Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gas dynamics in dwarf galaxies as testbeds for dark matter and galaxy evolution

Abstract

Dwarf galaxies are ideal laboratories to test dark matter models and alternative theories because their dynamical mass (from observed kinematics) largely outweighs their baryonic mass (from gas and stars). In most star-forming dwarfs, cold atomic gas forms regularly rotating disks extending beyond the stellar component, thus probing the gravitational potential out to the outermost regions. Here I review several aspects of gas dynamics in dwarf galaxies, such as rotation curves, mass models and non-circular motions. Star-forming dwarfs extend the dynamical laws of spiral galaxies to lower masses, surface densities and accelerations. The three main dynamical laws of rotation-supported galaxies point to three distinct acceleration scales, which play different physical roles but display the same value, within uncertainties. The small scatter around these dynamical laws implies a tight coupling between baryons and dark matter in galaxies, which will be better understood with next-generation surveys that will enlarge current sample sizes by orders of magnitude.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cold gas contents of nearby galaxies.
Fig. 2: The star-forming dwarf galaxy DDO 125.
Fig. 3: H i distribution in peculiar types of dwarf galaxy.
Fig. 4: Rotation curves of dwarf and spiral galaxies from the SPARC database.
Fig. 5: Dynamical laws for dwarf and spiral galaxies.

Similar content being viewed by others

References

  1. Rubin, V. C., Thonnard, N. & Ford, W. K. Jr Extended rotation curves of high-luminosity spiral galaxies. IV: systematic dynamical properties, SA through SC. Astrophys. J. 225, L107–L111 (1978).

    Article  ADS  Google Scholar 

  2. Bosma, A. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. PhD thesis, Univ. Groningen (1978).

  3. Kalnajs, A. Mass distribution and dark halos: discussion. In Internal Kinematics and Dynamics of Galaxies (ed. Athanassoula, E.) 87–88 (IAU, 1983).

  4. Kent, S. M. Dark matter in spiral galaxies. I. Galaxies with optical rotation curves. Astron. J. 91, 1301–1327 (1986).

    Article  ADS  Google Scholar 

  5. van Albada, T. S., Bahcall, J. N., Begeman, K. & Sancisi, R. Distribution of dark matter in the spiral galaxy NGC 3198. Astrophys. J. 295, 305–313 (1985).

    Article  ADS  Google Scholar 

  6. Kent, S. M. Dark matter in spiral galaxies. II - galaxies with H I rotation curves. Astron. J. 93, 816–832 (1987).

    Article  ADS  Google Scholar 

  7. Carignan, C. & Freeman, K. C. DDO 154: a ‘dark’ galaxy? Astrophys. J. 332, L33 (1988).

    Article  ADS  Google Scholar 

  8. de Blok, W. J. G. & McGaugh, S. S. The dark and visible matter content of low surface brightness disc galaxies. Mon. Not. R. Astron. Soc. 290, 533–552 (1997).

    Article  ADS  Google Scholar 

  9. Mateo, M. L. Dwarf galaxies of the Local Group. Ann. Rev. Astron. Astrophys. 36, 435–506 (1998).

    Article  ADS  Google Scholar 

  10. de Blok, W. J. G. The core-cusp problem. Adv. Astron. 2010, 789293 (2010).

    ADS  Google Scholar 

  11. Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Ann. Rev. Astron. Astrophys. 55, 343–387 (2017).

    Article  ADS  Google Scholar 

  12. Pawlowski, M. S. The planes of satellite galaxies problem, suggested solutions, and open questions. Mod. Phys. Lett. A 33, 1830004 (2018).

    Article  ADS  Google Scholar 

  13. McGaugh, S. S., Schombert, J. M., Bothun, G. D. & de Blok, W. J. G. The baryonic Tully-Fisher relation. Astrophys. J. 533, L99–L102 (2000).

    Article  ADS  Google Scholar 

  14. McGaugh, S. S. The baryonic Tully-Fisher relation of gas-rich galaxies as a test of ΛCDM and MOND. Astron. J. 143, 40 (2012).

    Article  ADS  Google Scholar 

  15. Swaters, R. A. et al. The link between light and mass in late-type spiral galaxy disks. Astrophys. J. 797, L28 (2014).

    Article  ADS  Google Scholar 

  16. Lelli, F., McGaugh, S. S., Schombert, J. M. & Pawlowski, M. S. The relation between stellar and dynamical surface densities in the central regions of disk galaxies. Astrophys. J. 827, L19 (2016).

    Article  ADS  Google Scholar 

  17. McGaugh, S. S. The mass discrepancy-acceleration relation: disk mass and the dark matter distribution. Astrophys. J. 609, 652–666 (2004).

    Article  ADS  Google Scholar 

  18. McGaugh, S. S., Lelli, F. & Schombert, J. M. Radial acceleration relation in rotationally supported galaxies. Phys. Rev. Lett. 117, 201101 (2016).

    Article  ADS  Google Scholar 

  19. Lelli, F., McGaugh, S. S., Schombert, J. M. & Pawlowski, M. S. One law to rule them all: the radial acceleration relation of galaxies. Astrophys. J. 836, 152 (2017).

    Article  ADS  Google Scholar 

  20. Tolstoy, E., Hill, V. & Tosi, M. Star-formation histories, abundances, and kinematics of dwarf galaxies in the Local Group. Ann. Rev. Astron. Astrophys. 47, 371–425 (2009).

    Article  ADS  Google Scholar 

  21. Binggeli, B. A note on the definition and nomenclature of dwarf galaxies. In European Southern Observatory Conference and Workshop Proceedings Vol. 49, 13 (ESO, 1994).

  22. Ferguson, H. C. & Binggeli, B. Dwarf elliptical galaxies. Astron. Astrophys. Rev. 6, 67–122 (1994).

    Article  ADS  Google Scholar 

  23. Binggeli, B., Tarenghi, M. & Sandage, A. The abundance and morphological segregation of dwarf galaxies in the field. Astron. Astrophys. 228, 42–60 (1990).

    ADS  Google Scholar 

  24. Putman, M. E. et al. The gas content and stripping of Local Group dwarf galaxies. Astrophys. J. 913, 53 (2021).

    Article  ADS  Google Scholar 

  25. Geha, M., Blanton, M. R., Yan, R. & Tinker, J. L. A stellar mass threshold for quenching of field galaxies. Astrophys. J. 757, 85 (2012).

    Article  ADS  Google Scholar 

  26. Annibali, F. & Tosi, M. Chemical and stellar properties of star-forming dwarf galaxies. Nat. Astron. https://doi.org/10.1038/s41550-021-01575-x (2022).

  27. Kovač, K., Oosterloo, T. A. & van der Hulst, J. M. A blind HI survey in the Canes Venatici region. Mon. Not. R. Astron. Soc. 400, 743–765 (2009).

    Article  ADS  Google Scholar 

  28. McQuinn, K. B. W. et al. The nature of starbursts. I. The star formation histories of eighteen nearby starburst dwarf galaxies. Astrophys. J. 721, 297–317 (2010).

    Article  ADS  Google Scholar 

  29. Lelli, F., Verheijen, M. & Fraternali, F. Dynamics of starbursting dwarf galaxies. III. A H I study of 18 nearby objects. Astron. Astrophys. 566, A71 (2014).

    Article  ADS  Google Scholar 

  30. McQuinn, K. B. W. et al. The nature of starbursts. II. The duration of starbursts in dwarf galaxies. Astrophys. J. 724, 49–58 (2010).

    Article  ADS  Google Scholar 

  31. McQuinn, K. B. W. et al. The nature of starbursts. III. The spatial distribution of star formation. Astrophys. J. 759, 77 (2012).

    Article  ADS  Google Scholar 

  32. Gallagher, J. S., III & Hunter, D. A. Colors and the evolution of amorphous galaxies. Astron. J. 94, 43–53 (1987).

    Article  ADS  Google Scholar 

  33. Terlevich, R., Melnick, J., Masegosa, J., Moles, M. & Copetti, M. V. F. A spectrophotometric catalogue of HII galaxies. Astron. Astrophys. Suppl. Ser. 91, 285–324 (1991).

    ADS  Google Scholar 

  34. Skillman, E. D., Côté, S. & Miller, B. W. Star formation in Sculptor group dwarf irregular galaxies and the nature of ‘transition’ galaxies. Astron. J. 125, 593–609 (2003).

    Article  ADS  Google Scholar 

  35. Duc, P. A. & Mirabel, I. F. Young tidal dwarf galaxies around the gas-rich disturbed lenticular NGC 5291. Astron. Astrophys. 333, 813–826 (1998).

    ADS  Google Scholar 

  36. Lelli, F. et al. Gas dynamics in tidal dwarf galaxies: disc formation at z = 0. Astron. Astrophys. 584, A113 (2015).

    Article  Google Scholar 

  37. Bournaud, F. & Duc, P. A. From tidal dwarf galaxies to satellite galaxies. Astron. Astrophys. 456, 481–492 (2006).

    Article  ADS  Google Scholar 

  38. Kroupa, P. The dark matter crisis: falsification of the current standard model of cosmology. Pub. Astron. Soc. Austr. 29, 395–433 (2012).

    Article  ADS  Google Scholar 

  39. Conselice, C. J. Ultra-diffuse galaxies are a subset of cluster dwarf elliptical/spheroidal galaxies. Res. Not. Am. Astron. Soc. 2, 43 (2018).

    ADS  Google Scholar 

  40. Chilingarian, I. V., Afanasiev, A. V., Grishin, K. A., Fabricant, D. & Moran, S. Internal dynamics and stellar content of nine ultra-diffuse galaxies in the Coma Cluster prove their evolutionary link with dwarf early-type galaxies. Astrophys. J. 884, 79 (2019).

    Article  ADS  Google Scholar 

  41. Brook, C. B., Di Cintio, A., Macciò, A. V. & Blank, M. A shallow dark matter halo in ultra-diffuse galaxy AGC 242019: are UDGs structurally similar to low-surface-brightness galaxies? Astrophys. J. 919, L1 (2021).

    Article  ADS  Google Scholar 

  42. Karunakaran, A. et al. Systematically measuring ultradiffuse galaxies in H I: results from the pilot survey. Astrophys. J. 902, 39 (2020).

    Article  ADS  Google Scholar 

  43. Peters, S. P. C., van der Kruit, P. C., Allen, R. J. & Freeman, K. C. The shape of dark matter haloes - II. The GALACTUS H I modelling & fitting tool. Mon. Not. R. Astron. Soc. 464, 21–31 (2017).

    Article  ADS  Google Scholar 

  44. McGaugh, S. S., Lelli, F. & Schombert, J. M. Scaling relations for molecular gas and metallicity: impact on the baryonic Tully-Fisher relation. Res. Not. Am. Astron. Soc. 4, 45 (2020).

    ADS  Google Scholar 

  45. Schombert, J. M., Bothun, G. D., Impey, C. D. & Mundy, L. G. CO deficiency in LSB galaxies. Clues to their star-formation history. Astron. J. 100, 1523 (1990).

    Article  ADS  Google Scholar 

  46. Taylor, C. L., Kobulnicky, H. A. & Skillman, E. D. CO emission in low-luminosity, H I-rich galaxies. Astron. J. 116, 2746–2756 (1998).

    Article  ADS  Google Scholar 

  47. Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Ann. Rev. Astron. Astrophys. 51, 207–268 (2013).

    Article  ADS  Google Scholar 

  48. McGaugh, S. S., Schombert, J. M. & Lelli, F. The star-forming main sequence of dwarf low surface brightness galaxies. Astrophys. J. 851, 22 (2017).

    Article  ADS  Google Scholar 

  49. Hunt, L. K., Tortora, C., Ginolfi, M. & Schneider, R. Scaling relations and baryonic cycling in local star-forming galaxies. II. Gas content and star-formation efficiency. Astron. Astrophys. 643, A180 (2020).

    Article  ADS  Google Scholar 

  50. Rubio, M. et al. Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM. Nature 525, 218–221 (2015).

    Article  ADS  Google Scholar 

  51. Miura, R. E. et al. ALMA observations toward the starburst dwarf galaxy NGC 5253. I. Molecular cloud properties and scaling relations. Astrophys. J. 864, 120 (2018).

    Article  ADS  Google Scholar 

  52. Querejeta, M. et al. ALMA resolves giant molecular clouds in a tidal dwarf galaxy. Astron. Astrophys. 645, A97 (2021).

    Article  Google Scholar 

  53. Kennicutt, R. C., Jr Structural properties of giant H II regions in nearby galaxies. Astrophys. J. 287, 116–130 (1984).

    Article  ADS  Google Scholar 

  54. Relatores, N. C. et al. The dark matter distributions in low-mass disk galaxies. I. Hα observations using the Palomar Cosmic Web Imager. Astrophys. J. 873, 5 (2019).

    Article  ADS  Google Scholar 

  55. Barat, D. et al. SHαDE: survey description and mass-kinematics scaling relations for dwarf galaxies. Mon. Not. R. Astron. Soc. 498, 5885–5903 (2020).

    Article  ADS  Google Scholar 

  56. Dutton, A. A. et al. NIHAO XII: galactic uniformity in a ΛCDM universe. Mon. Not. R. Astron. Soc. 467, 4937–4950 (2017).

    Article  ADS  Google Scholar 

  57. Katz, H. et al. Stellar feedback and the energy budget of late-type galaxies: missing baryons and core creation. Mon. Not. R. Astron. Soc. 480, 4287–4301 (2018).

    Article  ADS  Google Scholar 

  58. Ott, J., Walter, F. & Brinks, E. A Chandra X-ray survey of nearby dwarf starburst galaxies - II. Starburst properties and outflows. Mon. Not. R. Astron. Soc. 358, 1453–1471 (2005).

    Article  ADS  Google Scholar 

  59. Bradford, J. D., Geha, M. C. & Blanton, M. R. A study in blue: the baryon content of isolated low-mass galaxies. Astrophys. J. 809, 146 (2015).

    Article  ADS  Google Scholar 

  60. Begum, A., Chengalur, J. N., Karachentsev, I. D., Sharina, M. E. & Kaisin, S. S. FIGGS: faint irregular galaxies GMRT survey – overview, observations and first results. Mon. Not. R. Astron. Soc. 386, 1667–1682 (2008).

    Article  ADS  Google Scholar 

  61. Swaters, R. A., van Albada, T. S., van der Hulst, J. M. & Sancisi, R. The Westerbork HI survey of spiral and irregular galaxies. I. HI imaging of late-type dwarf galaxies. Astron. Astrophys. 390, 829–861 (2002).

    Article  ADS  Google Scholar 

  62. McNichols, A. T. et al. SHIELD: neutral gas kinematics and dynamics. Astrophys. J. 832, 89 (2016).

    Article  ADS  Google Scholar 

  63. McQuinn, K. B. W. et al. Galaxy properties at the faint end of the H I mass function. Astrophys. J. 918, 23–59 (2021).

  64. Iorio, G. et al. LITTLE THINGS in 3D: robust determination of the circular velocity of dwarf irregular galaxies. Mon. Not. R. Astron. Soc. 466, 4159–4192 (2017).

    ADS  Google Scholar 

  65. Oh, S.-H., Staveley-Smith, L., Spekkens, K., Kamphuis, P. & Koribalski, B. S. 2D Bayesian automated tilted-ring fitting of disc galaxies in large H I galaxy surveys: 2DBAT. Mon. Not. R. Astron. Soc. 473, 3256–3298 (2018).

    Article  ADS  Google Scholar 

  66. Di Teodoro, E. M. & Fraternali, F. 3DBAROLO: a new 3D algorithm to derive rotation curves of galaxies. Mon. Not. R. Astron. Soc. 451, 3021–3033 (2015).

    Article  ADS  Google Scholar 

  67. Kurapati, S., Chengalur, J. N., Kamphuis, P. & Pustilnik, S. Mass models of gas-rich void dwarf galaxies. Mon. Not. R. Astron. Soc. 491, 4993–5014 (2020).

    Article  ADS  Google Scholar 

  68. Bacchini, C., Fraternali, F., Pezzulli, G. & Marasco, A. The volumetric star formation law for nearby galaxies. Extension to dwarf galaxies and low-density regions. Astron. Astrophys. 644, A125 (2020).

    Article  ADS  Google Scholar 

  69. Bernstein-Cooper, E. Z. et al. ALFALFA discovery of the nearby gas-rich dwarf galaxy Leo P. V. Neutral gas dynamics and kinematics. Astron. J. 148, 35 (2014).

    Article  ADS  Google Scholar 

  70. Ott, J. et al. VLA-ANGST: a high-resolution H I survey of nearby dwarf galaxies. Astron. J. 144, 123 (2012).

    Article  ADS  Google Scholar 

  71. Lelli, F., McGaugh, S. S. & Schombert, J. M. SPARC: mass models for 175 disk galaxies with Spitzer photometry and accurate rotation curves. Astron. J. 152, 157 (2016).

    Article  ADS  Google Scholar 

  72. Broeils, A. H. & Rhee, M. H. Short 21-cm WSRT observations of spiral and irregular galaxies. HI properties. Astron. Astrophys. 324, 877–887 (1997).

    ADS  Google Scholar 

  73. Noordermeer, E., van der Hulst, J. M., Sancisi, R., Swaters, R. A. & van Albada, T. S. The Westerbork HI survey of spiral and irregular galaxies. III. HI observations of early-type disk galaxies. Astron. Astrophys. 442, 137–157 (2005).

    Article  ADS  Google Scholar 

  74. Lee, J. C., Kennicutt, R. C. Jr, José G. Funes, S. J., Sakai, S. & Akiyama, S. Dwarf galaxy starburst statistics in the local volume. Astrophys. J. 692, 1305–1320 (2009).

    Article  ADS  Google Scholar 

  75. Pearson, S. et al. Local Volume TiNy Titans: gaseous dwarf-dwarf interactions in the Local Universe. Mon. Not. R. Astron. Soc. 459, 1827–1846 (2016).

    Article  ADS  Google Scholar 

  76. Lelli, F., Verheijen, M. & Fraternali, F. The triggering of starbursts in low-mass galaxies. Mon. Not. R. Astron. Soc. 445, 1694–1712 (2014).

    Article  ADS  Google Scholar 

  77. Ashley, T., Simpson, C. E., Elmegreen, B. G., Johnson, M. & Pokhrel, N. R. J. The HI chronicles of LITTLE THINGS BCDs. III. Gas clouds in and around Mrk 178, VII Zw 403, and NGC 3738. Astron. J. 153, 132 (2017).

    Article  ADS  Google Scholar 

  78. López-Sánchez, Á. R. et al. The intriguing H I gas in NGC 5253: an infall of a diffuse, low-metallicity H I cloud? Mon. Not. R. Astron. Soc. 419, 1051–1069 (2012).

    Article  ADS  Google Scholar 

  79. Cannon, J. M., McClure-Griffiths, N. M., Skillman, E. D. & Côté, S. The complex neutral gas dynamics of the dwarf starburst galaxy NGC 625. Astrophys. J. 607, 274–284 (2004).

    Article  ADS  Google Scholar 

  80. Kobulnicky, H. A. & Skillman, E. D. Inflows and outflows in the dwarf starburst galaxy NGC 5253: high-resolution H I observations. Astron. J. 135, 527–537 (2008).

    Article  ADS  Google Scholar 

  81. Koribalski, B. S. et al. The Local Volume H I Survey (LVHIS). Mon. Not. R. Astron. Soc. 478, 1611–1648 (2018).

    Article  ADS  Google Scholar 

  82. Swaters, R. A., Sancisi, R., van Albada, T. S. & van der Hulst, J. M. The rotation curves shapes of late-type dwarf galaxies. Astron. Astrophys. 493, 871–892 (2009).

    Article  ADS  Google Scholar 

  83. Sancisi, R. The visible matter–dark matter coupling. In Dark Matter in Galaxies (eds Ryder, S. D. et al.) 233–240 (IAU, 2004).

  84. Oman, K. A. et al. The unexpected diversity of dwarf galaxy rotation curves. Mon. Not. R. Astron. Soc. 452, 3650–3665 (2015).

    Article  ADS  Google Scholar 

  85. van Zee, L., Salzer, J. J. & Skillman, E. D. Kinematic constraints on evolutionary scenarios for blue compact dwarf galaxies. I. Neutral gas dynamics. Astron. J. 122, 121–139 (2001).

    Article  ADS  Google Scholar 

  86. Lelli, F., Verheijen, M., Fraternali, F. & Sancisi, R. Dynamics of starbursting dwarf galaxies. II. UGC 4483. Astron. Astrophys. 544, A145 (2012).

    Article  ADS  Google Scholar 

  87. Lelli, F., Fraternali, F. & Verheijen, M. Evolution of dwarf galaxies: a dynamical perspective. Astron. Astrophys. 563, A27 (2014).

    Article  ADS  Google Scholar 

  88. Karukes, E. V. & Salucci, P. The universal rotation curve of dwarf disc galaxies. Mon. Not. R. Astron. Soc. 465, 4703–4722 (2017).

    Article  ADS  Google Scholar 

  89. Freeman, K. C. On the disks of spiral and S0 galaxies. Astrophys. J. 160, 811 (1970).

    Article  ADS  Google Scholar 

  90. Casertano, S. Rotation curve of the edge-on spiral galaxy NGC 5907: disc and halo masses. Mon. Not. R. Astron. Soc. 203, 735–747 (1983).

    Article  ADS  Google Scholar 

  91. Gentile, G., Baes, M., Famaey, B. & van Acoleyen, K. Mass models from high-resolution HI data of the dwarf galaxy NGC 1560. Mon. Not. R. Astron. Soc. 406, 2493–2503 (2010).

    Article  ADS  Google Scholar 

  92. Hoekstra, H., van Albada, T. S. & Sancisi, R. On the apparent coupling of neutral hydrogen and dark matter in spiral galaxies. Mon. Not. R. Astron. Soc. 323, 453–459 (2001).

    Article  ADS  Google Scholar 

  93. Swaters, R. A., Sancisi, R., van der Hulst, J. M. & van Albada, T. S. The link between the baryonic mass distribution and the rotation curve shape. Mon. Not. R. Astron. Soc. 425, 2299–2308 (2012).

    Article  ADS  Google Scholar 

  94. Hayashi, E., Navarro, J. F. & Springel, V. The shape of the gravitational potential in cold dark matter haloes. Mon. Not. R. Astron. Soc. 377, 50–62 (2007).

    Article  ADS  Google Scholar 

  95. Kereš, D., Katz, N., Weinberg, D. H. & Davé, R. How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005).

    Article  ADS  Google Scholar 

  96. Schoenmakers, R. H. M., Franx, M. & de Zeeuw, P. T. Measuring non-axisymmetry in spiral galaxies. Mon. Not. R. Astron. Soc. 292, 349–364 (1997).

    Article  ADS  Google Scholar 

  97. Gentile, G., Burkert, A., Salucci, P., Klein, U. & Walter, F. The dwarf galaxy DDO 47 as a dark matter laboratory: testing cusps hiding in triaxial halos. Astrophys. J. 634, L145–L148 (2005).

    Article  ADS  Google Scholar 

  98. Trachternach, C., de Blok, W. J. G., Walter, F., Brinks, E. & Kennicutt, R. C. Jr Dynamical centers and noncircular motions in THINGS galaxies: implications for dark matter halos. Astron. J. 136, 2720–2760 (2008).

    Article  ADS  Google Scholar 

  99. Oh, S.-H. et al. High-resolution mass models of dwarf galaxies from LITTLE THINGS. Astron. J. 149, 180 (2015).

    Article  ADS  Google Scholar 

  100. Marasco, A., Oman, K. A., Navarro, J. F., Frenk, C. S. & Oosterloo, T. Bars in dark-matter-dominated dwarf galaxy discs. Mon. Not. R. Astron. Soc. 476, 2168–2176 (2018).

    Article  ADS  Google Scholar 

  101. Hunter, D. A., Laufman, L., Oh, S.-H., Levine, S. E. & Simpson, C. E. Gas engaged in noncircular motions in LITTLE THINGS dwarf irregular galaxies. Astron. J. 158, 23 (2019).

    Article  ADS  Google Scholar 

  102. Spekkens, K. & Sellwood, J. A. Modeling noncircular motions in disk galaxies: application to NGC 2976. Astrophys. J. 664, 204–214 (2007).

    Article  ADS  Google Scholar 

  103. Simon, J. D., Bolatto, A. D., Leroy, A., Blitz, L. & Gates, E. L. High-resolution measurements of the halos of four dark matter-dominated galaxies: deviations from a universal density profile. Astrophys. J. 621, 757–776 (2005).

    Article  ADS  Google Scholar 

  104. Oman, K. A. et al. Non-circular motions and the diversity of dwarf galaxy rotation curves. Mon. Not. R. Astron. Soc. 482, 821–847 (2019).

    Article  ADS  Google Scholar 

  105. Lelli, F., Verheijen, M., Fraternali, F. & Sancisi, R. Dynamics of starbursting dwarf galaxies: I Zw 18. Astron. Astrophys. 537, A72 (2012).

    Article  ADS  Google Scholar 

  106. Elson, E. C., de Blok, W. J. G. & Kraan-Korteweg, R. C. Three-dimensional modelling of the H I kinematics of NGC 2915. Mon. Not. R. Astron. Soc. 415, 323–332 (2011).

    Article  ADS  Google Scholar 

  107. Gentile, G., Salucci, P., Klein, U. & Granato, G. L. NGC 3741: the dark halo profile from the most extended rotation curve. Mon. Not. R. Astron. Soc. 375, 199–212 (2007).

    Article  ADS  Google Scholar 

  108. van Zee, L., Skillman, E. D. & Salzer, J. J. Neutral gas distributions and kinematics of five blue compact dwarf galaxies. Astron. J. 116, 1186–1204 (1998).

    Article  ADS  Google Scholar 

  109. Roychowdhury, S., Chengalur, J. N., Begum, A. & Karachentsev, I. D. Thick gas discs in faint dwarf galaxies. Mon. Not. R. Astron. Soc. 404, L60–L63 (2010).

    Article  ADS  Google Scholar 

  110. Uson, J. M. & Matthews, L. D. H I Imaging observations of superthin galaxies. I. UGC 7321. Astron. J. 125, 2455–2472 (2003).

    Article  ADS  Google Scholar 

  111. Matthews, L. D. & Uson, J. M. H I imaging observations of superthin galaxies. II. IC 2233 and the blue compact dwarf NGC 2537. Astron. J. 135, 291–318 (2008).

    Article  ADS  Google Scholar 

  112. Sancisi, R., Fraternali, F., Oosterloo, T. & van der Hulst, T. Cold gas accretion in galaxies. Astron. Astrophys. 15, 189–223 (2008).

    ADS  Google Scholar 

  113. Marasco, A. et al. HALOGAS: the properties of extraplanar HI in disc galaxies. Astron. Astrophys. 631, A50 (2019).

    Article  Google Scholar 

  114. Kamphuis, P., Peletier, R. F., van der Kruit, P. C. & Heald, G. H. Warp or lag? The ionized and neutral hydrogen gas in the edge-on dwarf galaxy UGC 1281. Mon. Not. R. Astron. Soc. 414, 3444–3457 (2011).

    Article  ADS  Google Scholar 

  115. Melioli, C., Brighenti, F. & D’Ercole, A. Galactic fountains and outflows in star-forming dwarf galaxies: interstellar medium expulsion and chemical enrichment. Mon. Not. R. Astron. Soc. 446, 299–316 (2015).

    Article  ADS  Google Scholar 

  116. Dekel, A. & Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 303, 39–55 (1986).

    Article  ADS  Google Scholar 

  117. Schwartz, C. M. & Martin, C. L. A Keck/HIRES study of kinematics of the cold interstellar medium in dwarf starburst galaxies. Astrophys. J. 610, 201–212 (2004).

    Article  ADS  Google Scholar 

  118. Roychowdhury, S. et al. Atomic hydrogen, star formation and feedback in the lowest mass blue compact dwarf galaxies. Mon. Not. R. Astron. Soc. 426, 665–672 (2012).

    Article  ADS  Google Scholar 

  119. McQuinn, K. B. W., van Zee, L. & Skillman, E. D. Galactic winds in low-mass galaxies. Astrophys. J. 886, 74 (2019).

    Article  ADS  Google Scholar 

  120. Martin, C. L. The impact of star formation on the interstellar medium in dwarf galaxies. II. The formation of galactic winds. Astrophys. J. 506, 222–252 (1998).

    Article  ADS  Google Scholar 

  121. van Eymeren, J., Bomans, D. J., Weis, K. & Dettmar, R.-J. Outflow or galactic wind: the fate of ionized gas in the halos of dwarf galaxies. Astron. Astrophys. 474, 67–76 (2007).

    Article  ADS  Google Scholar 

  122. van Eymeren, J. et al. A kinematic study of the irregular dwarf galaxy NGC 4861 using H I and Hα observations. Astron. Astrophys. 505, 105–116 (2009).

    Article  ADS  Google Scholar 

  123. van Eymeren, J. et al. A kinematic study of the irregular dwarf galaxy NGC 2366 using H i and Hα observations. Astron. Astrophys. 493, 511–524 (2009).

    ADS  Google Scholar 

  124. Cresci, G. et al. The MUSE view of He 2-10: no AGN ionization but a sparkling starburst. Astron. Astrophys. 604, A101 (2017).

    Article  Google Scholar 

  125. Heckman, T. M., Alexandroff, R. M., Borthakur, S., Overzier, R. & Leitherer, C. The systematic properties of the warm phase of starburst-driven galactic winds. Astrophys. J. 809, 147 (2015).

    Article  ADS  Google Scholar 

  126. Chisholm, J., Tremonti, C. A., Leitherer, C. & Chen, Y. The mass and momentum outflow rates of photoionized galactic outflows. Mon. Not. R. Astron. Soc. 469, 4831–4849 (2017).

    Article  ADS  Google Scholar 

  127. McQuinn, K. B. W., Skillman, E. D., Heilman, T. N., Mitchell, N. P. & Kelley, T. Galactic outflows, star formation histories, and time-scales in starburst dwarf galaxies from STARBIRDS. Mon. Not. R. Astron. Soc. 477, 3164–3177 (2018).

    Article  ADS  Google Scholar 

  128. Tully, R. B. & Fisher, J. R. A new method of determining distance to galaxies. Astron. Astrophys. 500, 105–117 (1977).

    ADS  Google Scholar 

  129. Verheijen, M. A. W. The Ursa Major cluster of galaxies. V. H I rotation curve shapes and the Tully-Fisher relations. Astrophys. J. 563, 694–715 (2001).

    Article  ADS  Google Scholar 

  130. Lelli, F., McGaugh, S. S., Schombert, J. M., Desmond, H. & Katz, H. The baryonic Tully-Fisher relation for different velocity definitions and implications for galaxy angular momentum. Mon. Not. R. Astron. Soc. 484, 3267–3278 (2019).

    Article  ADS  Google Scholar 

  131. Lelli, F., McGaugh, S. S. & Schombert, J. M. The small scatter of the baryonic Tully-Fisher relation. Astrophys. J. 816, L14 (2016).

    Article  ADS  Google Scholar 

  132. Desmond, H., Katz, H., Lelli, F. & McGaugh, S. Uncorrelated velocity and size residuals across galaxy rotation curves. Mon. Not. R. Astron. Soc. 484, 239–244 (2019).

    ADS  Google Scholar 

  133. Posti, L., Fraternali, F., Di Teodoro, E. M. & Pezzulli, G. The angular momentum-mass relation: a fundamental law from dwarf irregulars to massive spirals. Astron. Astrophys. 612, L6 (2018).

    Article  ADS  Google Scholar 

  134. Mancera Piña, P. E., Posti, L., Fraternali, F., Adams, E. A. K. & Oosterloo, T. The baryonic specific angular momentum of disc galaxies. Astron. Astrophys. 647, A76 (2021).

    Article  ADS  Google Scholar 

  135. Posti, L. et al. The impact of the halo spin-concentration relation on disc scaling laws. Astron. Astrophys. 644, A76 (2020).

    Article  Google Scholar 

  136. Mancera Piña, P. E. et al. Robust H I kinematics of gas-rich ultra-diffuse galaxies: hints of a weak-feedback formation scenario. Mon. Not. R. Astron. Soc. 495, 3636–3655 (2020).

    Article  ADS  Google Scholar 

  137. Mancera Piña, P. E. et al. Off the baryonic Tully-Fisher relation: a population of baryon-dominated ultra-diffuse galaxies. Astrophys. J. 883, L33 (2019).

    Article  ADS  Google Scholar 

  138. Di Cintio, A. & Lelli, F. The mass discrepancy acceleration relation in a ΛCDM context. Mon. Not. R. Astron. Soc. 456, L127–L131 (2016).

    Article  ADS  Google Scholar 

  139. Desmond, H. The scatter, residual correlations and curvature of the SPARC baryonic Tully-Fisher relation. Mon. Not. R. Astron. Soc. 472, L35–L39 (2017).

    Article  ADS  Google Scholar 

  140. Garrido, O. et al. GHASP: an Hα kinematic survey of spiral and irregular galaxies - IV. 44 new velocity fields. Extension, shape and asymmetry of Hα rotation curves. Mon. Not. R. Astron. Soc. 362, 127–166 (2005).

    Article  ADS  Google Scholar 

  141. Lelli, F., Fraternali, F. & Verheijen, M. A scaling relation for disc galaxies: circular-velocity gradient versus central surface brightness. Mon. Not. R. Astron. Soc. 433, L30–L34 (2013).

    Article  ADS  Google Scholar 

  142. Erroz-Ferrer, S. et al. Hα kinematics of S4G spiral galaxies - III. Inner rotation curves. Mon. Not. R. Astron. Soc. 458, 1199–1213 (2016).

    Article  ADS  Google Scholar 

  143. Lelli, F. The inner regions of disk galaxies: a constant baryonic fraction? Galaxies 2, 292–299 (2014).

    Article  ADS  Google Scholar 

  144. Toomre, A. On the distribution of matter within highly flattened galaxies. Astrophys. J. 138, 385 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. Milgrom, M. Universal modified Newtonian dynamics relation between the baryonic and ‘dynamical’ central surface densities of disc galaxies. Phys. Rev. Lett. 117, 141101 (2016).

    Article  ADS  Google Scholar 

  146. Li, P., Lelli, F., McGaugh, S. & Schombert, J. Fitting the radial acceleration relation to individual SPARC galaxies. Astron. Astrophys. 615, A3 (2018).

    Article  ADS  Google Scholar 

  147. Keller, B. W. & Wadsley, J. W. ΛCDM is consistent with SPARC radial acceleration relation. Astrophys. J. 835, L17 (2017).

    Article  ADS  Google Scholar 

  148. Garaldi, E., Romano-Díaz, E., Porciani, C. & Pawlowski, M. S. Radial acceleration relation of Λ CDM satellite galaxies. Phys. Rev. Lett. 120, 261301 (2018).

    Article  ADS  Google Scholar 

  149. Ludlow, A. D. et al. Mass-discrepancy acceleration relation: a natural outcome of galaxy formation in cold dark matter halos. Phys. Rev. Lett. 118, 161103 (2017).

    Article  ADS  Google Scholar 

  150. Wu, X. & Kroupa, P. Galactic rotation curves, the baryon-to-dark-halo-mass relation and space-time scale invariance. Mon. Not. R. Astron. Soc. 446, 330–344 (2015).

    Article  ADS  Google Scholar 

  151. Tenneti, A. et al. The radial acceleration relation in disc galaxies in the MassiveBlack-II simulation. Mon. Not. R. Astron. Soc. 474, 3125–3132 (2018).

    Article  ADS  Google Scholar 

  152. Navarro, J. F. et al. The origin of the mass discrepancy-acceleration relation in ΛCDM. Mon. Not. R. Astron. Soc. 471, 1841–1848 (2017).

    Article  ADS  Google Scholar 

  153. Desmond, H. A statistical investigation of the mass discrepancy-acceleration relation. Mon. Not. R. Astron. Soc. 464, 4160–4175 (2017).

    Article  ADS  Google Scholar 

  154. Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983).

    Article  ADS  Google Scholar 

  155. Milgrom, M. A modification of the Newtonian dynamics: implications for galaxies. Astrophys. J. 270, 371–383 (1983).

    Article  ADS  Google Scholar 

  156. Milgrom, M. A modification of the Newtonian dynamics: implications for galaxy systems. Astrophys. J. 270, 384–389 (1983).

    Article  ADS  Google Scholar 

  157. Chae, K.-H. et al. Testing the strong equivalence principle: detection of the external field effect in rotationally supported galaxies. Astrophys. J. 904, 51 (2020).

    Article  ADS  Google Scholar 

  158. Famaey, B. & McGaugh, S. S. Modified Newtonian dynamics (MOND): observational phenomenology and relativistic extensions. Living Rev. Relativ. 15, 10 (2012).

    Article  ADS  Google Scholar 

  159. Koribalski, B. S. et al. WALLABY - an SKA Pathfinder HI survey. Astrophys. Space Sci. 365, 118 (2020).

    Article  ADS  Google Scholar 

  160. Duffy, A. R. et al. Predictions for ASKAP neutral hydrogen surveys. Mon. Not. R. Astron. Soc. 426, 3385–3402 (2012).

    Article  ADS  Google Scholar 

  161. de Blok, E. et al. The SKA view of the neutral interstellar medium in galaxies. Proc. Sci. https://doi.org/10.22323/1.215.0129 (2015).

  162. Adams, E. A. K. & Oosterloo, T. A. Deep neutral hydrogen observations of Leo T with the Westerbork Synthesis Radio Telescope. Astron. Astrophys. 612, A26 (2018).

    Article  ADS  Google Scholar 

  163. Laureijs, R. et al. Euclid definition study report. Preprint at https://arxiv.org/abs/1110.3193 (2011).

  164. LSST Science Collaboration. LSST Science Book, Version 2.0. Preprint at https://arxiv.org/abs/0912.0201 (2009).

  165. Józsa, G. I. G., Kenn, F., Klein, U. & Oosterloo, T. A. Kinematic modelling of disk galaxies. I. A new method to fit tilted rings to data cubes. Astron. Astrophys. 468, 731–774 (2007).

    Article  ADS  Google Scholar 

  166. Kamphuis, P. et al. Automated kinematic modelling of warped galaxy discs in large H I surveys: 3D tilted-ring fitting of H I emission cubes. Mon. Not. R. Astron. Soc. 452, 3139–3158 (2015).

    Article  ADS  Google Scholar 

  167. Read, J. I., Iorio, G., Agertz, O. & Fraternali, F. Understanding the shape and diversity of dwarf galaxy rotation curves in ΛCDM. Mon. Not. R. Astron. Soc. 462, 3628–3645 (2016).

    Article  ADS  Google Scholar 

  168. Verbeke, R., Papastergis, E., Ponomareva, A. A., Rathi, S. & De Rijcke, S. A new astrophysical solution to the Too Big To Fail problem. Insights from the MoRIA simulations. Astron. Astrophys. 607, A13 (2017).

    Article  Google Scholar 

  169. Merritt, D. Cosmology and convention. Stud. Hist. Philos. Mod. Phys. 57, 41–52 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  170. Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996).

    Article  ADS  Google Scholar 

  171. Papastergis, E., Giovanelli, R., Haynes, M. P. & Shankar, F. Is there a ‘too big to fail’ problem in the field? Astron. Astrophys. 574, A113 (2015).

    Article  ADS  Google Scholar 

  172. Papastergis, E. & Shankar, F. An assessment of the ‘too big to fail’ problem for field dwarf galaxies in view of baryonic feedback effects. Astron. Astrophys. 591, A58 (2016).

    Article  ADS  Google Scholar 

  173. Read, J. I., Iorio, G., Agertz, O. & Fraternali, F. The stellar mass-halo mass relation of isolated field dwarfs: a critical test of ΛCDM at the edge of galaxy formation. Mon. Not. R. Astron. Soc. 467, 2019–2038 (2017).

    ADS  Google Scholar 

  174. Katz, H. et al. Testing feedback-modified dark matter haloes with galaxy rotation curves: estimation of halo parameters and consistency with ΛCDM scaling relations. Mon. Not. R. Astron. Soc. 466, 1648–1668 (2017).

    Article  ADS  Google Scholar 

  175. Papastergis, E. & Ponomareva, A. A. Testing core creation in hydrodynamical simulations using the HI kinematics of field dwarfs. Astron. Astrophys. 601, A1 (2017).

    Article  ADS  Google Scholar 

  176. Li, P., Lelli, F., McGaugh, S. & Schombert, J. A comprehensive catalog of dark matter halo models for SPARC galaxies. Astrophys. J. 247, 31 (2020).

  177. Governato, F. et al. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature 463, 203–206 (2010).

    Article  ADS  Google Scholar 

  178. Di Cintio, A. et al. A mass-dependent density profile for dark matter haloes including the influence of galaxy formation. Mon. Not. R. Astron. Soc. 441, 2986–2995 (2014).

    Article  ADS  Google Scholar 

  179. Read, J. I., Agertz, O. & Collins, M. L. M. Dark matter cores all the way down. Mon. Not. R. Astron. Soc. 459, 2573–2590 (2016).

    Article  ADS  Google Scholar 

  180. Sanders, R. H. & McGaugh, S. S. Modified Newtonian dynamics as an alternative to dark matter. Ann. Rev. Astron. Astrophys. 40, 263–317 (2002).

    Article  ADS  Google Scholar 

  181. Milgrom, M. The MOND paradigm of modified dynamics. Scholarpedia 9, 31410 (2014); revision 196863 (2021).

  182. Skordis, C. & Złośnik, T. Gravitational alternatives to dark matter with tensor mode speed equaling the speed of light. Phys. Rev. D 100, 104013 (2019).

    Article  ADS  Google Scholar 

  183. Skordis, C. & Złośnik, T. New relativistic theory for modified Newtonian dynamics. Phys. Rev. Lett. 127, 161302 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  184. McGaugh, S. S. The imprint of spiral arms on the galactic rotation curve. Astrophys. J. 885, 87 (2019).

    Article  ADS  Google Scholar 

  185. Corbelli, E., Lorenzoni, S., Walterbos, R., Braun, R. & Thilker, D. A wide-field H i mosaic of Messier 31. II. The disk warp, rotation, and the dark matter halo. Astron. Astrophys. 511, A89 (2010).

    Article  ADS  Google Scholar 

  186. Corbelli, E., Thilker, D., Zibetti, S., Giovanardi, C. & Salucci, P. Dynamical signatures of a ΛCDM-halo and the distribution of the baryons in M 33. Astron. Astrophys. 572, A23 (2014).

    Article  ADS  Google Scholar 

  187. Kam, S. Z. et al. H i kinematics and mass distribution of Messier 33. Astron. J. 154, 41 (2017).

    Article  ADS  Google Scholar 

  188. Staveley-Smith, L., Kim, S., Calabretta, M. R., Haynes, R. F. & Kesteven, M. J. A new look at the large-scale H i structure of the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 339, 87–104 (2003).

    Article  ADS  Google Scholar 

  189. van der Marel, R. P. in The Local Group as an Astrophysical Laboratory Vol. 17 (eds Livio, M. & Brown, T. M.) 47–71 (Cambridge Univ. Press, 2006).

  190. Di Teodoro, E. M. et al. On the dynamics of the Small Magellanic Cloud through high-resolution ASKAP H I observations. Mon. Not. R. Astron. Soc. 483, 392–406 (2019).

    Article  ADS  Google Scholar 

  191. McQuinn, K. B. W. et al. The link between mass distribution and starbursts in dwarf galaxies. Mon. Not. R. Astron. Soc. 450, 3886–3892 (2015).

    Article  ADS  Google Scholar 

  192. Karachentsev, I. D., Makarov, D. I. & Kaisina, E. I. Updated nearby galaxy catalog. Astron. J. 145, 101 (2013).

    Article  ADS  Google Scholar 

  193. Catinella, B. et al. The GALEX Arecibo SDSS Survey - I. Gas fraction scaling relations of massive galaxies and first data release. Mon. Not. R. Astron. Soc. 403, 683–708 (2010).

    Article  ADS  Google Scholar 

  194. Hunter, D. A. et al. Little things. Astron. J. 144, 134 (2012).

    Article  ADS  Google Scholar 

  195. Elson, E. C., de Blok, W. J. G. & Kraan-Korteweg, R. C. The dark matter content of the blue compact dwarf NGC 2915. Mon. Not. R. Astron. Soc. 404, 2061–2076 (2010).

    ADS  Google Scholar 

  196. Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The circular velocity curve of the Milky Way from 5 to 25 kpc. Astrophys. J. 871, 120 (2019).

    Article  ADS  Google Scholar 

  197. Chemin, L., Carignan, C. & Foster, T. H I kinematics and dynamics of Messier 31. Astrophys. J. 705, 1395–1415 (2009).

    Article  ADS  Google Scholar 

  198. van der Marel, R. P. & Sahlmann, J. First Gaia Local Group dynamics: Magellanic Clouds proper motion and rotation. Astrophys. J. 832, L23 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Writing this Review would have not been possible without the many enlightening conversations with many colleagues over the years. In particular, I thank A. Concas, E. Corbelli, F. Fraternali, S. McGaugh, J. Schombert and P. Tozzi for their precious comments on a first draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Lelli.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Anastasia Ponomareva and Baerbel Koribalski for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lelli, F. Gas dynamics in dwarf galaxies as testbeds for dark matter and galaxy evolution. Nat Astron 6, 35–47 (2022). https://doi.org/10.1038/s41550-021-01562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01562-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing