the Universe. Astrophys. J. Lett. 444, L9 (1995).

    Article  ADS  Google Scholar 

  15. Skillman, E. D. et al. The ACS Project. X. The star formation history of IC 1613: revisiting the over-cooling problem. Astrophys. J. 786, 44–56 (2014).

    Article  ADS  Google Scholar 

  16. Albers, S. M. et al. Star formation at the edge of the Local Group: a rising star formation history in the isolated galaxy WLM. Mon. Not. R. Astron. Soc. 490, 5538–5550 (2019).

    Article  ADS  Google Scholar 

  17. Hidalgo, S. et al. On the extended structure of the Phoenix dwarf galaxy. Astrophys. J. 705, 704–716 (2009).

    Article  ADS  Google Scholar 

  18. Hidalgo, S. et al. The ACS LCID Project. IX. Imprints of the early Universe in the radial variation of the star formation history of dwarf galaxies. Astrophys. J. 778, 103 (2013).

    Article  ADS  Google Scholar 

  19. Graus, A. S. et al. A predicted correlation between age gradient and star formation history in FIRE dwarf galaxies. Mon. Not. R. Astron. Soc. 490, 1186–1201 (2019).

    Article  ADS  Google Scholar 

  20. McQuinn, K. B. W. et al. The nature of starbursts. I. The star formation histories of eighteen nearby starburst dwarf galaxies. Astrophys. J. 721, 297–317 (2010).

    Article  ADS  Google Scholar 

  21. Greggio, L. et al. The resolved stellar population of the poststarburst galaxy NGC 1569. Astrophys. J. 504, 725–742 (1998).

    Article  ADS  Google Scholar 

  22. Grocholski, A. et al. HST/ACS photometry of old stars in NGC 1569: the star formation history of a nearby starburst. Astron. J. 143, 117–136 (2012).

    Article  ADS  Google Scholar 

  23. Annibali, F., Greggio, L., Tosi, M., Aloisi, A. & Leitherer, C. The star formation history of NGC 1705: a poststarburst galaxy on the verge of activity. Astron. J. 126, 2752–2773 (2003).

    Article  ADS  Google Scholar 

  24. Annibali, F. et al. Young stellar populations and star clusters in NGC 1705. Astron. J. 138, 169–183 (2009).

    Article  ADS  Google Scholar 

  25. Aloisi, A. et al. I Zw 18 Revisited with HST ACS and Cepheids: new distance and age. Astrophys. J. Lett. 667, L151–L154 (2007).

    Article  ADS  Google Scholar 

  26. Annibali, F. et al. The star formation history of the very metal-poor blue compact dwarf I Zw 18 from HST/ACS data. Astron. J. 146, 144 (2013).

    Article  ADS  Google Scholar 

  27. Dalcanton, J. J. et al. The ACS Nearby Galaxy Survey Treasury. Astrophys. J. Suppl. Ser. 183, 67–108 (2009).

    Article  ADS  Google Scholar 

  28. Weisz, D. R. et al. The ACS Nearby Galaxy Survey Treasury. VIII. The global star formation histories of 60 dwarf galaxies in the Local Volume. Astrophys. J. 739, 5 (2011).

    Article  ADS  Google Scholar 

  29. Calzetti, D. et al. Legacy Extragalactic UV Survey (LEGUS) with the Hubble Space Telescope. I. Survey description. Astron. J. 149, 51 (2015).

    Article  ADS  Google Scholar 

  30. Cignoni, M. et al. Star formation histories of the LEGUS dwarf galaxies. I. Recent history of NGC 1705, NGC 4449, and Holmberg II. Astrophys. J. 856, 62 (2018).

    Article  ADS  Google Scholar 

  31. Cignoni, M. et al. Star formation histories of the LEGUS dwarf galaxies. III. The nonbursty nature of 23 star-forming dwarf galaxies. Astrophys. J. 887, 112 (2019).

    Article  ADS  Google Scholar 

  32. Lee, J. C. et al. Dwarf galaxy starburst statistics in the Local Volume. Astrophys. J. 692, 1305–1320 (2009).

    Article  ADS  Google Scholar 

  33. Guseva, N. G., Izotov, Y. I., Fricke, K. J. & Henkel, C. New candidates for extremely metal-poor emission-line galaxies in the SDSS/BOSS DR10. Astron. Astrophys. 579, A11 (2015).

    Article  ADS  Google Scholar 

  34. Izotov, Y. I. & Thuan, T. X. Deep Hubble Space Telescope ACS observations of I Zw 18: a young galaxy in formation. Astrophys. J. 616, 768–782 (2004).

    Article  ADS  Google Scholar 

  35. Sacchi, E. et al. Stellar populations and star formation history of the metal-poor dwarf galaxy DDO 68. Astrophys. J. 830, 3 (2016).

    Article  ADS  Google Scholar 

  36. Sacchi, E. et al. Reaching the oldest stars beyond the Local Group: ancient star formation in UGC 4483. Astrophys. J. 911, 62 (2021).

    Article  ADS  Google Scholar 

  37. McQuinn, K. B. W. et al. Leo P: an unquenched very low-mass galaxy. Astrophys. J. 812, 158 (2015).

    Article  ADS  Google Scholar 

  38. McQuinn, K. B. W. et al. The Leoncino dwarf galaxy: exploring the low-metallicity end of the luminosity-metallicity and mass-metallicity relations. Astrophys. J. 891, 181 (2020).

    Article  ADS  Google Scholar 

  39. Pustilnik, S. A., Kniazev, A. Y. & Pramskij, A. G. Study of DDO 68: nearest candidate for a young galaxy? Astron. Astrophys. 443, 91–102 (2005).

    Article  ADS  Google Scholar 

  40. Pustilnik, S. A. & Tepliakova, A. L. Study of galaxies in the Lynx-Cancer void – I. Sample description. Mon. Not. R. Astron. Soc. 415, 1188–1201 (2011).

    Article  ADS  Google Scholar 

  41. Cannon, J. M. et al. Discovery of a gas-rich companion to the extremely metal-poor galaxy DDO 68. Astrophys. J. Lett. 787, 1 (2014).

    Article  ADS  Google Scholar 

  42. Tikhonov, N. A., Galazutdinova, O. A. & Lebedev, V. S. Stellar content of the metal-poor galaxy DDO 68. Astron. Lett. 40, 1–10 (2014).

    Article  ADS  Google Scholar 

  43. Annibali, F. et al. DDO 68: a flea with smaller fleas that on him prey. Astrophys. J. Lett. 826, 27 (2016).

    Article  ADS  Google Scholar 

  44. Annibali, F. et al. HST resolves stars in a tiny body falling on the dwarf galaxy DDO 68. Astrophys. J. 883, 19 (2019).

    Article  ADS  Google Scholar 

  45. Skillman, E. D., Televich, R. J., Kennicutt, R. C., Garnett, D. R. & Terlevich, E. Spatially resolved optical and near-infrared spectroscopy of the low-metallicity galaxy UGC 4483. Astrophys. J. 431, 172 (1994).

    Article  ADS  Google Scholar 

  46. Skillman, E. D. et al. ALFALFA discovery of the nearby gas-rich dwarf galaxy Leo P. III. An extremely metal deficient galaxy. Astron. J. 146, 3 (2013).

    Article  ADS  Google Scholar 

  47. Pagel, B. E. J. & Edmunds, M. G. Abundances in stellar populations and the interstellar medium in galaxies. Annu. Rev. Astron. Astrophys. 19, 77–113 (1981).

    Article  ADS  Google Scholar 

  48. Skillman, E. D., Kennicutt, R. C. & Hodge, P. W. Oxygen abundances in nearby dwarf irregular galaxies. Astrophys. J. 347, 875 (1989).

    Article  ADS  Google Scholar 

  49. van Zee, L. & Haynes, M. P. Oxygen and nitrogen in isolated dwarf irregular galaxies. Astrophys. J. 636, 214–239 (2006).

    Article  ADS  Google Scholar 

  50. Berg, D. A. et al. Direct oxygen abundances for low-luminosity LVL galaxies. Astrophys. J. 754, 98 (2012).

    Article  ADS  Google Scholar 

  51. Haurberg, N. C., Rosenberg, J. & Salzer, J. J. Metal abundances of 12 dwarf irregulars from the ADBS Survey. Astrophys. J. 765, 66 (2013).

    Article  ADS  Google Scholar 

  52. Venn, K. A. et al. First stellar abundances in NGC 6822 from VLT-UVES and Keck-HIRES spectroscopy. Astrophys. J. 547, 765–776 (2001).

    Article  ADS  Google Scholar 

  53. Kaufer, A., Venn, K. A., Tolstoy, E., Pinte, C. & Kudritzki, R.-P. First stellar abundances in the dwarf irregular galaxy Sextans A. Astron. J. 127, 2723–2737 (2004).

    Article  ADS  Google Scholar 

  54. Bresolin, F. et al. The Araucaria Project: VLT spectra of blue supergiants in WLM – classification and first abundances. Astrophys. J. 648, 1007–1019 (2006).

    Article  ADS  Google Scholar 

  55. Kirby, E. N. et al. Chemistry and kinematics of the late-forming dwarf irregular galaxies Leo A, Aquarius, and Sagittarius DIG. Astrophys. J. 834, 9 (2017).

    Article  ADS  Google Scholar 

  56. Hermosa Muñoz, L. et al. Kinematic and metallicity properties of the Aquarius dwarf galaxy from FORS2 MXU spectroscopy. Astron. Astrophys. 634, A10 (2020).

    Article  Google Scholar 

  57. Whitmore, B. et al. LEGUS and Hα-LEGUS observations of star clusters in NGC 4449: improved ages and the fraction of light in clusters as a function of age. Astrophys. J. 889, 154 (2020).

    Article  ADS  Google Scholar 

  58. Watson, P. J. et al. The SAMI Galaxy Survey: trends in [a/Fe] as a function of morphology and environment. Preprint at http://arXiv.org/abs/2106.01928 (2022).

  59. Magrini, L. & Gonçalves, D. R. IC10: the history of the nearest starburst galaxy through its planetary nebula and HII region populations. Mon. Not. R. Astron. Soc. 398, 280–292 (2009).

    Article  ADS  Google Scholar 

  60. Magrini, L. et al. The chemistry of planetary nebulae and HII regions in the dwarf galaxies Sextans A and B from deep VLT spectra. Astron. Astrophys. 443, 115–132 (2005).

    Article  ADS  Google Scholar 

  61. Richer, M. G. & McCall, M. L. The progenitors of planetary nebulae in dwarf irregular galaxies. Astrophys. J. 658, 328–336 (2007).

    Article  ADS  Google Scholar 

  62. Annibali, F. et al. Planetary nebulae and H II regions in the starburst irregular galaxy NGC 4449 from LBT MODS data. Astrophys. J. 843, 20 (2017).

    Article  ADS  Google Scholar 

  63. Peña, M., Stasińska, G. & Richer, M. G. The chemical composition of planetary nebulae and HII regions in NGC 3109. Astron. Astrophys. 476, 745–758 (2007).

    Article  ADS  Google Scholar 

  64. Kunth, D. & Sargent, W. L. W. I Zw 18 and the existence of very metal poor blue compact dwarf galaxies. Astrophys. J. 300, 496 (1986).

    Article  ADS  Google Scholar 

  65. Kunth, D., Lequeux, J., Sargent, W. L. W. & Viallefond, F. Is there primordial gas in I Zw 18 ? Astron. Astrophys. 282, 709–716 (1994).

    ADS  Google Scholar 

  66. Aloisi, A. et al. Abundances in the neutral interstellar medium of I Zw 18 from far ultraviolet spectroscopic explorer observations. Astrophys. J. 595, 760–778 (2003).

    Article  ADS  Google Scholar 

  67. Cannon, J. M., Skillman, E. D., Sembach, K. R. & Bomans, D. J. Probing the multiphase interstellar medium of the dwarf starburst galaxy NGC 625 with far ultraviolet spectroscopic explorer spectroscopy. Astrophys. J. 618, 247–258 (2005).

    Article  ADS  Google Scholar 

  68. Bowen, D. V. et al. Absorption-line abundances in the SMC-like galaxy UGC 5282: evidence of ISM dilution from inflows on kiloparsec scales. Astrophys. J. 893, 84 (2020).

    Article  ADS  Google Scholar 

  69. Pettini, M. & Lipman, K. On the oxygen abundance of neutral gas in I Zw 18. Astron. Astrophys. 297, L63 (1995).

    ADS  Google Scholar 

  70. Lequeux, J., Peimbert, M., Rayo, J. F., Serrano, A. & Torres-Peimbert, S. Chemical composition and evolution of irregular and blue compact galaxies. Astron. Astrophys. 80, 155–166 (1979).

    ADS  Google Scholar 

  71. Pilyugin, L. S. Oxygen abundances in dwarf irregular galaxies and the metallicity-luminosity relationship. Astron. Astrophys. 374, 412–420 (2001).

    Article  ADS  Google Scholar 

  72. Garnett, D. R. The luminosity-metallicity relation, effective yields, and metal loss in spiral and irregular galaxies. Astrophys. J. 581, 1019–1031 (2002).

    Article  ADS  Google Scholar 

  73. Hunt, L. K., Dayal, P., Magrini, L. & Ferrara, A. Coevolution of metallicity and star formation in galaxies to z 3.7 - I. A fundamental plane. Mon. Not. R. Astron. Soc. 463, 2002–2019 (2016).

    Article  ADS  Google Scholar 

  74. Curti, M., Mannucci, F., Cresci, G. & Maiolino, R. The mass-metallicity and the fundamental metallicity relation revisited on a fully Te-based abundance scale for galaxies. Mon. Not. R. Astron. Soc. 491, 944–964 (2020).

    Article  ADS  Google Scholar 

  75. Lee, H. et al. On extending the mass-metallicity relation of galaxies by 2.5 decades in stellar mass. Astrophys. J. 647, 970–983 (2006).

    Article  ADS  Google Scholar 

  76. Brooks, A. M. et al. The origin and evolution of the mass-metallicity relationship for galaxies: results from cosmological N-body simulations. Astrophys. J. Lett. 655, L17–L20 (2007).

    Article  ADS  Google Scholar 

  77. Pustilnik, S. A., Perepelitsyna, Y. A. & Kniazev, A. Y. Study of galaxies in the Lynx-Cancer void - VII. New oxygen abundances. Mon. Not. R. Astron. Soc. 463, 670–683 (2016).

    Article  ADS  Google Scholar 

  78. Kniazev, A. Y., Egorova, E. S. & Pustilnik, S. A. Study of galaxies in the Eridanus void. Sample and oxygen abundances. Mon. Not. R. Astron. Soc. 479, 3842–3857 (2018).

    Article  ADS  Google Scholar 

  79. Kunth, D. & Östlin, G. The most metal-poor galaxies. Astron. Astrophys. Rev. 10, 1–79 (2000).

    Article  ADS  Google Scholar 

  80. Skillman, E. D. & Kennicutt, R. C. Spatially resolved optical and near-infrared spectroscopy of I Zw 18. Astrophys. J. 411, 655 (1993).

    Article  ADS  Google Scholar 

  81. Izotov, Y. I. et al. VLT/GIRAFFE spectroscopic observations of the metal-poor blue compact dwarf galaxy SBS 0335-052E. Astron. Astrophys. 459, 71–84 (2006).

    Article  ADS  Google Scholar 

  82. Yang, J., Turner, M. S., Steigman, G., Schramm, D. N. & Olive, K. A. Primordial nucleosynthesis: a critical comparison of theory and observation. Astrophys. J. 281, 493–511 (1984).

    Article  ADS  Google Scholar 

  83. Walker, T. P., Steigman, G., Schramm, D. N., Olive, K. A. & Kang, H.-S. Primordial nucleosynthesis redux. Astrophys. J. 376, 51 (1991).

    Article  ADS  Google Scholar 

  84. Izotov, Y. I. & Thuan, T. X. The primordial abundance of 4He revisited. Astrophys. J. 500, 188–216 (1998).

    Article  ADS  Google Scholar 

  85. Izotov, Y. I., Thuan, T. X. & Stasińska, G. The primordial abundance of 4He: a self-consistent empirical analysis of systematic effects in a large sample of low-metallicity H II regions. Astrophys. J. 662, 15–38 (2007).

    Article  ADS  Google Scholar 

  86. Izotov, Y. I., Thuan, T. X. & Guseva, N. G. A new determination of the primordial He abundance using the He I λ10830 Å emission line: cosmological implications. Mon. Not. R. Astron. Soc. 445, 778–793 (2014).

    Article  ADS  Google Scholar 

  87. Aver, E., Olive, K. A. & Skillman, E. D. The effects of He I λ10830 on helium abundance determinations. J. Cosmol. Astropart. Phys. 7, 11 (2015).

    Article  ADS  Google Scholar 

  88. Fernández, V., Terlevich, E., Dí az, A. I. & Terlevich, R. A Bayesian direct method implementation to fit emission line spectra: application to the primordial He abundance determination. Mon. Not. R. Astron. Soc. 487, 3221–3238 (2019).

    Article  ADS  Google Scholar 

  89. Valerdi, M., Peimbert, A., Peimbert, M. & Sixtos, A. Determination of the primordial helium abundance based on NGC 346, an H II region of the Small Magellanic Cloud. Astrophys. J. 876, 98 (2019).

    Article  ADS  Google Scholar 

  90. Hsyu, T., Cooke, R. J., Prochaska, J. X. & Bolte, M. The PHLEK survey: a new determination of the primordial helium abundance. Astrophys. J. 896, 77 (2020).

    Article  ADS  Google Scholar 

  91. Aver, E. et al. Improving helium abundance determinations with Leo P as a case study. J. Cosmol. Astropart. Phys. 3, 27 (2021).

    Article  ADS  Google Scholar 

  92. Kurichin, O. A., Kislitsyn, P. A., Klimenko, V. V., Balashev, S. A. & Ivanchik, A. V. A new determination of the primordial helium abundance using the analyses of H II region spectra from SDSS. Mon. Not. R. Astron. Soc. 502, 3045–3056 (2021).

    Article  ADS  Google Scholar 

  93. Hirschauer, A. S. et al. ALFALFA discovery of the most metal-poor gas-rich galaxy known: AGC 198691. Astrophys. J. 822, 108 (2016).

    Article  ADS  Google Scholar 

  94. Izotov, Y. I., Thuan, T. X. & Guseva, N. G. Hunting for extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey: MMT and 3.5 m APO observations. Astron. Astrophys. 546, A122 (2012).

    Article  ADS  Google Scholar 

  95. Guseva, N. G., Izotov, Y. I., Fricke, K. J. & Henkel, C. Searching for metal-deficient emission-line galaxy candidates: the final sample of the SDSS DR12 galaxies. Astron. Astrophys. 599, A65 (2017).

    Article  ADS  Google Scholar 

  96. Hsyu, T., Cooke, R. J., Prochaska, J. X. & Bolte, M. The Little Cub: discovery of an extremely metal-poor star-forming galaxy in the local Universe. Astrophys. J. Lett. 845, 22 (2017).

    Article  ADS  Google Scholar 

  97. Yang, H., Malhotra, S., Rhoads, J. E. & Wang, J. Blueberry galaxies: the lowest mass young starbursts. Astrophys. J. 847, 38 (2017).

    Article  ADS  Google Scholar 

  98. Hsyu, T., Cooke, R. J., Prochaska, J. X. & Bolte, M. Searching for the lowest-metallicity galaxies in the local Universe. Astrophys. J. 863, 134 (2018).

    Article  ADS  Google Scholar 

  99. Izotov, Y. I., Thuan, T. X., Guseva, N. G. & Liss, S. E. J0811+4730: the most metal-poor star-forming dwarf galaxy known. Mon. Not. R. Astron. Soc. 473, 1956–1966 (2018).

    Article  ADS  Google Scholar 

  100. Senchyna, P. & Stark, D. P. Photometric identification and MMT spectroscopy of new extremely metal-poor galaxies: towards a better understanding of young stellar populations at low metallicity. Mon. Not. R. Astron. Soc. 484, 1270–1284 (2019).

    Article  ADS  Google Scholar 

  101. Senchyna, P. et al. Extremely metal-poor galaxies with HST/COS: laboratories for models of low-metallicity massive stars and high-redshift galaxies. Mon. Not. R. Astron. Soc. 488, 3492–3506 (2019).

    Article  ADS  Google Scholar 

  102. Kojima, T. et al. Extremely metal-poor representatives explored by the Subaru Survey (EMPRESS). I. A successful machine-learning selection of metal-poor galaxies and the discovery of a galaxy with M* < 106 M and 0.016 Z. Astrophys. J. 898, 142 (2020).

    Article  ADS  Google Scholar 

  103. Pustilnik, S. A., Kniazev, A. Y., Perepelitsyna, Y. A. & Egorova, E. S. XMP gas-rich dwarfs in nearby voids: results of SALT spectroscopy. Mon. Not. R. Astron. Soc. 493, 830–846 (2020).

    Article  ADS  Google Scholar 

  104. Pustilnik, S. A. et al. XMP gas-rich dwarfs in nearby voids: results of BTA spectroscopy. Mon. Not. R. Astron. Soc. 507, 944–962 (2021).

    Article  ADS  Google Scholar 

  105. Ekta, B. & Chengalur, J. N. When are extremely metal-deficient galaxies extremely metal deficient? Mon. Not. R. Astron. Soc. 406, 1238–1247 (2010).

    ADS  Google Scholar 

  106. Lelli, F., Verheijen, M., Fraternali, F. & Sancisi, R. Dynamics of starbursting dwarf galaxies. II. UGC 4483. Astron. Astrophys. 544, A145 (2012).

    Article  ADS  Google Scholar 

  107. Pascale, R. et al. Dancing in the void: hydrodynamical N-body simulations of the extremely metal poor galaxy DDO 68. Mon. Not. R. Astron. Soc. 509, 2940–2956 (2022).

    Article  ADS  Google Scholar 

  108. Greggio, L. & Renzini, A. Iron versus oxygen production—the role of type I supernovae. Mem. Soc. Astron. Ital. 54, 311–319 (1983).

    ADS  Google Scholar 

  109. Matteucci, F. & Recchi, S. On the typical timescale for the chemical enrichment from Type Ia supernovae in galaxies. Astrophys. J. 558, 351–358 (2001).

    Article  ADS  Google Scholar 

  110. Strader, J., Brodie, J. P. & Huchra, J. P. Spectroscopy of a globular cluster in the Local Group dwarf irregular NGC 6822. Mon. Not. R. Astron. Soc. 339, 707–710 (2003).

    Article  ADS  Google Scholar 

  111. Puzia, T. H. & Sharina, M. E. VLT spectroscopy of globular clusters in low surface brightness dwarf galaxies. Astrophys. J. 674, 909–926 (2008).

    Article  ADS  Google Scholar 

  112. Sharina, M. E., Chandar, R., Puzia, T. H., Goudfrooij, P. & Davoust, E. SAO RAS 6-m telescope spectroscopic observations of globular clusters in nearby galaxies. Mon. Not. R. Astron. Soc. 405, 839–856 (2010).

    ADS  Google Scholar 

  113. Annibali, F. et al. LBT/MODS spectroscopy of globular clusters in the irregular galaxy NGC 4449. Mon. Not. R. Astron. Soc. 476, 1942–1967 (2018).

    Article  ADS  Google Scholar 

  114. Pagel, B. E. J. Abundances of C, N, O in H II regions. ESO Workshop Prod. Distrib. C., N., O Elem. 21, 155–170 (1985).

    ADS  Google Scholar 

  115. van Zee, L., Salzer, J. J. & Haynes, M. P. Abundances in spiral galaxies: evidence for primary nitrogen production. Astrophys. J. Lett. 497, L1–L4 (1998).

    Article  ADS  Google Scholar 

  116. Tinsley, B. M. Evolution of the stars and gas in galaxies. Fundamentals Cosm. Phys. 5, 287–388 (1980).

    ADS  Google Scholar 

  117. Timmes, F. X., Woosley, S. E. & Weaver, T. A. Galactic chemical evolution: hydrogen through zinc. Astrophys. J. Suppl. Ser. 98, 617 (1995).

    Article  ADS  Google Scholar 

  118. Izotov, Y. I. & Thuan, T. X. Heavy-element abundances in blue compact galaxies. Astrophys. J. 511, 639–659 (1999).

    Article  ADS  Google Scholar 

  119. Berg, D. A., Skillman, E. D., Henry, R. B. C., Erb, D. K. & Carigi, L. Carbon and oxygen abundances in low metallicity dwarf galaxies. Astrophys. J. 827, 126 (2016).

    Article  ADS  Google Scholar 

  120. Berg, D. A., Erb, D. K., Henry, R. B. C., Skillman, E. D. & McQuinn, K. B. W. The chemical evolution of carbon, nitrogen, and oxygen in metal-poor dwarf galaxies. Astrophys. J. 874, 93 (2019).

    Article  ADS  Google Scholar 

  121. van Zee, L., Skillman, E. D. & Haynes, M. P. Oxygen and nitrogen in Leo A and GR 8. Astrophys. J. 637, 269–282 (2006).

    Article  ADS  Google Scholar 

  122. Pilyugin, L. S. The evolution of nitrogen and oxygen abundances in dwarf irregular galaxies. Astron. Astrophys. 260, 58–66 (1992).

    ADS  Google Scholar 

  123. Henry, R. B. C., Edmunds, M. G. & Köppen, J. On the cosmic origins of carbon and nitrogen. Astrophys. J. 541, 660–674 (2000).

    Article  ADS  Google Scholar 

  124. Garnett, D. R. et al. The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations. Astrophys. J. 443, 64 (1995).

    Article  ADS  Google Scholar 

  125. Bresolin, F. et al. Extragalactic chemical abundances: do H II regions and young stars tell the same story? the case of the spiral galaxy NGC 300. Astrophys. J. 700, 309–330 (2009).

    Article  ADS  Google Scholar 

  126. Lee, H., Skillman, E. D. & Venn, K. A. The spatial homogeneity of nebular and stellar oxygen abundances in the local group dwarf irregular galaxy NGC 6822. Astrophys. J. 642, 813–833 (2006).

    Article  ADS  Google Scholar 

  127. Cairós, L. M. et al. New light in star-forming dwarf galaxies: the PMAS integral field view of the blue compact dwarf galaxy Mrk 409. Astrophys. J. 707, 1676–1690 (2009).

    Article  ADS  Google Scholar 

  128. Kehrig, C. et al. Mapping the ionized gas of the metal-poor H II galaxy PHL 293B with MEGARA. Mon. Not. R. Astron. Soc. 498, 1638–1650 (2020).

    Article  ADS  Google Scholar 

  129. Fitts, A. et al. Fire in the field: simulating the threshold of galaxy formation. Mon. Not. R. Astron. Soc. 471, 3547–3562 (2017).

    Article  ADS  Google Scholar 

  130. Escala, I. et al. Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion. Mon. Not. R. Astron. Soc. 474, 2194–2211 (2018).

    Article  ADS  Google Scholar 

  131. Mercado, F. J. et al. A relationship between stellar metallicity gradients and galaxy age in dwarf galaxies. Mon. Not. R. Astron. Soc. 501, 5121–5134 (2021).

    Article  ADS  Google Scholar 

  132. Papaderos, P., Izotov, Y. I., Guseva, N. G., Thuan, T. X. & Fricke, K. J. Oxygen abundance variations in the system of the two blue compact dwarf galaxies SBS 0335-052E and SBS 0335-052W. Astron. Astrophys. 454, 119–123 (2006).

    Article  ADS  Google Scholar 

  133. Annibali, F. et al. Chemical abundances and properties of the ionized gas in NGC 1705. Astron. J. 150, 143 (2015).

    Article  ADS  Google Scholar 

  134. Pilyugin, L. S., Grebel, E. K. & Zinchenko, I. A. On the radial abundance gradients in discs of irregular galaxies. Mon. Not. R. Astron. Soc. 450, 3254–3263 (2015).

    Article  ADS  Google Scholar 

  135. Annibali, F. et al. Chemical abundances and radial velocities in the extremely metal-poor galaxy DDO 68. Mon. Not. R. Astron. Soc. 482, 3892–3914 (2019).

    Article  ADS  Google Scholar 

  136. de Avillez, M. A. & Mac Low, M.-M. Mixing timescales in a supernova-driven interstellar medium. Astrophys. J. 581, 1047–1060 (2002).

    Article  ADS  Google Scholar 

  137. Emerick, A., Bryan, G. L. & Mac Low, M.-M. Simulating an isolated dwarf galaxy with multichannel feedback and chemical yields from individual stars. Mon. Not. R. Astron. Soc. 482, 1304–1329 (2019).

    Article  ADS  Google Scholar 

  138. Sánchez Almeida, J. et al. Metallicity inhomogeneities in local star-forming galaxies as a sign of recent metal-poor gas accretion. Astrophys. J. 783, 45 (2014).

    Article  ADS  Google Scholar 

  139. Kumari, N., James, B. L. & Irwin, M. J. A GMOS-N IFU study of the central H II region in the blue compact dwarf galaxy NGC 4449: kinematics, nebular metallicity and star formation. Mon. Not. R. Astron. Soc. 470, 4618–4637 (2017).

    Article  ADS  Google Scholar 

  140. Lagos, P. et al. Detecting metal-poor gas accretion in the star-forming dwarf galaxies UM 461 and Mrk 600. Mon. Not. R. Astron. Soc. 477, 392–411 (2018).

    Article  ADS  Google Scholar 

  141. Verbeke, R. et al. Gaseous infall triggering starbursts in simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 442, 1830–1843 (2014).

    Article  ADS  Google Scholar 

  142. Ceverino, D. et al. Gas inflow and metallicity drops in star-forming galaxies. Mon. Not. R. Astron. Soc. 457, 2605–2612 (2016).

    Article  ADS  Google Scholar 

  143. Martínez-Delgado, D. et al. Dwarfs gobbling dwarfs: a stellar tidal stream around NGC 4449 and hierarchical galaxy formation on small scales. Astrophys. J. Lett. 748, 24 (2012).

    Article  ADS  Google Scholar 

  144. Walsh, J. R. & Roy, J.-R. Optical spectroscopic and abundance mapping of the amorphous galaxy NGC 5253. Mon. Not. R. Astron. Soc. 239, 297–324 (1989).

    Article  ADS  Google Scholar 

  145. Pustilnik, S. et al. HS 0837+4717—a metal-deficient blue compact galaxy with large nitrogen excess. Astron. Astrophys. 419, 469–484 (2004).

    Article  ADS  Google Scholar 

  146. James, B. L. et al. A VLT VIMOS study of the anomalous BCD Mrk996: mapping the ionized gas kinematics and abundances. Mon. Not. R. Astron. Soc. 398, 2–22 (2009).

    Article  ADS  Google Scholar 

  147. López-Sánchez, Á. R., Mesa-Delgado, A., López-Martín, L. & Esteban, C. The ionized gas at the centre of IC 10: a possible localized chemical pollution by Wolf-Rayet stars. Mon. Not. R. Astron. Soc. 411, 2076–2092 (2011).

    Article  ADS  Google Scholar 

  148. Westmoquette, M. S., James, B., Monreal-Ibero, A. & Walsh, J. R. Piecing together the puzzle of NGC 5253: abundances, kinematics and WR stars. Astron. Astrophys. 550, A88 (2013).

    Article  ADS  Google Scholar 

  149. Kobulnicky, H. A., Skillman, E. D., Roy, J.-R., Walsh, J. R. & Rosa, M. R. Hubble Space Telescope faint object spectroscope spectroscopy of localized chemical enrichment from massive stars in NGC 5253. Astrophys. J. 477, 679–692 (1997).

    Article  ADS  Google Scholar 

  150. Schaerer, D., Contini, T., Kunth, D. & Meynet, G. Detection of Wolf-Rayet stars of WN and WC subtypes in super–star clusters of NGC 5253. Astrophys. J. Lett. 481, L75–L79 (1997).

    Article  ADS  Google Scholar 

  151. Kobulnicky, H. A. & Skillman, E. D. Elemental abundance variations and chemical enrichment from massive stars in starbursts. I. NGC 4214. Astrophys. J. 471, 211 (1996).

    Article  ADS  Google Scholar 

  152. Kehrig, C. et al. Spatially resolved integral field spectroscopy of the ionized gas in I Zw18. Mon. Not. R. Astron. Soc. 459, 2992–3004 (2016).

    Article  ADS  Google Scholar 

  153. Pérez-Montero, E. et al. Integral field spectroscopy of nitrogen overabundant blue compact dwarf galaxies. Astron. Astrophys. 532, A141 (2011).

    Article  Google Scholar 

  154. Monreal-Ibero, A., Walsh, J. R. & Vílchez, J. M. The ionized gas in the central region of NGC 5253. 2D mapping of the physical and chemical properties. Astron. Astrophys. 544, A60 (2012).

    Article  ADS  Google Scholar 

  155. Garnett, D. R. Nitrogen in irregular galaxies. Astrophys. J. 363, 142 (1990).

    Article  ADS  Google Scholar 

  156. Köppen, J. & Hensler, G. Effects of episodic gas infall on the chemical abundances in galaxies. Astron. Astrophys. 434, 531–541 (2005).

    Article  ADS  Google Scholar 

  157. Luo, Y. et al. Evidence for the accretion of gas in star-forming galaxies: high N/O abundances in regions of anomalously low metallicity. Astrophys. J. 908, 183 (2021).

    Article  ADS  Google Scholar 

  158. Jeřábková, T. et al. Impact of metallicity and star formation rate on the time-dependent, galaxy-wide stellar initial mass function. Astron. Astrophys. 620, A39 (2018).

  159. Gavilán, M., Ascasibar, Y., Mollá, M. & Díaz, Á. I. The chemical case for no winds in dwarf irregular galaxies. Mon. Not. R. Astron. Soc. 434, 2491–2502 (2013).

    Article  ADS  Google Scholar 

  160. Matteucci, F. & Tosi, M. Nitrogen and oxygen evolution in dwarf irregular galaxies. Mon. Not. R. Astron. Soc. 217, 391–405 (1985).

    Article  ADS  Google Scholar 

  161. Romano, D., Tosi, M. & Matteucci, F. Formation and evolution of late-type dwarf galaxies - I. NGC1705 and NGC1569. Mon. Not. R. Astron. Soc. 365, 759–778 (2006).

    Article  ADS  Google Scholar 

  162. Romano, D. & Starkenburg, E. Chemical evolution of Local Group dwarf galaxies in a cosmological context - I. A new modelling approach and its application to the Sculptor dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 434, 471–487 (2013).

    Article  ADS  Google Scholar 

  163. D’Ercole, A. & Brighenti, F. Galactic winds and circulation of the interstellar medium in dwarf galaxies. Mon. Not. R. Astron. Soc. 309, 941–954 (1999).

    Article  ADS  Google Scholar 

  164. Mac Low, M.-M. & Ferrara, A. Starburst-driven mass loss from dwarf galaxies: efficiency and metal ejection. Astrophys. J. 513, 142–155 (1999).

    Article  ADS  Google Scholar 

  165. Scannapieco, E. & Brüggen, M. Simulating supersonic turbulence in galaxy outflows. Mon. Not. R. Astron. Soc. 405, 1634–1653 (2010).

    ADS  Google Scholar 

  166. Robles-Valdez, F., Rodríguez-González, A., Hernández-Martínez, L. & Esquivel, A. Metallic winds in dwarf galaxies. Astrophys. J. 835, 136 (2017).

    Article  ADS  Google Scholar 

  167. Romano, D., Calura, F., D’Ercole, A. & Few, C. G. High-resolution three-dimensional simulations of gas removal from ultrafaint dwarf galaxies. I. Stellar feedback. Astron. Astrophys. 630, 140 (2019).

    Article  ADS  Google Scholar 

  168. Koudmani, S., Henden, N. A. & Sijacki, D. A little FABLE: exploring AGN feedback in dwarf galaxies with cosmological simulations. Mon. Not. R. Astron. Soc. 503, 3568–3591 (2021).

    Article  ADS  Google Scholar 

  169. McQuinn, K. B. W. & Skillman, E. D. Galactic winds in low-mass galaxies. Astrophys. J. 886, 74 (2019).

    Article  ADS  Google Scholar 

  170. Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387 (2017).

    Article  ADS  Google Scholar 

  171. Vogelsberger, M., Marinacci, F., Torrey, P. & Puchwein, E. Cosmological simulations of galaxy formation. Nat. Rev. Phys. 2, 42–66 (2020).

    Article  Google Scholar 

  172. Diemand, J. et al. Clumps and streams in the local dark matter distribution. Nature 454, 735–738 (2008).

    Article  ADS  Google Scholar 

  173. Ibata, R., Irwin, M., Lewis, G., Ferguson, A. M. N. & Tanvir, N. A giant stream of metal-rich stars in the halo of the galaxy M31. Nature 412, 49–52 (2001).

    Article  ADS  Google Scholar 

  174. Belokurov, V. et al. The field of streams: Sagittarius and its siblings. Astrophys. J. Lett. 642, L137–L140 (2006).

    Article  ADS  Google Scholar 

  175. Martínez-Delgado, D. et al. Stellar tidal streams in spiral galaxies of the local volume: a pilot survey with modest aperture telescopes. Astron. J. 140, 962–967 (2010).

    Article  ADS  Google Scholar 

  176. Crnojević, D. et al. The extended halo of Centaurus A: uncovering satellites, streams, and substructures. Astrophys. J. 823, 19 (2016).

    Article  ADS  Google Scholar 

  177. Sawala, T. et al. Bent by baryons: the low-mass galaxy-halo relation. Mon. Not. R. Astron. Soc. 448, 2941–2947 (2015).

    Article  ADS  Google Scholar 

  178. Read, J. I., Iorio, G., Agertz, O. & Fraternali, F. The stellar mass-halo mass relation of isolated field dwarfs: a critical test of ΛCDM at the edge of galaxy formation. Mon. Not. R. Astron. Soc. 467, 2019–2038 (2017).

    ADS  Google Scholar 

  179. Helmi, A. et al. Dark satellites and the morphology of dwarf galaxies. Astrophys. J. Lett. 758, 5 (2012).

    Article  ADS  Google Scholar 

  180. Starkenburg, T. K., Helmi, A. & Sales, L. V. Dark influences II. Gas and star formation in minor mergers of dwarf galaxies with dark satellites. Astron. Astrophys. 587, A24 (2016).

    Article  ADS  Google Scholar 

  181. Starkenburg, T. K., Helmi, A. & Sales, L. V. Dark influences. III. Structural characterization of minor mergers of dwarf galaxies with dark satellites. Astron. Astrophys. 595, A56 (2016).

    Article  ADS  Google Scholar 

  182. Rich, R. M. et al. A tidally distorted dwarf galaxy near NGC 4449. Nature 482, 192–194 (2012).

    Article  ADS  Google Scholar 

  183. Belokurov, V. & Koposov, S. E. Stellar streams around the Magellanic Clouds. Mon. Not. R. Astron. Soc. 456, 602–616 (2016).

    Article  ADS  Google Scholar 

  184. Amorisco, N. C., Evans, N. W. & van de Ven, G. The remnant of a merger between two dwarf galaxies in Andromeda II. Nature 507, 335–337 (2014).

    Article  ADS  Google Scholar 

  185. Zhang, H.-X. et al. The blue compact dwarf galaxy VCC 848 formed by dwarf-dwarf merging. Astrophys. J. Lett. 891, 23 (2020).

    Article  ADS  Google Scholar 

  186. Higgs, C. R. et al. Solo dwarfs I: survey introduction and first results for the Sagittarius dwarf irregular galaxy. Mon. Not. R. Astron. Soc. 458, 1678–1695 (2016).

    Article  ADS  Google Scholar 

  187. Carlin, J. L. et al. First results from the MADCASH survey: a faint dwarf galaxy companion to the low-mass spiral galaxy NGC 2403 at 3.2 Mpc. Astrophys. J. Lett. 828, 5 (2016).

    Article  ADS  Google Scholar 

  188. Annibali, F. et al. The Smallest Scale of Hierarchy survey (SSH) - I. Survey description. Mon. Not. R. Astron. Soc. 491, 5101–5125 (2020).

    ADS  Google Scholar 

  189. Stierwalt, S. et al. TiNy Titans: the role of dwarf-dwarf interactions in low-mass galaxy evolution. Astrophys. J. 805, 2 (2015).

    Article  ADS  Google Scholar 

  190. Paudel, S., Smith, R., Yoon, S. J., Calderón-Castillo, P. & Duc, P.-A. A catalog of merging dwarf galaxies in the local Universe. Astrophys. J. Suppl. Ser. 237, 36 (2018).

    Article  ADS  Google Scholar 

  191. Kado-Fong, E. et al. Star formation in isolated dwarf galaxies hosting tidal debris: extending the dwarf-dwarf merger sequence. Astron. J. 159, 103 (2020).

    Article  ADS  Google Scholar 

  192. Pearson, S. et al. Local volume TiNy Titans: gaseous dwarf-dwarf interactions in the local Universe. Mon. Not. R. Astron. Soc. 459, 1827–1846 (2016).

    Article  ADS  Google Scholar 

  193. Lelli, F., Verheijen, M. & Fraternali, F. The triggering of starbursts in low-mass galaxies. Mon. Not. R. Astron. Soc. 445, 1694–1712 (2014).

    Article  ADS  Google Scholar 

  194. Lelli, F., Fraternali, F. & Verheijen, M. Evolution of dwarf galaxies: a dynamical perspective. Astron. Astrophys. 563, A27 (2014).

    Article  ADS  Google Scholar 

  195. McQuinn, K. et al. The link between mass distribution and starbursts in dwarf galaxies. Mon. Not. R. Astron. Soc. 450, 3886–3892 (2015).

    Article  ADS  Google Scholar 

  196. Dayal, P. & Ferrara, A. Early galaxy formation and its large-scale effects. Phys. Rep. 780, 1–64 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  197. Choudhury, T. R. & Ferrara, A. Searching for the reionization sources. Mon. Not. R. Astron. Soc. 380, L6–L10 (2007).

    Article  ADS  Google Scholar 

  198. Dayal, P. et al. Reionization with galaxies and active galactic nuclei. Mon. Not. R. Astron. Soc. 495, 3065–3078 (2020).

    Article  ADS  Google Scholar 

  199. Finkelstein, S. L. et al. CANDELS: the contribution of the observed galaxy population to cosmic reionization. Astrophys. J. 758, 93 (2012).

    Article  ADS  Google Scholar 

  200. McLeod, D. J., McLure, R. J. & Dunlop, J. S. The z = 9-10 galaxy population in the Hubble Frontier Fields and CLASH surveys: the z = 9 luminosity function and further evidence for a smooth decline in ultraviolet luminosity density at z≥ 8. Mon. Not. R. Astron. Soc. 459, 3812–3824 (2016).

    Article  ADS  Google Scholar 

  201. Bouwens, R. J. et al. Lower-luminosity galaxies could reionize the universe: very steep faint-end slopes to the UV luminosity functions at z > = 5-8 from the HUDF09 WFC3/IR observations. Astrophys. J. Lett. 752, 5 (2012).

    Article  ADS  Google Scholar 

  202. Bullock, J. S., Kravtsov, A. V. & Weinberg, D. H. Reionization and the abundance of galactic satellites. Astrophys. J. 539, 517–521 (2000).

    Article  ADS  Google Scholar 

  203. Bouwens, R. J. et al. UV luminosity functions at redshifts z ~ 4 to z ~ 10: 10,000 galaxies from HST legacy fields. Astrophys. J. 803, 34 (2015).

    Article  ADS  Google Scholar 

  204. Prochaska, J. X. & Worseck, G. A definitive survey for Lyman limit systems at z ~3.5 with the Sloan Digital Sky Survey. Astrophys. J. 718, 392–416 (2010).

    Article  ADS  Google Scholar 

  205. Leitherer, C., Ferguson, H. C., Heckman, T. M. & Lowenthal, J. D. The Lyman continuum in starburst galaxies observed with the Hopkins Ultraviolet Telescope. Astrophys. J. Lett. 454, L19 (1995).

    Article  ADS  Google Scholar 

  206. Bergvall, N. et al. First detection of Lyman continuum escape from a local starburst galaxy. I. Observations of the luminous blue compact galaxy Haro 11 with the Far Ultraviolet Spectroscopic Explorer (FUSE). Astron. Astrophys. 448, 513–524 (2006).

    Article  ADS  Google Scholar 

  207. Heckman, T. M. et al. Extreme feedback and the epoch of reionization: clues in the local Universe. Astrophys. J. 730, 5 (2011).

    Article  ADS  Google Scholar 

  208. Izotov, Y. I. et al. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy. Nature 529, 178–180 (2016).

    Article  ADS  Google Scholar 

  209. Leitherer, C., Hernandez, S., Lee, J. C. & Oey, M. S. Direct detection of Lyman continuum escape from local starburst galaxies with the Cosmic Origins spectrograph. Astrophys. J. 823, 64 (2016).

    Article  ADS  Google Scholar 

  210. Nakajima, K. & Ouchi, M. Ionization state of inter-stellar medium in galaxies: evolution, SFR-M*-Z dependence, and ionizing photon escape. Mon. Not. R. Astron. Soc. 442, 900–916 (2014).

    Article  ADS  Google Scholar 

  211. Vanzella, E. et al. Hubble imaging of the ionizing radiation from a star-forming galaxy at Z=3.2 with fesc > 50%. Astrophys. J. 825, 41 (2016).

    Article  ADS  Google Scholar 

  212. Eggen, N. R., Scarlata, C., Skillman, E. & Jaskot, A. Blow-away in the extreme low-mass starburst galaxy Pox 186. Astrophys. J. 912, 12 (2021).

    Article  ADS  Google Scholar 

  213. Bovill, M. S. & Ricotti, M. Pre-reionization fossils, ultra-faint dwarfs, and the missing galactic satellite problem. Astrophys. J. 693, 1859–1870 (2009).

    Article  ADS  Google Scholar 

  214. Brown, T. M. et al. The quenching of the ultra-faint dwarf galaxies in the reionization era. Astrophys. J. 796, 91 (2014).

    Article  ADS  Google Scholar 

  215. Weisz, D. R. et al. The star formation histories of Local Group dwarf galaxies. II. Searching for signatures of reionization. Astrophys. J. 789, 148 (2014).

    Article  ADS  Google Scholar 

  216. Monelli, M. et al. The ISLANDS Project. I. Andromeda XVI, an extremely low mass galaxy not quenched by reionization. Astrophys. J. 819, 147 (2016).

    Article  ADS  Google Scholar 

  217. Giri, S. K., Zackrisson, E., Binggeli, C., Pelckmans, K. & Cubo, R. Identifying reionization-epoch galaxies with extreme levels of Lyman continuum leakage in James Webb Space Telescope surveys. Mon. Not. R. Astron. Soc. 491, 5277–5286 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.A and M.T. equally contributed to design and write this Review.

Corresponding authors

Correspondence to Francesca Annibali or Monica Tosi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer Review InformationNature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annibali, F., Tosi, M. Chemical and stellar properties of star-forming dwarf galaxies. Nat Astron 6, 48–58 (2022). https://doi.org/10.1038/s41550-021-01575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01575-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing