Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ionized outflows from active galactic nuclei as the essential elements of feedback

Abstract

Outflows from active galactic nuclei (AGNs) are one of the fundamental mechanisms by which the central supermassive black hole interacts with its host galaxy. Detected in ≥50% of nearby AGNs, these outflows have been found to carry kinetic energy that is a large fraction of the AGN power, and thereby give ‘negative’ feedback to their host galaxies. To understand the physical processes that regulate them, it is important to have a robust estimate of their physical and dynamical parameters. In this Review Article, we summarize our current understanding of the physics of the ionized outflows detected via absorption in the ultraviolet and X-ray wavelength bands. We discuss the most relevant observations and our current knowledge and uncertainties in the measurements of the outflow parameters, as well as their origin and acceleration mechanisms. The commissioning and concept studies of large telescope missions with high-resolution spectrographs in ultraviolet/optical and X-rays along with rapid advancements in simulations offer great promise for discoveries in this field over the next decade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cartoon depicting the different ionized outflows detected in AGNs and their average physical parameters.
Fig. 2: The deep absorption features in the soft X-ray and UV spectra by ionized absorbers along the line of sight to the AGN.
Fig. 3: Some of the important discoveries in X-ray ionized absorbers made in the last decade.
Fig. 4: The high spectral resolution observations that will be made possible in the soft and hard X-ray energy bands by future telescopes, improving our understanding of the ionized outflows.

The Arcus Collaboration (a); DB/X-IFU (b).

Similar content being viewed by others

References

  1. Giustini, M. & Proga, D. A global view of the inner accretion and ejection flow around super massive black holes. Radiation-driven accretion disk winds in a physical context. Astron. Astrophys. 630, A94 (2019).

    Article  ADS  Google Scholar 

  2. Begelman, M. C. in Coevolution of Black Holes and Galaxies (ed. Ho, L. C.) 374–389 (Cambridge Univ. Press, 2004).

  3. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article  ADS  Google Scholar 

  4. Harrison, C. M. Impact of supermassive black hole growth on star formation. Nat. Astron. 1, 0165 (2017).

    Article  ADS  Google Scholar 

  5. Veilleux, S., Maiolino, R., Bolatto, A. D. & Aalto, S. Cool outflows in galaxies and their implications. Astron. Astrophys. Rev. 28, 2 (2020).

    Article  ADS  Google Scholar 

  6. Merritt, D. & Ferrarese, L. The Mσ relation for supermassive black holes. Astrophys. J. 547, 140–145 (2001).

    Article  ADS  Google Scholar 

  7. Hasinger, G., Miyaji, T. & Schmidt, M. Luminosity-dependent evolution of soft X-ray selected AGN. New Chandra and XMM-Newton surveys. Astron. Astrophys. 441, 417–434 (2005).

    Article  ADS  Google Scholar 

  8. Ueda, Y., Akiyama, M., Hasinger, G., Miyaji, T. & Watson, M. G. Toward the standard population synthesis model of the X-ray background: evolution of X-ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations. Astrophys. J. 786, 104 (2014).

    Article  ADS  Google Scholar 

  9. Manti, S., Gallerani, S., Ferrara, A., Greig, B. & Feruglio, C. Quasar UV luminosity function evolution up to z = 8. Mon. Not. R. Astron. Soc. 466, 1160–1169 (2017).

    Article  ADS  Google Scholar 

  10. Kulkarni, G., Worseck, G. & Hennawi, J. F. Evolution of the AGN UV luminosity function from redshift 7.5. Mon. Not. R. Astron. Soc. 488, 1035–1065 (2019).

    Article  ADS  Google Scholar 

  11. Shen, X. et al. The bolometric quasar luminosity function at z = 0–7. Mon. Not. R. Astron. Soc. 495, 3252–3275 (2020).

    Article  ADS  Google Scholar 

  12. Reynolds, C. S. & Fabian, A. C. Warm absorbers in active galactic nuclei. Mon. Not. R. Astron. Soc. 273, 1167–1176 (1995).

    Article  ADS  Google Scholar 

  13. Crenshaw, D. M., Kraemer, S. B. & George, I. M. Mass loss from the nuclei of active galaxies. Annu. Rev. Astron. Astrophys. 41, 117–167 (2003).

    Article  ADS  Google Scholar 

  14. McKernan, B., Yaqoob, T. & Reynolds, C. S. A soft X-ray study of type I active galactic nuclei observed with Chandra high-energy transmission grating spectrometer. Mon. Not. R. Astron. Soc. 379, 1359–1372 (2007).

    Article  ADS  Google Scholar 

  15. Laha, S., Guainazzi, M., Dewangan, G. C., Chakravorty, S. & Kembhavi, A. K. Warm absorbers in X-rays (WAX), a comprehensive high-resolution grating spectral study of a sample of Seyfert galaxies – I. A global view and frequency of occurrence of warm absorbers. Mon. Not. R. Astron. Soc. 441, 2613–2643 (2014).

    Article  ADS  Google Scholar 

  16. Blustin, A. J., Page, M. J., Fuerst, S. V., Branduardi-Raymont, G. & Ashton, C. E. The nature and origin of Seyfert warm absorbers. Astron. Astrophys. 431, 111–125 (2005).

    Article  ADS  Google Scholar 

  17. Hopkins, P. F. & Elvis, M. Quasar feedback: more bang for your buck. Mon. Not. R. Astron. Soc. 401, 7–14 (2010).

    Article  ADS  Google Scholar 

  18. Faucher-Giguère, C.-A. & Quataert, E. The physics of galactic winds driven by active galactic nuclei. Mon. Not. R. Astron. Soc. 425, 605–622 (2012).

    Article  ADS  Google Scholar 

  19. Zubovas, K. & King, A. Warm absorbers: supermassive black hole feeding and Compton-thick AGN. Mon. Not. R. Astron. Soc. 484, 1829–1837 (2019).

    Article  ADS  Google Scholar 

  20. Kaspi, S. et al. The properties and evolution of the highly ionized gas in MR 2251–178. Astrophys. J. 611, 68–80 (2004).

    Article  ADS  Google Scholar 

  21. Behar, E. et al. Multi-wavelength campaign on NGC 7469. I. The rich 640 ks RGS spectrum. Astron. Astrophys. 601, A17 (2017).

    Article  Google Scholar 

  22. Kaspi, S. et al. The ionized gas and nuclear environment in NGC 3783. I. Time-averaged 900 kilosecond Chandra grating spectroscopy. Astrophys. J. 574, 643–662 (2002).

    Article  ADS  Google Scholar 

  23. Lee, J. C. et al. The ionized absorber and nuclear environment of IRAS 13349+2438: multi-wavelength insights from coordinated Chandra HETGS, HST STIS, HET and Spitzer IRS. Mon. Not. R. Astron. Soc. 430, 2650–2679 (2013).

    Article  ADS  Google Scholar 

  24. Chartas, G., Brandt, W. N., Gallagher, S. C. & Garmire, G. P. CHANDRA detects relativistic broad absorption lines from APM 08279+5255. Astrophys. J. 579, 169–175 (2002).

    Article  ADS  Google Scholar 

  25. Chartas, G., Brandt, W. N. & Gallagher, S. C. XMM-Newton reveals the quasar outflow in PG 1115+080. Astrophys. J. 595, 85–93 (2003).

    Article  ADS  Google Scholar 

  26. Pounds, K. A., King, A. R., Page, K. L. & O’Brien, P. T. Evidence of a high-velocity ionized outflow in a second narrow-line quasar PG 0844+349. Mon. Not. R. Astron. Soc. 346, 1025–1030 (2003).

    Article  ADS  Google Scholar 

  27. Dadina, M., Cappi, M., Malaguti, G., Ponti, G. & de Rosa, A. X-ray absorption lines suggest matter infalling onto the central black-hole of Mrk 509. Astron. Astrophys. 442, 461–468 (2005).

    Article  ADS  Google Scholar 

  28. Markowitz, A., Reeves, J. N., Braito, V. & Fe, K. Emission and absorption in the XMM-EPIC spectrum of the Seyfert galaxy IC 4329a. Astrophys. J. 646, 783–800 (2006).

    Article  ADS  Google Scholar 

  29. Braito, V. et al. Relativistic iron K emission and absorption in the Seyfert 1.9 galaxy MCG-5-23-16. Astrophys. J. 670, 978–991 (2007).

    Article  ADS  Google Scholar 

  30. Cappi, M. et al. X-ray evidence for a mildly relativistic and variable outflow in the luminous Seyfert 1 galaxy Mrk 509. Astron. Astrophys. 504, 401–407 (2009).

    Article  ADS  Google Scholar 

  31. Tombesi, F. et al. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines. Astron. Astrophys. 521, A57 (2010).

    Article  Google Scholar 

  32. Giustini, M. et al. Variable X-ray absorption in the mini-BAL QSO PG 1126–041. Astron. Astrophys. 536, A49 (2011).

    Article  Google Scholar 

  33. Gofford, J. et al. A broad-band X-ray view of the warm absorber in radio-quiet quasar MR 2251–178. Mon. Not. R. Astron. Soc. 414, 3307–3321 (2011).

    Article  ADS  Google Scholar 

  34. Lobban, A. P. et al. Contemporaneous Chandra HETG and Suzaku X-ray observations of NGC 4051. Mon. Not. R. Astron. Soc. 414, 1965–1986 (2011).

    Article  ADS  Google Scholar 

  35. Dauser, T. et al. Spectral analysis of 1H 0707–495 with XMM-Newton. Mon. Not. R. Astron. Soc. 422, 1914–1921 (2012).

    Article  ADS  Google Scholar 

  36. Tombesi, F. et al. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers. Mon. Not. R. Astron. Soc. 430, 1102–1117 (2013).

    Article  ADS  Google Scholar 

  37. Weymann, R. J., Carswell, R. F. & Smith, M. G. Absorption lines in the spectra of quasi-stellar objects. Annu. Rev. Astron. Astrophys. 19, 41–76 (1981).

    Article  ADS  Google Scholar 

  38. Chen, Z.-F. & Pan, D.-S. Collective properties of quasar narrow associated absorption lines. Astrophys. J. 848, 79 (2017).

    Article  ADS  Google Scholar 

  39. Hamann, F. et al. A high-velocity narrow absorption line outflow in the quasar J212329.46 – 005052.9. Mon. Not. R. Astron. Soc. 410, 1957–1974 (2011).

    ADS  Google Scholar 

  40. Hamann, F. & Sabra, B. in AGN Physics with the Sloan Digital Sky Survey (eds. Richards, G. T. & Hall, P. B.) 203–212 (Astronomical Society of the Pacific, 2004).

  41. Gibson, R. R. et al. A catalog of broad absorption line quasars in Sloan Digital Sky Survey Data Release 5. Astrophys. J. 692, 758–777 (2009).

    Article  ADS  Google Scholar 

  42. Hewett, P. C. & Foltz, C. B. The frequency and radio properties of broad absorption line quasars. Astron. J. 125, 1784–1794 (2003).

    Article  ADS  Google Scholar 

  43. Knigge, C., Scaringi, S., Goad, M. R. & Cottis, C. E. The intrinsic fraction of broad-absorption line quasars. Mon. Not. R. Astron. Soc. 386, 1426–1435 (2008).

    Article  ADS  Google Scholar 

  44. Hamann, F. et al. Extreme-velocity quasar outflows and the role of X-ray shielding. Mon. Not. R. Astron. Soc. 435, 133–148 (2013).

    Article  ADS  Google Scholar 

  45. Ostriker, J. P., Choi, E., Ciotti, L., Novak, G. S. & Proga, D. Momentum driving: which physical processes dominate active galactic nucleus feedback? Astrophys. J. 722, 642–652 (2010).

    Article  ADS  Google Scholar 

  46. Ciotti, L., Ostriker, J. P. & Proga, D. Feedback from central black holes in elliptical galaxies. III. Models with both radiative and mechanical feedback. Astrophys. J. 717, 708–723 (2010).

    Article  ADS  Google Scholar 

  47. McCarthy, I. G. et al. The case for AGN feedback in galaxy groups. Mon. Not. R. Astron. Soc. 406, 822–839 (2010).

    ADS  Google Scholar 

  48. Higginbottom, N. et al. Line-driven disk winds in active galactic nuclei: the critical importance of ionization and radiative transfer. Astrophys. J. 789, 19 (2014).

    Article  ADS  Google Scholar 

  49. Leighly, K. M. Hubble Space Telescope STIS ultraviolet spectral evidence of outflow in extreme narrow-line Seyfert 1 galaxies. II. Modeling and interpretation. Astrophys. J. 611, 125–152 (2004).

    Article  ADS  Google Scholar 

  50. Richards, G. T. et al. Unification of luminous type 1 quasars through C IV emission. Astron. J. 141, 167 (2011).

    Article  ADS  Google Scholar 

  51. Laor, A. & Brandt, W. N. The luminosity dependence of ultraviolet absorption in active galactic nuclei. Astrophys. J. 569, 641–654 (2002).

    Article  ADS  Google Scholar 

  52. Murray, N., Chiang, J., Grossman, S. A. & Voit, G. M. Accretion disk winds from active galactic nuclei. Astrophys. J. 451, 498 (1995).

    Article  ADS  Google Scholar 

  53. Proga, D., Stone, J. M. & Kallman, T. R. Dynamics of line-driven disk winds in active galactic nuclei. Astrophys. J. 543, 686–696 (2000).

    Article  ADS  Google Scholar 

  54. Lundgren, B. F. et al. Broad absorption line variability in repeat quasar observations from the Sloan Digital Sky Survey. Astrophys. J. 656, 73–83 (2007).

    Article  ADS  Google Scholar 

  55. Filiz, Ak,N. et al. Broad absorption line variability on multi-year timescales in a large quasar sample. Astrophys. J. 777, 168 (2013).

    Article  ADS  Google Scholar 

  56. Vivek, M., Srianand, R. & Dawson, K. S. Rapidly varying Mg II broad absorption line in SDSS J133356.02 + 001229.1. Mon. Not. R. Astron. Soc. 481, 5570–5579 (2018).

    Article  ADS  Google Scholar 

  57. Arav, N. et al. Evidence that 50% of BALQSO outflows are situated at least 100 pc from the central source. Astrophys. J. 857, 60 (2018).

    Article  ADS  Google Scholar 

  58. Murray, N. & Chiang, J. Active galactic nuclei disk winds, absorption lines, and warm absorbers. Astrophys. J. Lett. 454, L105 (1995).

    ADS  Google Scholar 

  59. Elvis, M. A structure for quasars. Astrophys. J. 545, 63–76 (2000).

    Article  ADS  Google Scholar 

  60. Blandford, R. D. & Payne, D. G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982).

    Article  ADS  MATH  Google Scholar 

  61. Konigl, A. & Kartje, J. F. Disk-driven hydromagnetic winds as a key ingredient of active galactic nuclei unification schemes. Astrophys. J. 434, 446 (1994).

    Article  ADS  Google Scholar 

  62. Everett, J. E. & Ballantyne, D. R. Continuum acceleration of black hole winds. Astrophys. J. Lett. 615, L13–L16 (2004).

    Article  ADS  Google Scholar 

  63. Fukumura, K., Kazanas, D., Contopoulos, I. & Behar, E. Magnetohydrodynamic accretion disk winds as X-ray absorbers in active galactic nuclei. Astrophys. J. 715, 636–650 (2010).

    Article  ADS  Google Scholar 

  64. Fukumura, K. et al. Variable nature of magnetically driven ultra-fast outflows. Astrophys. J. Lett. 864, L27 (2018).

    Article  ADS  Google Scholar 

  65. Hamann, F., Herbst, H., Paris, I. & Capellupo, D. On the structure and energetics of quasar broad absorption-line outflows. Mon. Not. R. Astron. Soc. 483, 1808–1828 (2019).

    Article  ADS  Google Scholar 

  66. Crenshaw, D. M. et al. Intrinsic absorption lines in Seyfert 1 galaxies. I. Ultraviolet spectra from the Hubble Space Telescope. Astrophys. J. 516, 750–768 (1999).

    Article  ADS  Google Scholar 

  67. Kriss, G. A., Peterson, B. M., Crenshaw, D. M. & Zheng, W. A high signal-to-noise ultraviolet spectrum of NGC 7469: New support for reprocessing of continuum radiation. Astrophys. J. 535, 58–72 (2000).

    Article  ADS  Google Scholar 

  68. Kriss, G. A. et al. Multiwavelength studies of the Seyfert 1 galaxy NGC 7469 I. Far UV observations with FUSE. Astron. Astrophys. 403, 473–479 (2003).

    Article  ADS  Google Scholar 

  69. Kriss, G. A. et al. Multiwavelength campaign on Mrk 509. VI. HST/COS observations of the far-ultraviolet spectrum. Astron. Astrophys. 534, A41 (2011).

    Article  Google Scholar 

  70. Revalski, M. et al. Quantifying feedback from narrow line region outflows in nearby active galaxies. I. Spatially resolved mass outflow rates for the Seyfert 2 galaxy Markarian 573. Astrophys. J. 856, 46 (2018).

    Article  ADS  Google Scholar 

  71. Crenshaw, D. M., Fischer, T. C., Kraemer, S. B. & Schmitt, H. R. Feedback from mass outflows in nearby active galactic nuclei. II. Outflows in the narrow-line region of NGC 4151. Astrophys. J. 799, 83 (2015).

    Article  ADS  Google Scholar 

  72. Revalski, M. et al. Quantifying feedback from narrow line region outflows in nearby active galaxies. II. Spatially resolved mass outflow rates for the QSO2 Markarian 34. Astrophys. J. 867, 88 (2018).

    Article  ADS  Google Scholar 

  73. Das, V. et al. Mapping the kinematics of the narrow-line region in the Seyfert galaxy NGC 4151. Astron. J. 130, 945–956 (2005).

    Article  ADS  Google Scholar 

  74. Kriss, G. A. et al. Discovery of an ultraviolet counterpart to an ultrafast X-ray outflow in the quasar PG 1211+143. Astrophys. J. 853, 166 (2018).

    Article  ADS  Google Scholar 

  75. Danehkar, A. et al. The ultra-fast outflow of the Quasar PG 1211+143 as viewed by time-averaged Chandra grating spectroscopy. Astrophys. J. 853, 165 (2018).

    Article  ADS  Google Scholar 

  76. Kriss, G. A., Lee, J. C. & Danehkar, A. A Search for H I Lyα counterparts to ultrafast X-ray outflows. Astrophys. J. 859, 94 (2018).

    Article  ADS  Google Scholar 

  77. Reynolds, C. S. An X-ray spectral study of 24 type 1 active galactic nuclei. Mon. Not. R. Astron. Soc. 286, 513–537 (1997).

    Article  ADS  Google Scholar 

  78. Sako, M. et al. Complex resonance absorption structure in the X-ray spectrum of IRAS 13349+2438. Astron. Astrophys. 365, L168–L173 (2001).

    Article  ADS  Google Scholar 

  79. Laha, S., Guainazzi, M., Chakravorty, S., Dewangan, G. C. & Kembhavi, A. K. Warm absorbers in X-rays (WAX), a comprehensive high-resolution grating spectral study of a sample of Seyfert Galaxies – II. Warm absorber dynamics and feedback to galaxies. Mon. Not. R. Astron. Soc. 457, 3896–3911 (2016).

    Article  ADS  Google Scholar 

  80. Huerta, E. M. et al. A detailed analysis of the high resolution X-ray spectra of NGC 3516: Variability of the ionized absorbers. Astrophys. J. 793, 61 (2014).

    Article  ADS  Google Scholar 

  81. Ebrero, J., Kaastra, J. S., Kriss, G. A., de Vries, C. P. & Costantini, E. The X-ray/UV absorber in NGC 4593. Mon. Not. R. Astron. Soc. 435, 3028–3044 (2013).

    Article  ADS  Google Scholar 

  82. Krongold, Y. et al. XMM-Newton view of the multiphase warm absorber in Seyfert 1 Galaxy NGC 985. Astrophys. J. 690, 773–782 (2009).

    Article  ADS  Google Scholar 

  83. Ebrero, J. et al. Anatomy of the AGN in NGC 5548. VI. Long-term variability of the warm absorber. Astron. Astrophys. 587, A129 (2016).

    Article  Google Scholar 

  84. Chakravorty, S., Kembhavi, A. K., Elvis, M. & Ferland, G. Properties of warm absorbers in active galaxies: a systematic stability curve analysis. Mon. Not. R. Astron. Soc. 393, 83–98 (2009).

    Article  ADS  Google Scholar 

  85. Adhikari, T. P., Różańska, A., Hryniewicz, K., Czerny, B. & Behar, E. What shapes the absorption measure distribution in AGN outflows? Astrophys. J. 881, 78 (2019).

    Article  ADS  Google Scholar 

  86. Holczer, T., Behar, E. & Kaspi, S. Absorption measure distribution of the outflow in IRAS 13349+2438: direct observation of thermal instability? Astrophys. J. 663, 799–807 (2007).

    Article  ADS  Google Scholar 

  87. Nicastro, F., Fiore, F., Perola, G. C. & Elvis, M. Ionized absorbers in active galactic nuclei: the role of collisional ionization and time-evolving photoionization. Astrophys. J. 512, 184–196 (1999).

    Article  ADS  Google Scholar 

  88. King, A. L. et al. An extreme X-Ray disk wind in the black hole candidate IGR J17091–3624. Astrophys. J. Lett. 746, L20 (2012).

    Article  ADS  Google Scholar 

  89. Krongold, Y. et al. The compact, conical, accretion-disk warm absorber of the Seyfert 1 galaxy NGC 4051 and its implications for IGM-galaxy feedback processes. Astrophys. J. 659, 1022–1039 (2007).

    Article  ADS  Google Scholar 

  90. Kaastra, J. S. et al. Multiwavelength campaign on Mrk 509. VIII. Location of the X-ray absorber. Astron. Astrophys. 539, A117 (2012).

    Article  Google Scholar 

  91. Netzer, H. et al. The ionized gas and nuclear environment in NGC 3783. IV. Variability and modeling of the 900 kilosecond Chandra spectrum. Astrophys. J. 599, 933–948 (2003).

    Article  ADS  Google Scholar 

  92. Reeves, J. N. et al. A high resolution view of the warm absorber in the quasar MR 2251–178. Astrophys. J. 776, 99 (2013).

    Article  ADS  Google Scholar 

  93. Krongold, Y., Nicastro, F., Brickhouse, N. S., Elvis, M. & Mathur, S. Opacity variations in the ionized absorption in NGC 3783: a compact absorber. Astrophys. J. 622, 842–846 (2005).

    Article  ADS  Google Scholar 

  94. Kaastra, J. S. et al. A fast and long-lived outflow from the supermassive black hole in NGC 5548. Science 345, 64–68 (2014).

    Article  ADS  Google Scholar 

  95. Kriss, G. A. et al. Space telescope and optical reverberation mapping project. VIII. Time variability of emission and absorption in NGC 5548 based on modeling the ultraviolet spectrum. Astrophys. J. 881, 153 (2019).

    Article  ADS  Google Scholar 

  96. Longinotti, A. L. et al. The rise of an ionized wind in the narrow-line Seyfert 1 galaxy Mrk 335 observed by XMM-Newton and HST. Astrophys. J. 766, 104 (2013).

    Article  ADS  Google Scholar 

  97. Ebrero, J., Kriss, G. A., Kaastra, J. S. & Ely, J. C. Discovery of a fast, broad, transient outflow in NGC 985. Astron. Astrophys. 586, A72 (2016).

    Article  ADS  Google Scholar 

  98. Mehdipour, M. et al. Chasing obscuration in type-I AGN: discovery of an eclipsing clumpy wind at the outer broad-line region of NGC 3783. Astron. Astrophys. 607, A28 (2017).

    Article  Google Scholar 

  99. Fabian, A. C., Vasudevan, R. V. & Gandhi, P. The effect of radiation pressure on dusty absorbing gas around active galactic nuclei. Mon. Not. R. Astron. Soc. 385, L43–L47 (2008).

    Article  ADS  Google Scholar 

  100. Ishibashi, W., Fabian, A. C. & Maiolino, R. The energetics of AGN radiation pressure-driven outflows. Mon. Not. R. Astron. Soc. 476, 512–519 (2018).

    ADS  Google Scholar 

  101. Reynolds, C. S., Ward, M. J., Fabian, A. C. & Celotti, A. A multiwavelength study of the Seyfert 1 galaxy MCG-6-30-15. Mon. Not. R. Astron. Soc. 291, 403–417 (1997).

    Article  ADS  Google Scholar 

  102. Lee, J. C. et al. Revealing the dusty warm absorber in MCG -6-30-15 with the Chandra high-energy transmission grating. Astrophys. J. Lett. 554, L13–L17 (2001).

    Article  ADS  Google Scholar 

  103. Mehdipour, M. & Costantini, E. Probing the nature and origin of dust in the reddened quasar IC 4329A with global modelling from X-ray to infrared. Astron. Astrophys. 619, A20 (2018).

    Article  ADS  Google Scholar 

  104. Reeves, J. N., Sambruna, R. M., Braito, V. & Eracleous, M. Chandra detection of a parsec scale wind in the broad-line radio galaxy 3C 382. Astrophys. J. Lett. 702, L187–L190 (2009).

    Article  ADS  Google Scholar 

  105. Reeves, J. N., Gofford, J., Braito, V. & Sambruna, R. Chandra high-resolution spectroscopy of the circumnuclear matter in the broad-line radio galaxy 3C 445. Astrophys. J. 725, 803–815 (2010).

    Article  ADS  Google Scholar 

  106. Torresi, E. et al. First high-resolution detection of a warm absorber in the broad line radio galaxy 3C 382. Mon. Not. R. Astron. Soc. 401, L10–L14 (2010).

    Article  ADS  Google Scholar 

  107. Torresi, E., Grandi, P., Costantini, E. & Palumbo, G. G. C. Warm absorber energetics in broad-line radio galaxies. Mon. Not. R. Astron. Soc. 419, 321–329 (2012).

    Article  ADS  Google Scholar 

  108. Tombesi, F. et al. The complex circumnuclear environment of the broad-line radio galaxy 3C 390.3 Revealed by Chandra HETG. Astrophys. J. 830, 98 (2016).

    Article  ADS  Google Scholar 

  109. Mehdipour, M. & Costantini, E. Relation between winds and jets in radio-loud AGN. Astron. Astrophys. 625, A25 (2019).

    Article  ADS  Google Scholar 

  110. Neilsen, J. & Lee, J. C. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105. Nature 458, 481–484 (2009).

    Article  ADS  Google Scholar 

  111. Ponti, G. et al. Ubiquitous equatorial accretion disc winds in black hole soft states. Mon. Not. R. Astron. Soc. 422, L11–L15 (2012).

    Article  ADS  Google Scholar 

  112. Tombesi, F. et al. Evidence for ultra-fast outflows in radio-quiet active galactic nuclei. II. Detailed photoionization modeling of Fe K-shell absorption lines. Astrophys. J. 742, 44 (2011).

    Article  ADS  Google Scholar 

  113. Gofford, J. et al. The Suzaku view of highly ionized outflows in AGN – II. Location, energetics and scalings with bolometric luminosity. Mon. Not. R. Astron. Soc. 451, 4169–4182 (2015).

    Article  ADS  Google Scholar 

  114. Gofford, J. et al. The Suzaku view of highly ionized outflows in AGN – I. Statistical detection and global absorber properties. Mon. Not. R. Astron. Soc. 430, 60–80 (2013).

    Article  ADS  Google Scholar 

  115. Kazanas, D., Fukumura, K., Behar, E. & Contopoulos, I. in AGN Winds in Charleston (eds Chartas, G. et al.) 181–185 (Astronomical Society of the Pacific, 2012).

  116. Fukumura, K. et al. Magnetic origin of black hole winds across the mass scale. Nat. Astron. 1, 0062 (2017).

    Article  ADS  Google Scholar 

  117. Kraemer, S. B., Tombesi, F. & Bottorff, M. C. Physical conditions in ultra-fast outflows in AGN. Astrophys. J. 852, 35 (2018).

    Article  ADS  Google Scholar 

  118. Ghisellini, G., Haardt, F. & Matt, G. Aborted jets and the X-ray emission of radio-quiet AGNs. Astron. Astrophys. 413, 535–545 (2004).

    Article  ADS  Google Scholar 

  119. Tombesi, F. et al. Ultrafast outflows in radio-loud active galactic nuclei. Mon. Not. R. Astron. Soc. 443, 2154–2182 (2014).

    Article  ADS  Google Scholar 

  120. Nardini, E. et al. Black hole feedback in the luminous quasar PDS 456. Science 347, 860–863 (2015).

    Article  ADS  Google Scholar 

  121. Reeves, J. N. & Braito, V. A Momentum-conserving accretion disk wind in the narrow-line Seyfert 1 I Zwicky 1. Astrophys. J. 884, 80 (2019).

    Article  ADS  Google Scholar 

  122. Cresci, G. et al. Blowin’ in the wind: both “negative” and “positive” feedback in an obscured high-z quasar. Astrophys. J. 799, 82 (2015).

    Article  ADS  Google Scholar 

  123. Dadina, M. et al. Yet another UFO in the X-ray spectrum of a high-z lensed QSO. Astron. Astrophys. 610, L13 (2018).

    Article  ADS  Google Scholar 

  124. Pounds, K. A., Lobban, A., Reeves, J. N. & Vaughan, S. A dual velocity in the highly ionized wind of the luminous narrow line Seyfert galaxy PG 1211+143. Astron. Nachr. 337, 518–523 (2016).

    Article  ADS  Google Scholar 

  125. Reeves, J. N., Lobban, A. & Pounds, K. A. The variable fast soft X-ray wind in PG 1211+143. Astrophys. J. 854, 28 (2018).

    Article  ADS  Google Scholar 

  126. Longinotti, A. L. et al. X-ray high-resolution spectroscopy reveals feedback in a Seyfert galaxy from an ultra-fast wind with complex ionization and velocity structure. Astrophys. J. Lett. 813, L39 (2015).

    Article  ADS  Google Scholar 

  127. Gupta, A., Mathur, S. & Krongold, Y. Detection of high velocity outflows in the Seyfert 1 galaxy Mrk 590. Astrophys. J. 798, 4 (2015).

    Article  ADS  Google Scholar 

  128. Gupta, A., Mathur, S., Krongold, Y. & Nicastro, F. Discovery of relativistic outflow in the Seyfert galaxy Ark 564. Astrophys. J. 772, 66 (2013).

    Article  ADS  Google Scholar 

  129. Reeves, J. N. et al. Resolving the soft X-ray ultrafast outflow in PDS 456. Astrophys. J. 895, 37 (2020).

    Article  ADS  Google Scholar 

  130. Matzeu, G. A. et al. Evidence for a radiatively driven disc-wind in PDS 456? Mon. Not. R. Astron. Soc. 472, L15–L19 (2017).

    Article  ADS  Google Scholar 

  131. Pounds, K. A. et al. A high-velocity ionized outflow and XUV photosphere in the narrow emission line quasar PG1211+143. Mon. Not. R. Astron. Soc. 345, 705–713 (2003).

    Article  ADS  Google Scholar 

  132. Tombesi, F. et al. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy. Nature 519, 436–438 (2015).

    Article  ADS  Google Scholar 

  133. Hagino, K. et al. A disc wind interpretation of the strong Fe Kα features in 1H 0707–495. Mon. Not. R. Astron. Soc. 461, 3954–3963 (2016).

    Article  ADS  Google Scholar 

  134. Parker, M. L. et al. Revealing the ultrafast outflow in IRAS 13224–3809 through spectral variability. Mon. Not. R. Astron. Soc. 469, 1553–1558 (2017).

    Article  ADS  Google Scholar 

  135. Parker, M. L. et al. The response of relativistic outflowing gas to the inner accretion disk of a black hole. Nature 543, 83–86 (2017).

    Article  ADS  Google Scholar 

  136. Reeves, J. N. et al. Evidence for gravitational infall of matter onto the supermassive black hole in the quasar PG 1211+143? Astrophys. J. Lett. 633, L81–L84 (2005).

    Article  ADS  Google Scholar 

  137. Pounds, K. A., Nixon, C. J., Lobban, A. & King, A. R. An ultrafast inflow in the luminous Seyfert PG1211+143. Mon. Not. R. Astron. Soc. 481, 1832–1838 (2018).

    ADS  Google Scholar 

  138. McHardy, I. M., Koerding, E., Knigge, C., Uttley, P. & Fender, R. P. Active galactic nuclei as scaled-up Galactic black holes. Nature 444, 730–732 (2006).

    Article  ADS  Google Scholar 

  139. Feruglio, C. et al. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow. Astron. Astrophys. 583, A99 (2015).

    Article  Google Scholar 

  140. Mathur, S., Wilkes, B., Elvis, M. & Fiore, F. The X-ray and ultraviolet absorbing outflow in 3C 351. Astrophys. J. 434, 493 (1994).

    Article  ADS  Google Scholar 

  141. Arav, N. et al. Anatomy of the AGN in NGC 5548. II. The spatial, temporal, and physical nature of the outflow from HST/COS observations. Astron. Astrophys. 577, A37 (2015).

    Article  Google Scholar 

  142. Kaspi, S. et al. Discovery of narrow X-ray absorption Lines from NGC 3783 with the Chandra high energy transmission grating spectrometer. Astrophys. J. Lett. 535, L17–L20 (2000).

    Article  ADS  Google Scholar 

  143. Kaspi, S. et al. High-resolution X-ray spectroscopy and modeling of the absorbing and emitting outflow in NGC 3783. Astrophys. J. 554, 216–232 (2001).

    Article  ADS  Google Scholar 

  144. Gabel, J. R. et al. The ionized gas and nuclear environment in NGC 3783. II. Averaged Hubble Space Telescope/STIS and Far Ultraviolet Spectroscopic Explorer spectra. Astrophys. J. 583, 178–191 (2003).

    Article  ADS  Google Scholar 

  145. Kraemer, S. B. et al. Space Telescope Imaging Spectrograph Echelle observations of the Seyfert galaxy NGC 4151: physical conditions in the ultraviolet absorbers. Astrophys. J. 551, 671–686 (2001).

    Article  ADS  Google Scholar 

  146. Krongold, Y. et al. Toward a self-consistent model of the ionized absorber in NGC 3783. Astrophys. J. 597, 832–850 (2003).

    Article  ADS  Google Scholar 

  147. Pounds, K. A. & King, A. R. The shocked outflow in NGC 4051 – momentum-driven feedback, ultrafast outflows and warm absorbers. Mon. Not. R. Astron. Soc. 433, 1369–1377 (2013).

    Article  ADS  Google Scholar 

  148. Serafinelli, R. et al. Multiphase quasar-driven outflows in PG 1114+445. I. Entrained ultra-fast outflows. Astron. Astrophys. 627, A121 (2019).

    Article  Google Scholar 

  149. Veilleux, S. et al. Fast molecular outflows in luminous galaxy mergers: evidence for quasar feedback from Herschel. Astrophys. J. 776, 27 (2013).

    Article  ADS  Google Scholar 

  150. Cicone, C. et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 562, A21 (2014).

    Article  Google Scholar 

  151. Fiore, F. et al. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 601, A143 (2017).

    Article  Google Scholar 

  152. Laha, S. et al. A study of X-ray emission of galaxies hosting molecular outflows (MOX sample). Astrophys. J. 868, 10 (2018).

    Article  ADS  Google Scholar 

  153. Veilleux, S. et al. Quasar feedback in the ultraluminous infrared galaxy F11119+3257: connecting the accretion disk wind with the large-scale molecular outflow. Astrophys. J. 843, 18 (2017).

    Article  ADS  Google Scholar 

  154. Bischetti, M. et al. The gentle monster PDS 456. Kiloparsec-scale molecular outflow and its implications for QSO feedback. Astron. Astrophys. 628, A118 (2019).

    Article  Google Scholar 

  155. Smith, R. N., Tombesi, F., Veilleux, S., Lohfink, A. M. & Luminari, A. Discovery of an X-ray quasar wind driving the cold gas outflow in the ultraluminous infrared galaxy IRAS F05189–2524. Astrophys. J. 887, 69 (2019).

    Article  ADS  Google Scholar 

  156. Fukumura, K. et al. Magnetized disk winds in NGC 3783. Astrophys. J. 853, 40 (2018).

    Article  ADS  Google Scholar 

  157. Fukumura, K. et al. Magnetically driven accretion disk winds and ultra-fast outflows in PG 1211+143. Astrophys. J. 805, 17 (2015).

    Article  ADS  Google Scholar 

  158. Trueba, N. et al. A comprehensive Chandra study of the disk wind in the black hole candidate 4U 1630–472. Astrophys. J. 886, 104 (2019).

    Article  ADS  Google Scholar 

  159. Miller, J. M. et al. The magnetic nature of disk accretion onto black holes. Nature 441, 953–955 (2006).

    Article  ADS  Google Scholar 

  160. Miller, J. M. et al. The accretion disk wind in the black hole GRO J1655–40. Astrophys. J. 680, 1359–1377 (2008).

    Article  ADS  Google Scholar 

  161. Miller, J. M. et al. Powerful, rotating disk winds from stellar-mass black holes. Astrophys. J. 814, 87 (2015).

    Article  ADS  Google Scholar 

  162. Neilsen, J. & Homan, J. A hybrid magnetically/thermally driven wind in the black hole GRO J1655–40? Astrophys. J. 750, 27 (2012).

    Article  ADS  Google Scholar 

  163. Proga, D. & Kallman, T. R. Dynamics of line-driven disk winds in active galactic nuclei. II. Effects of disk radiation. Astrophys. J. 616, 688–695 (2004).

    Article  ADS  Google Scholar 

  164. King, A. R. & Pounds, K. A. Black hole winds. Mon. Not. R. Astron. Soc. 345, 657–659 (2003).

    Article  ADS  Google Scholar 

  165. King, A. R. Black hole outflows. Mon. Not. R. Astron. Soc. 402, 1516–1522 (2010).

    Article  ADS  Google Scholar 

  166. Dannen, R. C., Proga, D., Kallman, T. R. & Waters, T. Photoionization calculations of the radiation force due to spectral lines in AGNs. Astrophys. J. 882, 99 (2019).

    Article  ADS  Google Scholar 

  167. Nomura, M., Ohsuga, K. & Done, C. Line-driven disc wind in near-Eddington active galactic nuclei: decrease of mass accretion rate due to powerful outflow. Preprint at https://arxiv.org/abs/1811.01966 (2018).

  168. Mosallanezhad, A., Yuan, F., Ostriker, J. P., Zeraatgari, F. Z. & Bu, D.-F. Radiation-driven outflows in AGNs: revisiting feedback effects of scattered and reprocessed photons. Mon. Not. R. Astron. Soc. 490, 2567–2578 (2019).

    Article  ADS  Google Scholar 

  169. Pinto, C. et al. Thermal stability of winds driven by radiation pressure in super-Eddington accretion discs. Mon. Not. R. Astron. Soc. 491, 5702–5716 (2020).

    Article  ADS  Google Scholar 

  170. Begelman, M. C., McKee, C. F. & Shields, G. A. Compton heated winds and coronae above accretion disks. I. Dynamics. Astrophys. J. 271, 70–88 (1983).

    Article  ADS  Google Scholar 

  171. Woods, D. T., Klein, R. I., Castor, J. I., McKee, C. F. & Bell, J. B. X-Ray-heated coronae and winds from accretion disks: time-dependent two-dimensional hydrodynamics with adaptive mesh refinement. Astrophys. J. 461, 767 (1996).

    Article  ADS  Google Scholar 

  172. Krolik, J. H. & Kriss, G. A. Warm absorbers in active galactic nuclei: a multitemperature wind. Astrophys. J. 561, 684–690 (2001).

    Article  ADS  Google Scholar 

  173. Proga, D. & Kallman, T. R. On the role of the ultraviolet and X-ray radiation in driving a disk wind in X-ray binaries. Astrophys. J. 565, 455–470 (2002).

    Article  ADS  Google Scholar 

  174. Netzer, H. A thermal wind model for the X-ray outflow in GRO J1655–40. Astrophys. J. Lett. 652, L117–L120 (2006).

    Article  ADS  Google Scholar 

  175. Dorodnitsyn, A., Kallman, T. & Proga, D. An axisymmetric, hydrodynamical model for the torus wind in active galactic nuclei. II. X-ray-excited funnel flow. Astrophys. J. 687, 97–110 (2008).

    Article  ADS  Google Scholar 

  176. Luketic, S., Proga, D., Kallman, T. R., Raymond, J. C. & Miller, J. M. On the properties of thermal disk winds in X-ray transient sources: a case study of GRO J1655–40. Astrophys. J. 719, 515–522 (2010).

    Article  ADS  Google Scholar 

  177. Kallman, T. & Dorodnitsyn, A. Warm absorber diagnostics of AGN dynamics. Astrophys. J. 884, 111 (2019).

    Article  ADS  Google Scholar 

  178. Done, C., Tomaru, R. & Takahashi, T. Thermal winds in stellar mass black hole and neutron star binary systems. Mon. Not. R. Astron. Soc. 473, 838–848 (2018).

    Article  ADS  Google Scholar 

  179. Krolik, J. H. & Kriss, G. A. Observable properties of X-ray-heated winds in active galactic nuclei: warm reflectors and warm absorbers. Astrophys. J. 447, 512 (1995).

    Article  ADS  Google Scholar 

  180. Mizumoto, M., Done, C., Tomaru, R. & Edwards, I. Thermally driven wind as the origin of warm absorbers in AGN. Mon. Not. R. Astron. Soc. 489, 1152–1160 (2019).

    Article  ADS  Google Scholar 

  181. Dyda, S., Dannen, R., Waters, T. & Proga, D. Irradiation of astrophysical objects – SED and flux effects on thermally driven winds. Mon. Not. R. Astron. Soc. 467, 4161–4173 (2017).

    Article  ADS  Google Scholar 

  182. Tomaru, R., Done, C., Ohsuga, K., Nomura, M. & Takahashi, T. The thermal-radiative wind in low-mass X-ray binary H1743–322: radiation hydrodynamic simulations. Mon. Not. R. Astron. Soc. 490, 3098–3111 (2019).

    Article  ADS  Google Scholar 

  183. Waters, T. & Proga, D. Magnetothermal disc winds in X-ray binaries: poloidal magnetic fields suppress thermal winds. Mon. Not. R. Astron. Soc. 481, 2628–2645 (2018).

    ADS  Google Scholar 

  184. Ricci, C. et al. The close environments of accreting massive black holes are shaped by radiative feedback. Nature 549, 488–491 (2017).

    Article  ADS  Google Scholar 

  185. Kallman, T. & Bautista, M. Photoionization and high-density gas. Astrophys. J. Suppl. Ser. 133, 221–253 (2001).

    Article  ADS  Google Scholar 

  186. Ferland, G. J. et al. The 2017 release of Cloudy. Rev. Mex. Astron. Astrofis. 53, 385–438 (2017).

    ADS  Google Scholar 

  187. Waters, T., Proga, D., Dannen, R. & Kallman, T. R. Synthetic absorption lines for a clumpy medium: a spectral signature for cloud acceleration in AGN? Mon. Not. R. Astron. Soc. 467, 3160–3171 (2017).

    ADS  Google Scholar 

  188. Higginbottom, N., Proga, D., Knigge, C. & Long, K. S. Thermal disk winds in X-ray binaries: realistic heating and cooling rates give rise to slow, but massive, outflows. Astrophys. J. 836, 42 (2017).

    Article  ADS  Google Scholar 

  189. Dannen, R. C., Proga, D., Waters, T. & Dyda, S. Clumpy AGN outflows due to thermal instability. Astrophys. J. Lett. 893, L34 (2020).

    Article  ADS  Google Scholar 

  190. Moscibrodzka, M., Proga, D., Czerny, B. & Siemiginowska, A. Accretion of low angular momentum material onto black holes: radiation properties of axisymmetric MHD flows. Astron. Astrophys. 474, 1–13 (2007).

    Article  ADS  Google Scholar 

  191. Sim, S. A., Proga, D., Miller, L., Long, K. S. & Turner, T. J. Multidimensional modelling of X-ray spectra for AGN accretion disc outflows – III. Application to a hydrodynamical simulation. Mon. Not. R. Astron. Soc. 408, 1396–1408 (2010).

    Article  ADS  Google Scholar 

  192. Luminari, A. et al. The importance of special relativistic effects in modelling ultra-fast outflows. Astron. Astrophys. 633, A55 (2020).

    Article  Google Scholar 

  193. Bulbul, E. et al. X-Ray Properties of SPT-selected Galaxy Clusters at 0.2 < z < 1.5 Observed with XMM-Newton. Astrophys. J. 871, 50 (2019).

    Article  ADS  Google Scholar 

  194. Hitomi Collaboration. et al. Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi. Publ. Astron. Soc. Jpn 70, 12 (2018).

    ADS  Google Scholar 

  195. Moe, M., Arav, N., Bautista, M. A. & Korista, K. T. Quasar outflow contribution to AGN feedback: observations of QSO SDSS J0838+2955. Astrophys. J. 706, 525–534 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibasish Laha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Peer review information Nature Astronomy thanks Steve Kraemer, Francesco Tombesi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laha, S., Reynolds, C.S., Reeves, J. et al. Ionized outflows from active galactic nuclei as the essential elements of feedback. Nat Astron 5, 13–24 (2021). https://doi.org/10.1038/s41550-020-01255-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-01255-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing