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An integrated model for pre- and post-harvest aflatoxin
contamination in maize
Richard O.J.H. Stutt 1✉, Matthew D. Castle 1,2, Peter Markwell3, Robert Baker 3 and Christopher A. Gilligan 1

Aflatoxin contamination caused by colonization of maize by Aspergillus flavus continues to pose a major human and livestock health
hazard in the food chain. Increasing attention has been focused on the development of models to predict risk and to identify
effective intervention strategies. Most risk prediction models have focused on elucidating weather and site variables on the pre-
harvest dynamics of A. flavus growth and aflatoxin production. However fungal growth and toxin accumulation continue to occur
after harvest, especially in countries where storage conditions are limited by logistical and cost constraints. In this paper, building
on previous work, we introduce and test an integrated meteorology-driven epidemiological model that covers the entire supply
chain from planting to delivery. We parameterise the model using approximate Bayesian computation with monthly time-series
data over six years for contamination levels of aflatoxin in daily shipments received from up to three sourcing regions at a high-
volume maize processing plant in South Central India. The time series for aflatoxin levels from the parameterised model successfully
replicated the overall profile, scale and variance of the historical aflatoxin datasets used for fitting and validation. We use the model
to illustrate the dynamics of A. flavus growth and aflatoxin production during the pre- and post-harvest phases in different sourcing
regions, in short-term predictions to inform decision making about sourcing supplies and to compare intervention strategies to
reduce the risks of aflatoxin contamination.
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INTRODUCTION
A recent analysis of European Food Safety Agency (EFSA) data
reveals that up to 80% of the crops grown, stored and traded
worldwide are contaminated with detectable quantities of
secondary fungal metabolites classed as mycotoxins, with as
many as 20% over legal limits for contamination1. Among
mycotoxins, aflatoxin B1 (AFB1) is one of the most potent human
carcinogens2. Aflatoxin poisoning can occur directly, via skin
contact with contaminated field crops and stored produce, but
more commonly through ingestion, either of contaminated crop
products or secondary products, such as milk, from animals that
have consumed contaminated feed. Aflatoxin poisoning is
implicated in delayed development in children and severe liver
damage resulting in liver cancer3. Aspergillus flavus is a major
source of AFB1. It is a widely distributed, prolific soil saprotroph
that is also capable of infecting a wide range of crops, including
cereals, legumes and tree nuts.
Here we focus on aflatoxin risk to maize (Zea mays L.), where

levels of mycotoxin contamination in this widely traded commod-
ity are of increasing global concern. Specifically, we integrate
meteorologically driven epidemiological models for pre- and post-
harvest dynamics of A. flavus as a tool to predict, review and
manage risks along the entire maize supply chain from farm to
factory gate. We also introduce functions to simulate disease
management scenarios including post-harvest drying and filtering.
Maize is extensively cultivated around the world, with an annual

global production exceeding one billion metric tons, covering 200
million hectares (García-Lara & Serna-Saldivar, 20194). While up to
85% is traded for livestock feed, industrial products and biofuels
among developed economies5, it remains the primary income
source and an important component for nutrition in the diets of

many people in countries across Sub-Saharan Africa, Latin
America, and Asia6,7. Moreover, producers and consumers from
low- and middle-income countries in tropical and sub-tropical
regions are most at risk to mycotoxin exposure8. Climatic
conditions are optimal for the development of aflatoxins in these
regions and infrastructure and access to new technologies for
storing, transporting and processing grain are often lacking.
Maize is susceptible to infection and colonisation by A. flavus

and aflatoxin production during the pre-harvest and post-harvest
phases of crop growth and storage. Spores of A. flavus, in the form
of wind-dispersed conidia released from mycelium and sclerotia
on soil surfaces, infect the developing inflorescences of maize. The
fungus invades the grain, producing aflatoxin. Fungal growth and
aflatoxin production are strongly influenced throughout the pre-
and post-harvest phases by ambient temperature and moisture
availability9,10.
The current work was motivated by a practical problem

concerning high levels of rejection of shipments of maize due to
aflatoxin at a high-volume maize processing plant in Hyderabad
in India. In the region of interest at the time of the study, maize
was grown predominantly (~80%) by smallholder farmers, with
production being aggregated at regional markets for storage and
later sale to consumers. The shipments were primarily rejected
for exceeding the EU limit of 10 ppb for aflatoxin B1 in feed
products11 (Annex I Section II: Mycotoxins). The processing plant
was routinely rejecting 20% of monthly shipments rising to
40–55% in some years (Fig. 1). The high rejection rate underlined
the need for a model to analyse and predict risk of
contamination.
Most quantitative and modelling approaches to assessing the

risks of aflatoxin have focused on modelling within field pre-
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harvest dynamics12–18. It is widely recognised, however, that A.
flavus growth and AFB1 contamination continue throughout
prolonged periods of grain storage after harvest19. An initial audit
for India indicated a strong locational effect of where maize was
grown and then stored, often at multiple sites in the supply chain,
on subsequent levels of aflatoxin contamination. The dual
cropping seasons for Kharif and Rabi crops also affect the duration
and impact of storage on subsequent contamination. Accordingly,
in this paper, we develop and test a model that integrates pre-
and post-harvest dynamics of A. flavus and production of AFB1 to
assess risk of contamination. Building on the work of Battilani
et al.12. We produce a meteorologically-driven, spatially-structured
post-harvest model that is coupled with a meteorologically-driven
spatially-structured pre-harvest model that allows us to follow
batches of maize through the supply chain. Our integrated model
takes account of dual cropping seasons and multiple (three)
sourcing regions for maize crops within a supply chain in India
and is validated using data available from the maize processing
plant in Hyderabad.
The primary aim is to predict the level of aflatoxin seen at the

factory gate via a model of where and when the crop is grown,
harvested and stored with a view to optimising sourcing, and to
produce a framework that is adaptable for different countries and
meteorological environments. Highly spatially resolved pre- and
post-harvest data are scarce especially in low- and middle-income
countries. We therefore use reliable data for AFB1 contamination
on shipments reaching the factory gate for processing to
parameterise and validate the model. We assess the performance
of the model in simulating and predicting timeseries for A. flavus
contamination and aflatoxin levels in batches from different
sourcing regions during the cropping and storage phases of the
supply chain. Following parameterisation and validation, we
illustrate the use of the model as a tool for nowcasting (i.e.
short-term prediction of unknown current and near-future status)
for decision support and for scenario analysis to assess the
effectiveness of different intervention and sourcing strategies in
minimising the risk of aflatoxin contamination.

METHODS
Meteorological data
Meteorological data for temperature, humidity and rainfall in the
target regions were obtained from the UK Met Office’s Unified
Model20 for the years corresponding to the aflatoxin time series
data used for model training (2012–2015) and validation
(2016–2017). The meteorological data are provided with
3-hourly temporal and 10 km resolution. The temporal data were
linearly interpolated to 1-hourly temporal resolution.

Maize supply data for model parameterisation and validation
Data for aflatoxin concentration for daily shipments arriving at a
maize processing facility in Hyderabad, India operated by MARS
Inc were used for parameterization and validation. Batches of
maize are taken from storage in markets and sent as shipments to
the factory on a daily basis throughout the year. The maize is
shipped in 50–60 kg jute bags21 on trucks holding a mean of five
tons of maize, with an average of seven shipments delivered
per day. The maize is obtained from different commercial
suppliers who source their maize from distinct sourcing regions,
Bellary Guntur and Nizamabad, within Karnataka, Andhra Pradesh
and Telangana States, respectively, at different times of the year.
Upon receipt of a shipment of maize at the processing facility,
factory staff test samples of each shipment for aflatoxin content,
recording total aflatoxin concentration in ppb for all types
combined (B1, B2, G1 and G2) for each shipment. Aflatoxin time
series data for 2012–2015 recorded at the processing factory were
used to fit and parameterize the model. Aflatoxin time series data
for 2016–2017 were used for additional validation in which model
predicted aflatoxin concentration and monthly shipment rejection
rates are compared with historical data.
Maize is grown in India during two distinct (Rabi and Kharif)

growing seasons, generally on smallholder farms. Rabi crops are
planted between October and December and harvested between
March and May, whereas Kharif crops are planted between June
and August and harvested between November and January. After
harvesting and de-cobbing, maize kernels may be subject to

Fig. 1 Motivating data. a Monthly rejection rates at MARS processing facility due to sampled aflatoxin levels exceeding 10-ppb limit for
2012–2017 and monthly sampled aflatoxin distributions for 2012 (b) and 2013 (c). In the boxplots (b) and (c) the bold black line indicates the
median monthly sampled aflatoxin concentrations; the edges of the box are the 25th and 75th percentiles of monthly aflatoxin concentration;
the whiskers show the range of datapoints within 2.5 times the interquartile range from the box, with points beyond this range are shown as
individual circles.
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processing such as drying or filtering. After a short period of on-
farm storage the maize kernels are taken to local markets (Mandis)
within each region in 50–60 kg jute bags. Here the individual bags
of maize are bought and sold in batches, before being either sent
on immediately to a final destination (the Mars maize processing
factory in the present case) or being stored locally in warehouses
(some of which are climate controlled) until required. At each
stage in the life history of a single batch of maize (whilst on the
plant in the field, or within a bag in transit and storage), local
environmental conditions, notably temperature, humidity and
rainfall, affect the biological processes that govern A. flavus
growth rates and aflatoxin production rates.

Mechanistic modelling
We use a discrete-time compartment model to track A. flavus and
aflatoxin levels on maize within the pre-harvest, processing and
post-harvest components of an integrated model. The pre-harvest
model tracks the colonisation and growth of A. flavus and aflatoxin
accumulation in Kharif and Rabi maize crops on one thousand
simulated farms in each of the three representative sourcing
regions each season. After a harvest processing stage, the post-
harvest model then tracks the growth of A. flavus and aflatoxin
accumulation on the harvested grain on-farm and in-store,
allowing for the influence of cultural practices to reduce infection
as well as movement and storage of batches of maize in the
sourcing regions before arrival at the factory-gate in Hyderabad.
Hourly resolution meteorological data are used to drive growth
and susceptibility of maize, the growth of A. flavus and
accumulation of aflatoxin on farm and in store (Fig. 2).
A rectangular region (longitude 76.67° to 81.42° and latitude

14.20° to 19.70°) was chosen to cover the relevant sourcing areas

and the processing site. This region was divided into a grid of
3,762 “cells” (57 × 66), each of which was 1/12 × 1/12 decimal
degree, approximating to 10 km × 10 km in size.
Temperature, rainfall and relative humidity data were extracted for

the target regions in each cell at 3-hourly temporal resolution from
January 2011 to September 2017. The temporal data were linearly
temporally interpolated to 1-hourly resolution resulting in
~180,000 spatially explicit maps of the ambient environmental
conditions from which hourly maps were constructed as driving
variables for sporulation, liberation and germination rates of A. flavus,
and for relative growth and relative aflatoxin production rates.
Mapping the three supply regions onto the spatial grid gives 383
meteorologically unique cells where maize could be grown:
Nizamabad (223), Bellary (95) and Guntur (65). Each season, we seed
1000 fields with a random location and sowing date in each of the
three regions for a total of 6000 simulated fields seeded per year. The
fields are simulated on an hourly timestep through to a per-field
harvest date at which point the material is processed and then moved
to storage. Shipments in storage follow the dynamics of the hourly
post-harvest model until such time as they are either selected for
sourcing or discarded if not sourced after a year in storage. Shipments
which have reached storage are available for sourcing, and a random
weighted sample of ten of these are delivered to the factory each day
according to the regional sourcing profile for that month.

Pre-harvest model. Using the models described below we
simulate maize growth and A. flavus dynamics in individual fields
to generate a distribution of pre-harvest A. flavus levels for each
source region. In the absence of detailed information on exact
sowing and harvesting dates for the Rabi and Kharif crops we
assumed a uniform distribution of sowing dates: 16th October to
30th November for Rabi and 1st June and the 31st of July for Kharif.

Fig. 2 Regional map. a Map of the region of India used for sourcing by the processing factory (+), including the catchment areas and
locations of the markets (x) in the Nizamabad, Guntur and Bellary areas. The major city of Hyderabad (o) is located to the south of Nizamabad.
An example of the life history of a batch is indicated by the dotted line. The batch is initially planted in Guntur at the location marked with a
beige x. The batch is later harvested and moves to the Guntur market. Finally, after some time in storage the batch is moved to the processing
factory. Monthly profiles showing factory sourcing as proportion of shipments originating from each region and harvest for 2012 (b) and 2013
(c), See Supplementary Fig. 3 for full historical sourcing information.
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When initially planted, crops are introduced as free of A. flavus,
aflatoxin and spores. Maize crops are harvested after an individual
field accumulates 1500 growing degree days, at which point the
batch moves to the harvest processing stage of the model.
The pre-harvest model builds on Battilani et al.12 and adapts a

modified version of their algorithm using an explicit epidemiolo-
gical compartmental framework (Eq. 1) for the level of A. flavus
infection and aflatoxin production within a maize crop (Fig. 3). The
pre-harvest epidemiological model is described by discrete time
equations for five state variables (with dimensions of unit area of
crop). The state variables and parameters are updated hourly for
each separate simulated field, with time t+ 1 representing the state

one hour after time t.

A:flavusspores in soil Ntþ1 ¼ Nt þ αt � λtNt

A:flavusspores on silks Stþ1 ¼ St þ πtλtNt � γtSt
A:flavusinfections on maize Ftþ1 ¼ βpret Ft 1� Ftð Þ þ σtγtSt

Aflatoxin on maize Atþ1 ¼ At þ τtFt
Growing degree days GDDtþ1 ¼ GDDt þ θt

(1)

The principal parameters are listed in Table 1: see also
Supplementary Table 1 for a complete summary of the functions

Fig. 3 Model schematic. Schematic diagram describing the pre-harvest, processing and post-harvest integrated model for A. flavus growth and
aflatoxin production on a postulated batch of potential maize kernels in the supply chain: Nsoil represents the number of spores in the soil; Ssilk
represents the number of spores on the silks of the maize plants. The F compartment represents the level of A. flavus infection within the maize
kernels. The A compartment represents the amount of aflatoxin within the kernels. X represents the amount of A. flavus present on contaminant
material (fines) within bags. Subscripts H and S denote the values of the state variables at the time of harvest and entering storage, respectively.
The key parameters are summarised in Table 1. (See Supplementary Table 1 for full description of functions controlling dynamic changes). All
parameters and rates vary as appropriate depending on the hourly meteorological data at the current location of the maize shipment.
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used in the models. The pre-harvest model uses results from
Battilani et al.12, Giorni et al.22 and Kruit et al.23 to describe
meteorologically-driven sporulation and infection processes (e.g.
hourly sporulation rate as a function of local air temperature and
relative humidity). We follow Shaykewich24 and Yan & Hunt25 in
modelling maize growth using an accumulated thermal unit
(growing degree day, GDD) process, by calculating GDD
contributions from hourly temperature data. Internal water
activity, awi, is determined by the growth stage of the plant
(GDD). This, in turn, allows us to model maize susceptibility using
results from Siriacha26. These sources of information allow us to
calculate infection process rates, A. flavus growth rates and
susceptibility rates at an hourly resolution using the local
environmental data for the target regions.
Estimated pre-harvest parameters: Three key biological para-

meters (the absolute aflatoxin production rate (τ0), the absolute
pre-harvest A. flavus growth rate (βpre0 ) and the absolute primary A.
flavus sporulation rate (α0) (Table 1) could not be parameterised
from pre-existing datasets and these three parameters were
estimated by Approximate Bayesian Computation using the
aflatoxin times series data.

Harvest processing model. The harvest processing model incor-
porates common cultural control practices. We include drying,
filtering and bagging of maize kernels after harvest to improve
flexibility for scenario testing of alternative control scenarios
(Eq. 2, Fig. 3).

Filtering. At harvest, each batch of maize has an A. flavus (FH) and
an aflatoxin (AH) level of contamination calculated from the pre-
harvest model. Harvest and removal of maize cobs from plants
and separation of the kernels leads to contamination of the
kernels with small particles of potentially contaminated material
(leaves, stems, dust) termed “fines”. Removal of these fines by
filtering reduces mycotoxin contamination27. We introduce an
additional state variable, XH, where XH ¼ μFH; and the rate
parameter μ (Table 1) is included in the parameter set for
estimation from the time series data.
The efficacy of different filtering processes and machinery may

vary, and the capacity of any given mechanism to remove fines,
kernels infested with A. flavus, and kernels contaminated with
aflatoxin is unknown (but could be parameterised given appro-
priate data). We incorporated filtering into the model framework
through the inclusion of a parameter, ψ, corresponding to the
filtering efficacy of the process on the amount of A. flavus,
aflatoxin and fines. The process is described by the following
equations:

FS ¼ 1� ψð ÞFH
AS ¼ 1� ψð ÞAH

XS ¼ 1� ψð ÞXH

(2)

where FH and FS correspond to the level of A. flavus in a batch
before and after filtering.

Drying. Maize kernels are dried after harvest to reduce internal
moisture content levels below the threshold at which A. flavus can
both grow and produce aflatoxin10,28,29. Air drying by spreading
maize kernels on the ground for exposure to the sun is common in
low- and middle-income countries with mechanical drying in
more intensive systems. In the absence of detailed information,
the drying protection period (δ) was treated as a parameter to be
estimated from time series data for aflatoxin contamination at the
factory gate. We assume that drying interrupts fungal growth and
toxin production, hence the A. flavus bulk-up and aflatoxin rates
are set to zero in the model during estimated drying protection
period. See Discussion for alternative approaches.

Bagging. In India, maize is generally stored in jute bags after
harvesting and drying. The bags may be reused from season to
season without effective cleaning, and so provide an additional
source of inoculum at bagging time21. We incorporate contam-
ination from bags by allowing an additional amount of fines (XB) to
be added to the post-harvest contaminants (XH).
Estimated harvest processing parameters: For the purposes of

fitting the integrated model to the time series data for aflatoxin
levels at the factory gate (see below), we estimate the drying delay
period (δ), but in the absence of additional information we treat
the contaminant (μ), bag contamination (XB) and filtering (ψ) rates
as fixed at zero (Table 1).

Post-harvest model. The post-harvest model extends from
harvest to delivery to a factory, during which the material is in
storage either on the original farm or at a market. The post-harvest
model introduces the potential for controlled storage conditions,
in which the environmental conditions are modulated with
consequent effects on A. flavus and aflatoxin production. We
assume that harvest processing precedes the start of storage. Each
batch is therefore initially characterised by A. flavus, (FS), aflatoxin,
(AS) and contaminant (XS) concentrations.

Table 1. Summary of key parameters used in the integrated model for
pre-harvest, processing and post-harvest dynamics of A. flavus growth
and aflatoxin production.

Variable/
Parameter

Description Rate constant

Pre-harvest model: A. flavus growth and aflatoxin production

α(T, H) Sporulation rate α0 (Estimated)= 1.00 ×
10−5

λ(T, H) Liberation rate λ0= 1.0a

π(T, H) Deposition proportion π0= 1.0a

γ(T, H) Germination rate γ0= 1.0a

σ(GDD) Susceptibility σ0= 1.0

βpre (T, H) Pre-harvest A. flavus
growth rate

βpre0 (Estimated)= 6.31 ×
10−3

τ(T, H) Aflatoxin production rate τ0 (Estimated)= 5.06

θ(T) Thermal time Θ0= 1

Post-harvest model: Processing

μ Contaminant rate μ= 0b

ψ Filtering efficacy for
removal of contaminants

ψ= 0b

δ Drying protection period δ (Estimated)= 25.0

XB Bagging contamination
rate

XB= 0b

Post-harvest model: A. flavus growth and aflatoxin production

η(T, H) Contaminant colonisation
rate

η0= βpost0

βpost (T, H) Post-harvest A. flavus
growth rate

βpost0 (Estimated)= 1.12 ×
10−3

τ(T, H) Aflatoxin production rate τ0 (Estimated)= 5.06

Note that the rate constants λ0, π0, γ0 and σ0 are all set to 1.0 without loss
of generality as these values are absorbed into the fitted constant α0, while
parameters μ, ψ and XB were set to zero during parameter estimation.
Estimated parameters presented to three significant figures. All parameters
are driven by the hourly meteorological data at the current location of the
maize shipment, where T= T(t, x) and H=H(t, x) represent the hourly
temperature and humidity at time t and location x. (See Supplementary
Table 1 for full description of the non-linear functions controlling dynamic
changes).
aSet to 1 without loss of generality because the parameters are subsumed
into α0.
bSet to zero during fitting process.
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The post-harvest component of the model consists of two
processes. Firstly, tracking A. flavus and aflatoxin levels in stored
maize (using environmental weather data to drive the biological
processes). Secondly simulating the sourcing and sampling
process of maize at the factory gate in order to allow for matching
of the model output to the available aflatoxin time series data.
The post-harvest epidemiological model is described by the

following non-linear discrete time equations: (Eq. 3) parameters
are described in Table 1 with further detail in Supplementary
Table 1.

Xtþ1 ¼ Xt

Ftþ1 ¼ βpostt ðFt þ XtÞ 1� Ftð Þ
Atþ1 ¼ At þ τtFt

(3)

Colonisation and growth. Growth of A. flavus on the maize
kernels occurs from A. flavus present on the kernels (F) or from
other contaminant material (fines) within the bag (X). We assume a
similar functional form for the A. flavus growth rate as for pre-
harvest but with a different scaling parameter (βpost0 ). Here the
water activity (see Supplementary Table 1 for details), is
determined by ambient humidity levels, rather than the internal
moisture content of the plant and is taken to be the maximum of
the water activity due to humidity and dew point. See
Supplementary Table 1 for details. The parameter βpost0 is obtained
by fitting the integrated model to time series data.

Aflatoxin production. The post-harvest aflatoxin production rate
(τ) follows the form as for the pre-harvest model with water
activity now related to ambient humidity levels. The rate constant
τ0 is common between the pre- and post-harvest models, as the
fitting process determined separate rate constants provided no
significant benefit.

Storage and sourcing. The majority of maize in India is stored for
several months, potentially up to a year, in non-climate-controlled
spaces where it is exposed to ambient temperature and moisture
conditions, which permit continued growth of A. flavus and
aflatoxin production. However, some storage facilities are climate
controlled. Controlled storage conditions can affect temperature,
relative humidity and oxygen tension22,30. We therefore permit the
model to adjust the temperature and humidity as specified for the
storage where this is known. We allow for different storage
conditions over the supply chain, with material stored on the farm
and at market potentially having different storage conditions. In
India, maize is typically stored on the farm for the first 30 days
before being moved to the markets. The model reflects this, with
batches being stored on the farm for the first 30 days after
harvest, subject to the environmental conditions (and any
controlled storage conditions) at that location before being
moved to the market. Once arrived at the market, batches can
be selected by the sourcing process to be sent as shipments to the
factory.

Sourcing. Accurate simulation of aflatoxin levels in deliveries to
the factory requires knowledge of the source of shipments. Data
provided by Mars Inc for shipments received at the factory
indicated the source market for a given shipment, but data were
not available for the precise growing location of a given shipment.
Hence, the shipment data were summarised on a monthly basis to
determine the proportion of shipments originating from each
growing region and harvest season (Kharif vs Rabi) (Supplemen-
tary Fig. 3). The summary sourcing data are used during the
simulations, with shipments sourced from markets to the factory
on a daily basis and the integrated models for A. flavus and
aflatoxin production updated according to hourly meteorological
data Each day of the simulation, shipments matching the required

market and cropping season are selected randomly from the pool
of available shipments at markets in proportion to the sourcing
rates indicated in the historical data. See Supplementary Fig. 3 for
full details of the sourcing data.
The pooled sourcing information constrains our fitting and

validation comparing the distributions of aflatoxin values obtained
over monthly periods values between historical data and model
output, as while the hourly model generates a set of deliveries
each day we lack the precise information to compare these
simulated aflatoxin values to individual shipments.
Estimated post-harvest parameters: Two key biological para-

meters (the absolute aflatoxin production rate (τ0, a common
parameter with the pre-harvest model), and the absolute post-
harvest A. flavus growth rate (βpre0 ) could not be parameterised
from pre-existing datasets so were estimated by Approximate
Bayesian Computation (ABC) using the aflatoxin times series data.

Simulated sampling to estimate aflatoxin levels at the
factory gate. The aflatoxin time series data provided by MARS
Inc. were derived from multiple samples from the same shipment.
The high observed variance between successive samples from the
same batch indicated the need to simulate the sampling process
to capture this source of variability in order to make a fair
comparison between model and historical observations. Hence,
the model predicted aflatoxin values (A) were subjected to a
simulated sampling process to obtain a value (B) for comparison
with historical data by the following procedure:

B � exp λ ¼ 1
A

� �

where exp is the exponential distribution with mean 1=λ.

Parameter estimation
While some model parameters could be obtained from the
literature (see Table 1 and Supplementary Table 1), five
parameters were determined using ABC31. As there are no data
available for intermediate stages in the supply chain, we therefore
compared the model predictions with daily data recorded at the
processing plant. Fitting was performed on data for 2012–2015,
with 2016–2017 retained for validation. The key parameters to be
estimated are primary A. flavus sporulation rate (α), pre-harvest A.
flavus growth rate ðβpreÞ, post-harvest A. flavus growth rate ðβpostÞ,
aflatoxin production rate (τ) and drying protection duration (δ)
(Table 1).

Overview of fitting algorithm. We sample a set of model
parameters, η, independently from a constrained uniform prior
distribution for each of the five parameters. The model is run over
a given time range (2012–2015, the “fitting period”) with these
parameters and a time series of daily delivery aflatoxin levels is
generated. The model delivery aflatoxin time series is aggregated
by month and the 75th percentile of the sampled aflatoxin levels
are compared with the aggregated monthly observed data for
aflatoxin levels using the following fitting metric, E.

EðηÞ ¼ 1
n

X
months i

in fitting

period

ffiffiffiffiffi
Oi

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
MiðηÞ

p� �2

Where Oi and MiðηÞ are the 75th percentile of aflatoxin values for
month I for the observed data and model predictions (given
parameters η), respectively, and n is the number of months in the
fitting period. Note that as the model is stochastic, multiple
realisations with the same parameters (η) give different results,
and thus a distribution of values for E ηð Þ. The square root
transformation was chosen for variance stabilising properties.
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The posterior distribution was generated from 750,000 para-
meter samples, accepting the top 1% of parameter samples
according to the fitting metric, and rejecting the remainder. The
parameter space is then cut into 5-d boxes and the likelihood for
parameter values within each box is calculated as the number of
acceptances out of the total number of samples performed in that
box. Given the uniform prior, this acceptance rate is then taken as
the posterior probability distribution, shown in Supplementary Fig.
1. Further details are given in Supplementary Information section
Model Parameter Estimation.
The values of epidemiological parameters selected from the

posterior distribution for use in the model are recorded in Table 1.

Model validation. The fitted model was validated against data for
the years 2016–2017 (the “validation period”). We calculate
descriptive statistics (monthly median aflatoxin concentration
and monthly average shipment rejection rate) to characterise the
model performance for the validation period relative to the fitting
period. The parameterised model outputs for predicted monthly
median aflatoxin concentration and shipment rejection rates are
compared with the respective historical data. Each month the
model predictions are classified as “Low”, “Accurate” or “High”
depending on the performance of the model relative to the
historic data. The “Accurate” classification criteria are model
predicted monthly median aflatoxin concentration within ± 4ppb
of the historical monthly median aflatoxin concentration, and
model predicted monthly rejection rate within ± 10% of historical
monthly rejection rate. These classifications are performed for the
fitting (2012–2015), validation (2016–2017) and entire (2012–2017)
datasets. Numeric results are presented in Tables 2 and 3 as well
as graphically in Fig. 4c.

RESULTS
ABC parameter estimation
Approximate Bayesian computation allowed estimation of five key
epidemiological parameters for the integrated pre- and post-
harvest model, using data for aflatoxin levels in batches arriving at
the processing factory between 2012 and 2015 (Table 1;

Supplementary Fig. 1). The fitting established plausible bounds
on all parameters. The posterior distribution for the drying
protection duration (δ) was particularly well defined within an
estimated range of 10–35 days independent of other parameter
values. There are trade-offs amongst certain parameter posterior
distributions with correlations between the primary sporulation
rate (α) and the pre-harvest bulk up rate (βpre) as well as the
primary sporulation rate (α) and the toxin production rate (τ)
(Supplementary Fig. 1). These correlations are consistent with the
lack of observational data for A. flavus levels throughout the
supply chain, other than for sourcing regions. Nevertheless, by
sampling from the combined posterior distributions it is possible
to predict final aflatoxin levels accurately.

The integrated model for pre- and post-harvest dynamics
The integrated model replicated broad trends in the time-series
for the median (Fig. 4a) and interquartile range (Fig. 4b) aflatoxin
levels compared with the observed data, and the model
correspondence to historical data is consistent across the fitting
(pre-2016) and validation (2016–2017) time ranges. The model
predicts the magnitudes and timings of annual peaks as well as
monthly fluctuations in aflatoxin levels (Fig. 4a, b). The rejection
rates predicted by the model are similar to the observed rejection
rates and follow the same annual cycle of peaks and troughs (Fig.
4c). In terms of predicting the highest peaks in the data, the model
is accurate with the highest peaks in 2013 and 2015, but
overestimates in 2012 and underestimates in 2014. The distribu-
tion of model outcomes was also capable of replicating seasons
with low median but high variability in aflatoxin levels such as
2016, one of the validation years (Fig. 4b: see also Supplementary
Figs. 2, 4 for a detailed comparison of model outputs against
historical observations including variance.) Also of note is that
while there are discrepancies between the median of a single
realisation of the model and the data median, the 95% credible
interval for the model encompasses the median of the entire data
set (see Supplementary Fig. 7).
The model performance in matching monthly median aflatoxin

levels is summarised in Table 2. Monthly median aflatoxin levels
for the model were classified as: Accurate if they were within

Table 2. Descriptive statistics of model performance: median aflatoxin.

Dataset Model performance

Low (<-4ppb) Accurate (±4ppbÞ High (>+4ppb)

Fitting period (2012–2015) 4.7% 83.7% 11.6%

Validation period (2016–2017) 0.0% 85.7% 14.3%

Total period (2012–2017) 3.1% 84.4% 12.5%

Deliveries from the hourly model within each month classified as Low, Accurate, or High if the model predicted median aflatoxin levels is more than 4 ppb
below, within 4 ppb of or more than 4 ppb above, respectively, relative to the historical observed median aflatoxin level. The table summarises the proportion
of months with each classification for the respective dataset.

Table 3. Descriptive statistics of model performance: monthly rejection rates.

Dataset Model performance

Low (<10%) Accurate (± 10%Þ High (>10%)

Fitting period (2012–2015) 9.3% 51.2% 39.5%

Validation period (2016–2017) 9.5% 52.4% 38.1%

Total period (2012–2017) 9.4% 51.6% 39.0%

Deliveries computed from the hourly model within each month classified as Low, Accurate, or High if the model predicted monthly rejection rate is more than
10% below, within 10% of or more than 10% above, respectively, relative to the historical observed monthly rejection rate. The table summarises the
proportion of months with each classification for the respective dataset.
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± 4ppb of the observed monthly median aflatoxin concentration,
Low if 4 ppb or more below, and High if 4 ppb or more above. The
model performance was consistent across the data for the training
period (2012–15) used for fitting and the validation period
(2016–17), giving an accuracy of approximately 85% for being
within ± 4ppb of the validation data. The model is more likely to
overpredict than underpredict median aflatoxin levels, indicating
the model is less likely to underpredict a period of high risk (false
negative) than to overestimate risk during low-risk times (false
positive).
Predicted rejection rates were obtained by assessing the

monthly proportion of aflatoxin values from model outputs that
exceeded the 10-ppb threshold (Fig. 4c). The rejection rates follow
the broad trends of historical rejection rates, capturing periods of
high rejection rates, although the model does typically predict
slightly higher rejection rates in periods that were historically low.
The model performance in matching the monthly shipment
rejection rates at the processing factory is summarised in Table 3.
Monthly rejection rates for the model were classified as: Accurate
if they were within ± 10% of the observed monthly rejection rate,
Low if >10% below, and High if >10% above. The model
performance was consistent across the data for the training
period (2012–15) used for fitting and the validation period
(2016–17), giving an accuracy of approximately 50% for being
within ± 10% of the validation data. The model is significantly
more likely to overpredict than underpredict rejection rates,
indicating the model is much less likely to underpredict a period
of high risk (false negative) than to overestimate risk during low-
risk times (false positive). Overall, model overestimation of
rejection rates is driven predominantly by periods when the
historical rejection rates were low (Fig. 4b: see also Supplementary
Fig. 5 for equivalent data aggregated to quarterly intervals and
Supplementary Fig. 6 for a scatter plot comparison of monthly
model and historical rejection rates.)
The spatial and temporal variability of the suitability for A. flavus

growth and aflatoxin production in the region containing the
sourcing regions for the Hyderabad processing plant is illustrated
in Fig. 5. Note the different scales for the monthly and annual
plots, with peak monthly average suitability being approximately
twice that of peak annual average suitability. The spatial
patterning of suitability areas of significantly higher risk on both
annual and monthly timescales. The annual averages for 2014
highlight the coastal region near Guntur as a high-risk area for
both A. flavus (Fig. 5a) and aflatoxin production (Fig. 5b). While
there are spatial trends in suitability, there is significant variability
in suitability over different time intervals and durations, with the
possibility of periods of high risk over short time intervals in
locations not identified from annual averages. In particular,
September 2014, which had the highest monthly average A.
flavus growth suitability (Fig. 5c) for that year, shows quite
markedly different spatial patterning from the annual average (Fig.
5a). During September 2014, our results indicate the most suitable
areas for A. flavus growth and aflatoxin production are inland,
away from the coast, while the annual average suitability is mainly
concentrated along the coast near Guntur. This variability high-
lights the necessity of considering both the location as well as the
time at which maize is grown and stored when assessing aflatoxin
risk. The areas suitable for aflatoxin production are typically a
subset of those suitable for A. flavus growth, reflecting the
assumption that conditions for aflatoxin production follow the
same form as A. flavus growth with stricter constraints (Supple-
mentary Table 1: see also Supplementary Fig. 9 for other years and
months).

Fig. 4 Comparison of model predicted and observed aflatoxin
levels in shipments received at the maize processing plant in
Hyderabad. Data were received from Kharif and Rabi crops grown in
up to three sourcing regions (Bellary, Guntur and Nizamabad) during
2012–2017. The data from the hourly resolution model were pooled
into monthly distributions of aflatoxin values, with (a) the median
and (b) the 25th percentile, median and 75th percentile of the
monthly aflatoxin values shown for the model and the median for
historical observations. The 10-ppb aflatoxin rejection threshold is
marked by a horizontal dashed line. c Comparison of model
predicted and historically observed monthly rejection rates for
shipments at the factory gate. The light grey shading indicates
where the model is classified as too high (over 10% above the
observed rejection rate) and the dark grey shading where the model
is classified as too low (over 10% below the observed rejection rate).
The divide between the periods used for fitting and validation data
is denoted by the green vertical line. The hourly model generates a
simulated life history of between one and eleven thousand hours
from planting to delivery for each of the ~21,000 simulated
shipments delivered in this time range.
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Application of the model—A. flavus and aflatoxin profiles
during the cropping and storage phases of supply chain
The model can be used to gain an understanding of the behaviour
of the overall system, with insight into predicted levels of A. flavus
and aflatoxin in batches over time from planting through to
storage (Fig. 6). For clarity, we focus on a single cropping season,
the 2012 Kharif harvest, and show three individual batches from

each of the three sourcing regions; however, the same analysis
could be performed on any set of batches from any time periods
and locations.
The model outputs indicate a consistent trend amongst

sourcing regions with A. flavus colonisation increasing rapidly
during the maize growing season (June–September 2012) up till
harvest, after which substantial A. flavus growth occurs during

Fig. 5 Maps for model predicted average hourly relative A. flavus growth rate (βpost=βpost0 ) and relative aflatoxin production rate (τ/τ0) in
the area covering the three sourcing regions in India in 2014. Panels (a) and (b) show the annual average of 8,760 hourly relative A. flavus
growth and aflatoxin production rates for 2014, respectively. Monthly averages for 720 hourly relative A. flavus growth and aflatoxin
production rates in September 2014 are shown in (c) and (d), respectively.
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storage (Fig. 6a). Aflatoxin levels increase over time, with most
aflatoxin production occurring in the storage phase and very
significant increases when left in storage for a long time (Fig. 6b).
In the Kharif cropping season using the historic weather data for
2012, the Nizamabad region consistently shows the highest A.
flavus levels both pre- and post-harvest, followed by Guntur and
then Bellary. We note while the general trend is for batches from
the Bellary region to have lower A. flavus and aflatoxin levels than
batches from other regions, one batch in Bellary establishes itself
during pre-harvest as significantly more contaminated with A.
flavus. During storage the A. flavus levels in this batch continue to
grow and remain the highest out of all in the tracked batches.
Aflatoxin levels within this batch are initially the highest out of all
tracked batches, however, despite the high A. flavus levels,

aflatoxin concentration after a year in storage is lower than four of
the nine tracked batches as conditions at the market storage
location are not as conducive as at other markets.
The different environmental conditions within and between

regions can lead to significant differences and divergences in A.
flavus and aflatoxin levels over time. While batches are dispersed
over the region at different farms during the pre-harvest maize
growing phase, batches within a region can be subject to different
environmental conditions, allowing for a range of different batch
statuses by the time of entering storage. Once in storage, batches
stored in the same market location will be subject to the same
environmental conditions, and hence follow similar trends there-
after. Higher A. flavus levels at time of entering storage led to
higher A. flavus growth rates within storage, and these A. flavus

Fig. 6 Per shipment time courses. Hourly time course for 11,700, hours of (a) A. flavus colonisation and (b) cumulative aflatoxin production for
three selected batches of maize in each of the three sourcing regions, Bellary, Guntur and Nizamabad for the 2012 Kharif growing season with
storage extending into 2013.
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levels are the drivers of aflatoxin production during conducive
conditions in storage. It is important to note that while the pre-
harvest phase does not directly produce as much aflatoxin as
long-term storage, it is the final pre-harvest state of a batch
determines the initial state in storage, and thus how much
aflatoxin will be produced if suitable conditions occur. In addition,
the pre-harvest condition is important for accurate predictions of
aflatoxin levels in batches delivered after a short period of storage.
In addition to delivering insight into the life history of individual
batches, the model can also be used to look at regional trends in
distributions of A. flavus and aflatoxin over many years
(Supplementary Fig. 8).

Application of the model - Nowcasting for decision support
Model predictions can be used for nowcasting to help inform
decisions on sourcing using a combination of currently available
and historic data for sourcing regions (Fig. 7). For this scenario, we
consider a sourcing manager at a major consumer of maize as a
hypothetical user of the model in April 2017 (dotted vertical line).
The user has observed an increase in rejection rates from the
Nizamabad Kharif 2016 shipments during April 2017 (red line). The
model indicates that at this point median aflatoxin levels in these
stored batches are reaching the 10-ppb rejection threshold. With
the model, the user can see likely trends using the predictions for
previous years as context. The user would observe that this season
is now trending with the worst of the previous four years. Using
the previous four years (black lines) as a guide, aflatoxin levels
remain similar for another month, but within two months would
be predicted to have increased substantially. Based upon this
information, the user may decide to source from another crop
within at most two months, in order to avoid significantly
increasing rejection rates. The dashed red line, which shows the
model predictions for the progression of aflatoxin levels after the
decision point (Fig. 7), is given for reference. It would not be
available to a user at the time of making the decision beyond the
availability of future forecast weather data; however, the recent
historical ensemble can always be used as a stand in for future
trends and variability at a given location. This information would
provide value in diverse ways to users at different points in the
supply chain: for example, a policymaker could decide when it is

necessary to encourage food imports or release food security
stockpiles to avoid malnutrition or food price shocks.

Application of the model: scenario analysis
The model can be used to simulate and analyse the effects of
potential interventions to reduce the risks of contamination. We
examine the effects of filtration at harvest time (Fig. 8a), controlled
storage (Fig. 8b) and alternative regional sourcing arrangements
(Fig. 8c) on the time profile of aflatoxin risk observed at the factory
gate. For the scenarios in Fig. 8a, b), we assume that the
interventions are applied uniformly within all markets and
sourcing occurs as historically. For the alternative sourcing regions
scenario (Fig. 8c) there are no interventions beyond the changes
to regional sourcing profiles. For consistency, the analyses
compare interventions with a baseline involving no intervention.
We note that the model can be used to examine any combination
of interventions, however for brevity we restrict the analyses here
to single factors.
The improved post-harvest filtration scenarios show substantial

reductions in aflatoxin levels at the factory gate, with increasing
impact as the filtration effectiveness increases (Fig. 8a). Filtration
to remove contaminants is most effective when aflatoxin levels
are highest, with proportionately lesser effects for lower aflatoxin
levels. Due to the filtration decreasing both A. flavus and aflatoxin
levels proportional to filtration effectiveness, the overall effects on
the time profile of factory gate aflatoxin levels are roughly linear
(Fig. 8a). Without additional experimental data, it is not known
how practically feasible it is to achieve the levels of filtration
corresponding to the parameters chosen here.
Controlled storage scenarios also indicate significant benefits in

reducing the levels of aflatoxin at the factory gate, with increasing
effect as temperature is decreased below ambient conditions (Fig.
8b). The cooled storage examined here simulates a cooling system
with limited effectiveness, which is able to reduce temperatures
by a fixed amount below ambient temperatures, but not capable
of maintaining a fixed temperature. In contrast to filtration,
cooling of storage has a non-linear effect, with 5 C temperature
reductions having a proportionately greater effect than 10 C,
albeit 10 C dampens fluctuations in the median response
compared with the ambient and 5 C scenarios. However, in some

Fig. 7 Decision support. Predicted median levels of aflatoxin in simulated batches from the hourly model stored for the Nizamabad Kharif
2016 crop (red) from harvest in August 2016 to August 2017 in context against Nizamabad Kharif batches from the previous four years (black).
The dotted vertical line indicates the hypothetical user decision point, with the dashed red line thereafter indicating the at that point
unknown future aflatoxin levels. The horizontal dashed line indicates the 10-ppb rejection threshold.
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cases, such as mid-2016, 10 C cooling provides no further benefit
as the cooled storage cannot reduce aflatoxin levels below those
at which the batch begins storage. It should be noted that it is
theoretically possible, although unlikely, for limited cooling of
storage to make conditions more suitable for A. flavus growth and

aflatoxin production in conditions when the ambient temperature
is above 40 C. In reality, this could be avoided by deactivating the
cooling systems in these situations, and this was not thought to be
a common enough occurrence to incorporate into the model.
The original purpose of the model is to understand and predict

aflatoxin levels at the factory gate when sourcing from a variety of
sourcing areas, with material from these areas demonstrating
higher and lower aflatoxin risks over time. Therefore, a natural
question for industry to ask is whether an alternative sourcing
strategy might be able to obtain material lower in aflatoxin by
sourcing from different areas to those used historically. To
examine the potential effects of modified and optimised sourcing
strategies the model was used to generate a sourcing strategy
constructed to have been optimal for the historical period. This
optimal sourcing strategy was generated by first running a
realisation of the hourly model to analyse all potentially available
material at all markets each month, taking account of weather
data for each sourcing region up to that time. An optimal sourcing
strategy is then constructed to source each month from the
available batches with the lowest predicted aflatoxin. The model is
then run again using this optimised sourcing strategy to generate
the predicted aflatoxin levels under this strategy (Fig. 8c). The
optimal sourcing strategy typically greatly reduces the observed
levels of aflatoxin compared with the historical sourcing profile
(Fig. 8c). The annual profile of aflatoxin levels, especially peak
levels is significantly changed, with most of the highest peaks in
aflatoxin levels being removed under the optimal sourcing
strategy. In only four of the 70 months analysed did historic
sourcing match the performance of the optimal sourcing strategy.
The optimal sourcing aflatoxin profile acts as a theoretical lower
bound for the effectiveness of a sourcing strategy, as any
alternative sourcing strategy could achieve aflatoxin levels
equivalent or worse than those observed here. In practice, a user
in industry could use the model to identify areas at lower risk for
aflatoxin historically as well as estimate the status of currently
stored material in order to identify regions of lower risk when
making sourcing decisions.

DISCUSSION
The implications of aflatoxin contamination in the supply chain
are far reaching for human and animal health32 with additional
concerns about enhanced risks associated with climate
change16,33. Hence, a considerable amount of effort has been
expended in linking experimental with modelling work to predict
risk12,14,18,34–37. Increasing attention has also been focused on the
potential for aflatoxin predictive risk modelling for low and middle
income countries, especially in sub-Saharan Africa18. Despite
raised awareness and tools for risk prediction, unexpected severe
aflatoxin contamination events still occur38,39. Most risk prediction
models have focused on elucidating weather and site variables on
the pre-harvest dynamics of A. flavus growth and aflatoxin
production18. Approaches range from empirical methods invol-
ving statistical fits of linear models40 through empirical models
coupled with crop growth dynamics36 to more mechanistic
dynamic models exemplified by the AFLA model originally
developed by Battilani12 that has been widely used12,14–16,35

including adaptation for pistachio crops41. The integrated
mechanistic model that we present here provides coverage of
the entire supply chain from planting to delivery, so allowing for
continued fungal growth and toxin accumulation after harvest.
Building on the work of Battilani and co-workers12,14,35, the

integrated mechanistic model provides a theoretical framework
that tracks the dynamics of A. flavus growth and aflatoxin
production throughout the supply chain (Fig. 4) across a
heterogeneous sourcing region (Figs. 2, 5). The framework
facilitates analysis of an optimised sourcing strategy (Fig. 8c). It
also allows scenario analysis, for example to compare the

Fig. 8 Scenario analyses. Scenario analysis—Using the model to
predict the effectiveness of interventions. a The baseline model
predictions for median aflatoxin levels at the factory gate with no
intervention (blue) are compared with the predicted level of
aflatoxin that would be observed with the universal adoption of
filtering with 50% effectiveness (green) and 95% effectiveness (dark
green). b The baseline model predictions for median aflatoxin levels
at the factory gate with no intervention (blue) are compared with
the predicted level of aflatoxin that would be observed with the
universal adoption of market storage facilities cooled by 5 oC below
ambient temperatures (green) and 10 oC below ambient tempera-
tures (dark green). c The observed aflatoxin levels at the factory gate
using historic sourcing (blue) are compared with the model
predicted aflatoxin levels from using the model predicted optimal
sourcing strategy (green). The deliveries from the hourly resolution
model are shown aggregated to months for plotting purposes.
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effectiveness of different intervention strategies to minimise the
risks of aflatoxin contamination at the end of the supply chain. By
integrating explicit biological and intervention processes into the
modelling framework (c.f. Fig. 3) a mechanistic model allows
sensitivity and scenario analyses. This is done by adjusting
tuneable parameters (Table 1) that map onto recognisable
processes via the model equations (Supplementary Table 1): for
example, in modelling the effects of changing temperature on
aflatoxin production rates.
While the model was originally intended to give insights and

inform decision-making for those responsible for large-scale
sourcing of maize, there are other potential users. The model
predictions can be used in the agricultural finance sector to
reduce risk to creditors and by large-scale consumers and
distributors to target sourcing and purchasing of maize for direct
consumption and for processing. More efficient pre-allocation of
risk weightings to crops would help guide the agricultural sector
to plan the allocation of resources for testing and evaluation of
maize consignments in the short term and to plan for the
introduction of storage technologies to reduce contamination
improve health outcomes and increase profitability. Care needs to
be given to reduce the risks of unintended consequences in which
smallholders may be selected against according to model
predictions. We envisage that this can be offset by using the
model to provide guidance in managing the agronomy and on-
farm storage of the crop to reduce risks of aflatoxin production.
The absence of data for fitting at intermediate stages in the

supply chain, other than information about sourcing regions in
shipments arriving at the processing factory, rendered model fitting
and parameterisation challenging. Nevertheless, it was possible to
estimate five epidemiologically important parameters (Table 1)
using ABC from the time-series for aflatoxin levels of shipments
sampled at the factory gate. The available data admit a range of
equally plausible parameters, which have a small degree of
difference in terms of predicted model outcomes. Accordingly,
there were inevitable trade-offs amongst posterior distributions for
certain parameters in the fitting (Supplementary Fig. 1). Never-
theless, the time series for aflatoxin levels from the parameterised
model successfully captured the overall profile, scale and variance of
the historical aflatoxin datasets used for fitting (2012–15) and
validation (2016–17) (Fig. 4a–c), meeting the original objective of
predicting observed aflatoxin levels at the factory gate. With more
data, particularly at points earlier in the supply chain, it would be
possible to refine the parameter estimation and reduce uncertainty
in model outcomes. Data for A. flavus levels at any points in the
supply chain would provide significant value in validating and
refining the model. The spatial and temporal variability in suitability
for A. flavus and aflatoxin production highlighted by the risk maps
produced by our model (Fig. 5) highlight the importance of
considering the location history and timing of movements of
batches of maize when assessing aflatoxin risk.
The integrated model prediction accuracy of 85% for median

aflatoxin levels within ± 4ppb of historical observations consis-
tently across fitting and validation datasets shows the potential
utility of the model. The integrated model was constructed and
validated to predict aflatoxin values at the factory gates rather than
rejection rates about a specific threshold value. The ability of the
model to capture the trends in rejection rates at the processing
factory due to aflatoxin levels above the required limit of 10-ppb
was therefore an additional test of the potential utility of the model.
Accurate predictions of rejection rates and the likelihood of
aflatoxin levels exceeding rejection thresholds are also of particular
interest to the intended users of the model outputs. We set a
comparatively strict criterion, whereby monthly rejection rates for
the model were classified as accurate only if they were within
± 10% of the observed monthly rejection rates. This criterion gave
an accuracy of 50% with the model being significantly more likely
to overpredict than underpredict rejection rates. As a consequence,

the integrated model is conservative: having a substantially lower
frequency of false negatives, which are potentially dangerous when
undetected, than false positives. Overestimation of rejection rates
tended to occur during periods when the historical periods were
low. Overestimation may tend to unfairly mark certain regions as
higher risk, with negative effects on marketability from these areas,
but this effect could be mitigated with increased ground truthing in
target areas, with these test results used to refine the model.
Various levels of accuracy have been quoted for predictive models
of A. flavus aflatoxin production (see e.g. the recent review by Keller
et al.18) but each of these has to be analysed in relation to the
strictness of the criterion, the variable under consideration and the
detailed methods used to assess the accuracy. A detailed analysis
amongst the models would be beneficial but is beyond the scope
of the current paper. One practical way of assessing the utility of the
integrated and other models is in the use of the models in decision
making. Especially when viewed from the perspective of high-level
decision making about sourcing regions, the model offers a
valuable tool to decision makers in industry. The integrated model
is currently being tested by Mars Inc. at multiple worldwide sites
with the intention to report in due course.
In developing an integrated model, we incorporated many of

the assumptions of the AFLA model12–14,35 in both the pre-harvest
and the post-harvest components. Details of the functions
underlying the model together with the variables and parameters
are summarised in detail in Supplementary Table 1. The
assumptions underpinning the integrated model introduced in
this paper and other models18 merit further detailed experimental
and theoretical investigation. For example, soil moisture condi-
tions, regarded by Chauhan et al.36,40 as important during the pre-
harvest phase are not included in the integrated nor the AFLA
model14. In turn, in applying a model for pre-harvest dynamics of
A. flavus and aflatoxin production in Kenya, Chauhan et al.36

excluded sporulation and spore germination under an assumption
that A. flavus fungal inoculum was always available for infection.
Further work is needed to analyse the importance of these various
assumptions on aflatoxin risk under different field conditions.
Flexible modelling frameworks complemented by appropriate
time course data provide a means to do this.
The choice of meteorological data at a 10 km resolution was

driven by availability of data, with this being the best readily
available data source covering the target spatial extent and time
frame available when conducting the study. The model is capable
of using input data at any resolution that a user can source, so
going forward a user could use their preferred data source at the
best resolution that is available or incorporate data from multiple
sources as needed for their target locations. Given the available
testing data only provided kernel moisture measurements at the
point of delivery, a decision was made not to explicitly model
kernel moisture levels in the integrated model. While aflatoxin
levels would strictly accumulate in a kernel over the lifetime of a
shipment, kernel moisture levels can be significantly increased or
decreased in short time windows, and so the final moisture
measurement does not provide a reliable measure of the
conditions experienced by the shipment over its lifetime.
Currently, our model uses plant growth stage to determine
moisture content pre-harvest and uses an assumption of an
equilibrium between environmental humidity and surface moist-
ure levels in the kernels while in storage, essentially a model of
ambient surface conditions. More measurements of moisture
levels in shipments throughout the supply chain could be used to
validate an explicit kernel moisture model component. With
explicit kernel moisture modelling, the post-harvest drying
intervention could be modified to affect kernel moisture levels
explicitly, in place of the current drying protection time proxy. In
addition, weather conditions at the time of harvest could inform
the effectiveness of outdoor drying, as well as potentially be used
to predict severe A. flavus blooms from material subjected to
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heavy rainfall at harvest. We note that farmers have free choice
over the precise timing of harvest for a mature crop and the
method of drying coupled with the very short time frames of
precipitation events. Accordingly, we used relative humidity as a
driving variable rather than rainfall in the pre-harvest model. The
model could be adapted to include the rainfall at harvest times by
allowing for an additional high-moisture period following wet
harvests, albeit at the cost of incorporating an extra function for
drying with a rate parameter that would require estimation.
Although beyond the scope of the current work, we recommend
this as an area for further study. We note that as precise harvest
timing is within control of the farmers, this is a potential area for
providing direct model decision support to farmers looking to
minimise contamination of crops.
An important objective in modelling the entire supply chain

from field through storage to factory gate was to incorporate
intervention strategies to enable scenario testing. Our results
show the likely impacts of filtration and cooling during storage as
well as risk-based optimisation of sourcing regions to reduce the
overall risk of aflatoxin contamination at the factory gate (Fig. 8).
Opportunities to test the utility of the integrated model to assess
aflatoxin risk on maize, to inform sourcing decisions and to
compare intervention strategies are currently underway by Mars
Inc at a range of worldwide sites with different growing and
storage conditions. The components of the model are designed to
be readily adaptable to different locations in the world by
including components to explicitly incorporate changing environ-
mental conditions or cultural practices such as bags, storage
conditions or other processing methods.
In summary, we have developed and tested an integrated

model for aflatoxin contamination in maize supply chains from
planting to harvest and storage through to delivery. The model is
valuable in assessing and predicting risks of aflatoxin contamina-
tion and allowing users to make decisions based on likely aflatoxin
levels. The model also allows exploration of management options
that reduce risk. The utilisation of the model in industry by Mars
Inc. commenced in 2020 and continues to provide valuable
insight. Important areas for future work are work are in gathering
data for aflatoxin, A. flavus and kernel moisture levels at more
points during the supply chain to allow additional refinement and
validation of the model and understanding the dynamics of kernel
moisture during storage. Almost all further extensions of the
current work would inevitably require additional data to test and
validate the usefulness of models for decision making. The general
model predictions would benefit from aflatoxin measurements at
a point in the supply chain earlier than delivery, particularly at the
beginning of storage. The model uncertainty around A. flavus
levels could be reduced by A. flavus measurements at two points
in the supply chain, preferably at the start of storage at the market
in addition to the current measurement taken at the time of
delivery. Moisture measurements at multiple points in the supply
chain, especially prior to delivery, would be beneficial. It is not
immediately obvious if adding an explicit kernel moisture model
component would improve model performance. Turning to model
scenarios analyses, these can be combined with an economic
analysis in order to select those interventions with the greatest
economic return on investment. To do so would require further
information on the costs of providing interventions, such as
filtration or cooling equipment. Finally, it is possible that it is not
economically optimal to provide the lowest achievable aflatoxin
levels, and a user may prefer to explore scenarios in order to
reliably achieve acceptably low aflatoxin levels below the 10-ppb
threshold for a lower cost.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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