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Review of visual analytics methods for food safety risks
Yi Chen 1✉, Caixia Wu 1, Qinghui Zhang1 and Di Wu 2

With the availability of big data for food safety, more and more advanced data analysis methods are being applied to risk analysis
and prewarning (RAPW). Visual analytics, which has emerged in recent years, integrates human and machine intelligence into the
data analysis process in a visually interactive manner, helping researchers gain insights into large-scale data and providing new
solutions for RAPW. This review presents the developments in visual analytics for food safety RAPW in the past decade. Firstly, the
data sources, data characteristics, and analysis tasks in the food safety field are summarized. Then, data analysis methods for four
types of analysis tasks: association analysis, risk assessment, risk prediction, and fraud identification, are reviewed. After that, the
visualization and interaction techniques are reviewed for four types of characteristic data: multidimensional, hierarchical,
associative, and spatial-temporal data. Finally, opportunities and challenges in this area are proposed, such as the visual analysis of
multimodal food safety data, the application of artificial intelligence techniques in the visual analysis pipeline, etc.
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INTRODUCTION
Risk analysis and prewarning (RAPW) is an essential part of food
safety regulation, which can improve the quality and cost-
effectiveness of food safety regulation and identify food safety
risks at early stages. Food safety risk analysis is a systematic
approach for analyzing chemical, biological, and physical hazards
in food, including risk assessment, risk management, and risk
communication1. Food safety prewarning is used for the predic-
tion of future food safety events or risks derived from historical
data by analysis models2. In recent years, progress in data and
computer sciences has successfully reshaped the traditional
algorithms in data management and processing, and data-
driven food safety risk analysis has developed into one of the
key approaches for food safety risk identification and early
warning. With advances in inspection technology and improve-
ments in regulation methods, the size and diversity of food safety
data have exploded3, posing emerging challenges to data analysis
techniques.
Although deep learning (DL) has shown significant advantages

in the automatic learning of data characteristics and patterns,
there are still some knowledge gaps in the practical application of
food safety. For one thing, human experience and knowledge
have not been considered in most automated analysis methods4,
while the process of food safety risk analysis and decision-making
cannot be separated from the full online participation of domain
experts. Both in determining the degree of contamination and
safety risk of food and in issuing regulatory orders based on early
warning results, which require rich domain knowledge and
regulatory experience. For another thing, the current popular
data analysis methods represented by machine learning (ML) and
DL, due to their complex principles and difficult-to-interpret
output results, make many regulators in food safety skeptical
about their assessment and warning results, and still require
further expert judgment and confirmation before they can be
applied in practice. Visual analytics, which has emerged in recent
years, uses visual interactive interfaces as a channel to integrate
human and machine intelligence into the data analyzing process

in a visual way5. It can help people explore, understand, and
analyze large-scale data in speed and accuracy to accomplish
analytical reasoning and decision-making6–8. Furthermore, visual
analytics is a human-in-the-loop approach and analysts can
interact with the visual data interface through rich interactive
tools to understand the distribution of food safety risks and assist
in making regulatory decisions. It provides new ideas for food
safety data analysis and has gradually become an important tool
for food safety regulations.
As visual analytics gradually shows great potential in food safety,

it is necessary to explore the latest advances in visual analytics
methods for food safety risk to motivate researchers to propose
more excellent solutions for visual analytics in food safety. Many
recent reviews have reported the application of artificial intelli-
gence (AI) techniques in food safety, such as AI in food adulteration
detection9, ML in foodborne disease surveillance10–12 and in food
safety monitoring and prediction2,13, DL in food science and
engineering4, and text mining techniques in food science and
nutrition14. However, only a few reviews have systematically
provided a compendium of data analysis and visualization
methods applied to food safety RAPW in the past decade. This
paper proposes a categorization of visual analytics techniques for
food safety RAPW based on the visual analytics pipeline (Table 1). It
emphasizes the application in food safety RAPW of these
techniques involved in each stage of the visual analytics pipeline.
Firstly, we highlight the data sources, data characteristics, and
analysis tasks in food safety. Then, we summarize the visual
analytics method for food safety risk in the past 10 years, including
classical data analysis methods for the four types of analysis tasks
and the major visualization methods for the four types of data
characteristics. Finally, we also discuss the opportunities and
challenges for visual analytics in food safety RAPW.

SURVEY METHOD BASED ON THE VISUAL ANALYTICS PIPELINE
This section details the visual analytics pipeline and the
categorization of visual analytics techniques for food safety risk
proposed in this review.
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Visual analytics pipeline
Visual analytics, defined as a science of analytical reasoning
facilitated by interactive visual interfaces15, is a new approach that
integrates visualization, human intelligence, and data analysis. It
maps complex data into easy-to-perceive graphs, symbols, colors,
textures, and other representations and provides interactive
means to help people derive insight from massive, dynamic,
ambiguous, and often conflicting data6. A complete visual
analytics pipeline is illustrated in Fig. 1. Specifically, the data are
first stored in data files or databases after pre-processing. Then,
the in-depth analysis and exploration of the data through data
analysis methods resulted in much valuable information, namely
analysis results. Finally, multiple views are designed for intuitive
presentation and interactive analysis of data and analysis results
through visual mapping. Under their analysis tasks, users interact
with the data at various stages of this pipeline, e.g. selecting and
filtering the data to be analyzed and switching between different
views to get insight into the data. Relevant computing, storage,
analysis, and visualization tools are accessible at every stage of the

pipeline. Visual analytics is a process of human-in-the-loop that
integrates human and machine intelligence into the data analysis
process in a visually interactive manner, acquiring the comple-
mentary advantages and mutual promotion of the two to support
analytical reasoning and decision-making.

Survey method and categorization
In this work, we focus on visual analytics techniques for food
safety RAPW. Following the visual analytics pipeline, a systematic
and comprehensive review of studies in this area over the last
decade is performed, by covering more than 100 papers, in terms
of food safety data and analysis tasks, data analysis methods, and
visualization methods. The specific categorization is provided in
Table 1.

Data and analysis tasks. The abstraction of data and analysis
tasks is typically the first key step in visual analytics. In contrast
with other data, food safety data involves rich domain knowledge,
a wide range of data sources, and distinctive data characteristics

Table 1. Visual analytics techniques commonly used in food safety RAPW over the last decade.

Data and Analysis Tasks

Food Safety Risks Data Sources Data Characteristics Analysis Tasks

Microbial Contamination Sensors Multiple Dimensions Association Analysis

Pesticide and Veterinary Drug Residues Online Databases Hierarchical Structure Risk Assessment

Heavy Metal Contamination Satellite Imagery Associated Relations Risk Prediction

Illegal Additive and Fraud Social Media Spatial-temporal Distribution Food Fraud Identification

Data Analysis Methods

Association Analysis Risk Assessment Risk Prediction Food Fraud Identification

Correlation Analysis Qualitative Method Traditional Machine Learning Bayesian Network

Regression Analysis Quantitative Method Shallow Neural Network Extreme Learning Machine

Association Rule Mining Comprehensive Method Deep Neural Network Convolutional Neural Network

Visualization Methods

Multidimensional Data Associated and Hierarchical Data Spatial-temporal Data Visualization Interaction

Scatterplot Node-linked Graph / Tree Map-based Methods Select / Filter / Navigate

Scatterplot Matrix Adjacency Matrix Timeline Methods Overview + Detail

Parallel Coordinates Space-filling Methods Spatial-temporal Correlation Focus + Context

Fig. 1 The complete visual analytics pipeline. It can be seen as a process in which data is transformed by a series of processing modules
(brown boxes) that can be realized by a series of software tools (blue boxes). Specifically, the raw data is first stored in data files or databases
after data pre-processing, then the analysis results are generated by data analysis methods, and finally multiple views are formed through
visual mapping and presented to users. Users can interact with the data at various stages of this pipeline according to their analysis tasks to
achieve a comprehensive analysis of the data.
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and analysis tasks. Accordingly, we summarize the food safety
risks, data sources, data characteristics, and common analysis tasks
in food safety.

Data analysis methods. For different types of analysis tasks,
various data analysis methods are usually required for RAPW. We
categorize the data analysis methods applied to food safety RAPW
by analysis tasks, including techniques in four aspects: association
analysis, risk assessment, risk prediction, and food fraud
identification.

Visualization methods. The key to visualization is the mapping
from data into visualization elements. In selecting a suitable
visualization mapping method, data characteristics, such as the
type and semantics, should be considered. Therefore, we divide
visualization methods by data characteristics, including multi-
dimensional data visualization, associated and hierarchical data
visualization, spatial-temporal data visualization, and interactive
techniques in visualization.
The main discussion in this paper is around visual analytics

methods for structured food safety data, while analysis methods
for semi-structured and unstructured data are not covered.

DATA AND ANALYSIS TASK IN FOOD SAFETY
Data is the object of visual analytics and analysis tasks are the goal
of visual analytics. Understanding the data sources, data
characteristics, and analysis tasks in the food safety domain can
help analysts select the appropriate data analysis methods and
visualization techniques to support visual analysis of food safety
risks. Therefore, this section provides a detailed description of data
sources, data characteristics, and analysis tasks in food safety.

Data sources
The health risks derived from food products can be direct
consequences of exposures to biological and chemical hazards
from the environment and human activities throughout the food
production, delivery, and consumption chain. Food contamination
can cause a wide range of illnesses from diarrhea to cancers,
which will affect human health and even threaten human life. The
global food safety and supply chain systems, from field to fork,
have been challenged by emerging risks raised from microbial
contamination, pesticide and veterinary drug residues, heavy
metal contamination, illegal addition, and fraud16. This can directly
lead to serious food safety incidents and scandals resulting in
huge impacts against public health, the economy, and consumer
confidences17. The complex nature of food safety issues has urged
the modernization of a highly efficient monitoring system to cover
the whole supply chain against potential hazards. Therefore,
government departments worldwide have strengthened food
safety monitoring and control along the whole supply chain from
farm to table, which, in turn, has generated massive food safety
data.
The main channels for obtaining food safety data are sensors,

online databases, satellite imagery, and social media. Many smart
devices and sensors have been applied in food safety data
collection, such as chromatograph-mass spectrometers for pesti-
cide residue detection, radio frequency identification (RFID)
sensors for food safety quality traceability, and mobile devices
for rapid food detection. Online databases contain numerous
information related to food safety, such as risk information from
monitoring procedures and alert systems, exposure information
from consumer databases, and surveillance reports on animal and
plant diseases. These databases are published by some authorities
e.g., the World Health Organization (WHO), the United States Food
and Drug Administration (USFDA), the European Food Safety
Authority (EFSA)18, and the State Administration for Market

Regulation (SAMR) of China. Satellite image data, such as ground
and meteorological data collected by remote sensing satellites
and drones in real-time, can be used to monitor food contamina-
tion and quality in different areas. Social media has received
massive public attention, and can also be regarded as a potential
source of food safety data. On these platforms (e.g., Weibo, TikTok,
and Twitter), information, sentiments, and news reports related to
food safety can spread globally among individuals within a few
seconds19. Food safety data can also appear in different formats,
including numbers, texts, and images which constantly grows in
both quantity and explosive scale in the informatic era.

Data characteristics
From the perspective of data sources, food safety data have
begun to show the ‘5 V’ characteristic of big data20. The first V is
volume. Food safety data are obtained from a wide range of
sources, and the scale of data becomes tremendous over time,
creating a huge challenge for data collection and storage. The
second V is variety. The types of food safety data are diverse,
covering numbers, text, and images, with structured, semistruc-
tured, and unstructured data. The third V is velocity. Food safety
data are generated and processed quickly in real-time. The fourth
V is veracity. Food safety data are inevitably subject to errors and
uncertainties in the entire process ranging from collection to use.
The fifth V is value. The value density of food safety data is
relatively low, that is, minimal valuable information is submerged
into massive invalid information, posing a considerable challenge
for mining and analyzing valuable information.
From the perspective of data analysis, food safety data are

multidimensional, spatial-temporal, hierarchical, and associative.
Multidimensional indicates that food safety data have multiple
attributes. For example, food safety sampling data contain
multidimensional attributes such as the name of the food, the
category it belongs to, the time of sampling, the manufacturer, the
items inspected, and qualification or failure. Spatial-temporal
refers to the spatial and temporal attributes of food safety data.
Statistics on the spatial and temporal distributions of food safety
data are essential for RAPW. Hierarchical refers to the fact that
some food safety data are organized in a tree structure. For
example, the food classifications, hazard classifications, and
administrative divisions of a region all exhibit hierarchical
characteristics. Associative means that the different attributes of
food safety data may be related to each other in some way. For
example, there are explicit or implicit associations between
hazards and foods, hazards and regions, and foods and regions
in food safety sampling data.

Analysis tasks
With the necessity of food safety regulation, analysis tasks in food
safety are summarized as follows.

Association analysis. With the numerous dimensions and com-
plex relationships in food safety data, it is important to explore
potential associations within the data through correlation analysis,
regression analysis, and association rule mining to identify food
safety risks and provide prewarning.

Risk assessment. Risk assessment is an important aspect of food
safety risk analysis. Based on available monitoring results,
establishing risk assessment models to scientifically evaluate food
safety risks is one of the analysis tasks in food safety.

Risk prediction. The primary purpose of food safety regulation is
to avoid food safety incidents as much as possible. Food safety risk
prediction and trend analysis can help regulators to detect safety
risks in advance at an early stage, identify risk factors, and dispose
of them in time to avoid bringing harm to human life and health.
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Food fraud identification. Food fraud identification is an essential
food safety risk analysis method, which helps risk managers make
relevant decisions to effectively reduce the risk of fraud in the
food supply chain by identifying key factors that may lead to food
fraud events and predicting the types of food fraud notifications.

DATA ANALYSIS METHODS IN FOOD SAFETY
In the human-in-the-loop visual analytics pipeline, data analysis is
the previous step in visual mapping. Data analysis refers to the
statistical modeling of data to explore data characteristics and
patterns based on the analysis task. In this section, we categorize
common data analysis methods in food safety RAPW by the
analysis task, as presented in Table 2.

Techniques for association analysis
Association analysis is an important analysis task in food safety.
Through association analysis of food safety data, domain experts
can grasp the implicit associations between attributes such as
food and hazards and identify the main factors affecting food
safety risks to support food safety risk identification, risk
assessment, and risk prewarning.

Correlation analysis. In statistics, correlation measures the
strength and direction of a linear relationship between two
variables, which is often measured with a correlation coefficient,
such as Pearson correlation coefficient and Spearman correlation
coefficient21. The Pearson correlation coefficient is often used to
evaluate the linear relationship between two continuous variables,
while the Spearman correlation coefficient is used to evaluate the
monotonic relationship between two continuous or ordinal
variables. For instance, Zhang et al.22 used Spearman’s correlation
analysis to assess the relationship between soil properties and
heavy metal fractionation, and the correlation between metal
concentrations in soil and in plants.

Regression analysis. Regression analysis is an analysis method
that uses the statistical principles of data to mathematically
process a large amount of statistical data and determine the
correlation between the dependent variable and certain indepen-
dent variables, establishes a regression equation (function
expression) with good correlation, and extrapolates it to predict
future changes in the dependent variable23. According to the

number of dependent and independent variables, regression
analysis can be classified into two categories: univariate regression
analysis and multiple regression analysis. According to the
functional expressions of the dependent and independent
variables, regression analysis can be classified into linear and
nonlinear regression. It is also applied in food science widely. For
example, Wu et al.24 developed a successive projection algorithm
(SPA)–multiple linear regression (MLR) classifier based on optimal
performance thresholds for the automatic prediction of the
presence of contaminants in chicken meat, achieving a 100%
true positive rate (TPR) and 0.392% false positive rate (FPR).

Association rule mining. Association rule mining, in data mining,
is a popular method for discovering interesting relations between
variables in large datasets. It can explore the relationships
between variables from a large amount of food safety data. The
Apriori algorithm25 is a typical association rule mining algorithm
for breadth-first search26 and it uses prior knowledge to mine
association rules between data. Cazer et al.27 applied the Apriori
algorithm to mine multi-drug resistance patterns of chicken-
derived Escherichia coli in antibiotic susceptibility experiment data.
The Apriori algorithm was applied by Wang et al.28 to mine the
temporal order and causal relationships between real-time
monitoring data of the food supply chain. To help quality
managers make more scientific food safety decisions, Jacobsen
et al.29 developed a monitoring system that integrates transfer-
able association rule models and data visualization techniques.
This shows that the combination of visualization techniques and
data analysis methods can provide an in-depth analysis of data
mining results to support more effective decision-making.

Techniques for risk assessment
Risk assessment is an important foundation for food safety
regulation, and it can provide references for food safety decision-
making. It refers to the risk analysis and ranking of biological,
chemical, and physical hazards in food and food-related
products30. Risk assessment methods are divided into qualitative,
quantitative, and comprehensive assessment methods.

Qualitative assessment. Qualitative risk assessment analyzes and
determines risks based on the experience and knowledge of
experts. The expert assessment method (EAM) and the Delphi
method are typical approaches. The EAM is an early and widely

Table 2. Data analysis techniques commonly used in food safety RAPW over the last decade.

Analysis Tasks Analysis Techniques Application Cases in Food Safety

Association Analysis Correlation Analysis Measure the correlation between soil properties and heavy metal fractionation22

Regression Analysis Predict the presence of contaminants in chicken meat24

Association Rule Mining Mine multi-drug resistance patterns27 and build prewarning models28,29

Risk Assessment Qualitative Method Evaluate pesticide residue contamination31 and food safety risks in fresh produce and
salmon farms32

Quantitative Method Evaluate the risk of heavy metals33,35 and food quality risks36,37

Comprehensive Method Evaluate the level of pesticide residue contamination38, food safety risks39, and heavy
metal contamination40

Risk Prediction Traditional Machine Learning Predict food risks41–43,47–50 and foodborne disease pathogens44

Shallow Neural Network Predict the leaching rate of heavy metals51, coliform amount53, and food risks54–56,58,59

Deep Neural Network Predict the risk of sterilized milk60,62, gastrointesti-nal incidence61 and cooked meat
products63

Food Fraud Identification Bayesian Network Analyze important factors that affect food fraud events64 and predict the types of food
fraud notifications65,66

Extreme Learning Machine Identify adulterated edible animal blood food67

Convolutional Neural Network Classify natural and artificially ripened bananas68 and turmeric powder images69
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used assessment method that relies on the scoring of several
experts based on their experience and expertise to make an
assessment, such as using the EAM to set weights for each
attribute in pesticide residue contamination assessment31. Soon
et al.32 applied the Delphi method to assess food safety risks in
fresh produce and salmon farms in the UK.

Quantitative assessment. Quantitative risk assessment refers to
calculating the quantitative values of risk indicators to describe
the risk level using data models, including the entropy method
(EM), the Nemerow pollution index (NPI), and fuzzy comprehen-
sive evaluation (FCE).
EM is usually combined with the comprehensive assessment

method to perform risk assessment in food safety, and the related
work is presented in the Section Comprehensive assessment. NPI is
a weighted multi-factor pollution index, which emphasizes the
most polluting factors while also considering the contribution of
other factors in the assessment system33. This method first
calculates the single-factor pollution index, then computes the
comprehensive pollution index using the maximum and the
average of the single-factor pollution index, such as calculating
the heavy metal contamination risk of edible mushrooms34 and
vegetables35. Yet, the comprehensive index calculated by the NPI
method is susceptible to distortion due to the influence of the
maximum value. Hence, FCE is mostly used for comprehensive
assessment at present. FCE converts qualitative assessment into
quantitative assessment by the affiliation theory of fuzzy
mathematics; that is, it uses fuzzy mathematics to perform an
overall assessment of objects that are subject to multiple factors. It
can better solve fuzzy and difficult-to-quantify problems and is
mostly combined with other quantitative methods for food safety
risk assessment. Tanima and Madhusweta36 developed a mathe-
matical model based on FCE and criticality analysis, called failure
mode effects and criticality analysis (FMECA), for evaluating quality
risk levels in the food supply chain. Wei et al.37 used the fuzzy
analytic hierarchy process based on an optimal consistency matrix
to evaluate the risk of milk knot samples qualitatively and
quantitatively.

Comprehensive assessment. Qualitative or quantitative methods
alone are insufficient for achieving accurate risk assessment, and
thus, comprehensive assessment methods that combine qualita-
tive and quantitative methods, such as analytic hierarchy process
(AHP) and the best worst method (BWM), are more widely used in
risk assessment.
AHP combines the experience of domain experts and mathe-

matical models to determine the weight of each risk indicator. It
can determine the indicator weights more effectively when there
are many risk indicators for complex domain problems. However,
since each risk indicator’s weight depends on its importance given
by the experts, this makes its assessment results highly subjective.
BWM reduces the involvement of domain experts by determining
the best and worst indicators, making its results more objective.
These two methods are frequently combined with EM for a
comprehensive assessment of food safety risks, such as the AHP-E
for the comprehensive assessment of pesticide residue contam-
ination38, a risk assessment method combining entropy-weighted
AHP and quality control analysis methods39, and a comprehensive
assessment model that combines BWM and EM for quantitatively
evaluating heavy metal contamination40.

Techniques for risk prediction
The frequent occurrence of food safety incidents has brought
considerable attention to the study of food safety risk prediction.
Risk prediction typically refers to building suitable prewarning
models to predict the risk value or risk level of newly detected
food samples. The prediction results are crucial for identifying

high-risk foods and hazards in advance and taking measures to
curb the food safety risk.

Traditional machine learning. ML learns experiences from data
and builds models to make predictions or decisions. Much
research has demonstrated that ML algorithms are effective tools
for food safety risk prediction3,18. The traditional ML algorithms
are the classic machine learning methods before the emergence
of DL. Support vector machine (SVM), hidden Markov model
(HMM), gradient boost decision tree (GBDT), light gradient
boosting machine (LightGBM), and Bayesian network (BN) were
commonly used traditional ML algorithms in food safety.
SVM converts a prediction problem into a convex optimization

problem to generate construct prediction rules in high-
dimensional space for risk-level identification. Ma et al.41 devel-
oped a method base on parallel SVM for dairy production risk
prediction and achieve 90% prediction accuracy. HMM is an
important probabilistic model for serial data processing and
statistical learning and has also been applied to food safety risk
prediction. Han et al.42 proposed an HMM model based on gray
relation analysis (GRA) for the risk prediction of sterilized milk. To
take full advantage of the data features of large quantity and high
dimension, Gao et al.43 applied LightGBM to predict the food risk
by weighting and normalizing the feature values of discrete and
continuous attributes. By comparing multiple ML methods, Wang
et al.44 found that the GBDT model achieved the highest accuracy
in identifying four pathogens: Salmonella, Norovirus, E. coli, and
Vibrio parahaemolyticus.
BN is a probabilistic graphical model that combines Bayesian

statistics, decision theory, and graph theory45,46. It is appropriate
for analyzing uncertain probabilistic events and making decisions
that conditionally rely on multiple control factors. BN has been
widely used in food safety risk prediction, such as predicting the
levels of microbial contamination and toxic and hazardous
substances in food products47; predicting food safety hazards in
herbal and spice products imported to the Netherlands48; and
analyzing the influences of agricultural, climatic, and economic
factors on food safety hazards in fruits, vegetables, and dairy
products49,50.
These traditional ML algorithms offer clear algorithmic inference

and prediction processes that have quick learning curves and
don’t require large amounts of training data. However, the
performance of most traditional ML algorithms is limited by the
accuracy of manually extracted features. While DL algorithms
attempt to obtain high-level features directly from the data, which
can significantly improve the performance of risk prediction.

Shallow neural network (SNN). Another popular technique for
building prediction models is the artificial neural network (ANN)51,
which is appropriate for handling food safety data with
ambiguous correlations between various variables. Early ANN,
also known as SNN, was a shallow model with only one hidden
layer. Backpropagation (BP) neural networks, radial basis function
(RBF), and extreme learning machines (ELM) are frequently
employed SNNs in food safety.
A BP neural network is a multilayer feedforward network with

error backward transmission. It excels at addressing nonlinear and
uncertainty problems because of its powerful nonlinear mapping
capability. Many researchers have applied BP neural networks to
predict food safety risks, including predicting the leaching rate of
heavy metals in tea52, determining coliform amounts in food53,
judging whether a sample is qualified54, assessing dairy quality
and safety risk55, and establishing a contamination index for six
categories of hazards in food, containing compounds, pesticide
residues, veterinary residues, heavy metals, microorganisms, and
pathogenic bacteria56. Yet BP neural networks are slow in training
and prone to the local minimum due to the use of gradient
descent to obtain the minimum error. RBF neural networks57
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proposed by Broomhead and Lowe have faster training speeds
and can avoid getting trapped in the local minimum. Geng et al.58

proposed a food safety risk warning method based on agglom-
erative hierarchical clustering (AHC) and RBF neural networks for
the risk prediction of meat products. ELM is faster to compute and
more generalizable than traditional neural networks since it does
not require parameter tuning during training and directly solves
output weights without iterations. A food safety risk prediction
model integrating AHP and ELM was applied to predict the safety
risk of dairy products in one province of China in 2012 and 201459.
This model with multiple inputs and multiple outputs can
simultaneously predict three types of hazard risks, namely
pathogenic bacteria, heavy metals, and chemical contaminants,
in food products. However, the application of SNNs in food safety
is limited by the ability to express complex functions and the
generalization ability for complex problems.

Deep neural network (DNN). DNNs can approximate complex
nonlinear functions and make more accurate predictions for future
events via a deep network with many hidden layers. Some
researchers have applied DNNs to predict food safety risks,
including deep RBF (DRBF), deep denoising autoencoder (DDAE),
and long short-term memory (LSTM) networks.
Geng et al.60 proposed a prewarning method combined with

AHP and DRBF to predict and analyze the risk of sterilized milk
sampled from a Chinese province in September 2014. It has been
shown that their approach outperforms BP in terms of learning
performance and generalization accuracy. A DDAE model based
on EBO (ecogeography-based optimization) was designed by
Song et al.61 to predict the incidence of gastrointestinal diseases
caused by food contamination. Their experimental findings
demonstrated that their evolutionary deep learning model
outperformed the shallow ANN model and DDAE with other
learning algorithms on a real-world dataset. LSTM neural networks
can learn the dependencies among long sequences to make
accurate predictions. A risk warning model that combined an
LSTM neural network and sum product-based AHP (AHP-SP) was
tested on sterilized milk data from a food testing facility in China
by Geng et al.62. Compared with BP and RBF neural networks, their
technique demonstrated superior accuracy in predicting trends in
food safety risk. Chen et al.63 proposed a risk prediction method
for food safety called TabNet-GRA, which combines a specialized
deep learning architecture for tabular data (TabNet) with a grey
relational analysis (GRA) to predict food safety risk. Their
comparative evaluation unequivocally demonstrated the super-
iority of the TabNet-based prediction model over six typical
models (RF, GBDT, XGBoost, BP, ELM, and RBF) under equivalent
conditions.

Techniques for food fraud identification
Many ML and DL methods are also widely used for food fraud
identification, including BN, ELM, and Convolutional Neural
Network (CNN). BN models have been applied to identify the
crucial factors that may contribute to the occurrence of food fraud
events64 and predict the types of food fraud notifications65,66.
These findings can help risk managers identify the principal
factors that influence food fraud, and thus, enhance their ability to
risk management and food fraud risk mitigation. ELM and newly
introduced CNNs are currently commonly used supervised
learning algorithms in food fraud classification, such as the
extreme learning machine regression (ELMR) model for identifying
adulterated edible animal blood food (EABF)67, the CNN for
classifying natural and artificially ripened bananas68 and the
improved CNN for classification of turmeric powder images to
detect fraud69. These studies suggest that DL has emerged as an
effective method for assessing food quality and identifying fraud.

Data analysis tools
Conventional data analysis tools include Excel, Statistical Analysis
System (SAS)70, Statistical Product and Service Solutions (SPSS)71,
R72, MATLAB73, and Python74. Among them, non- programmatic
data analysis tools, including Excel, SAS, and SPSS, support
fundamental statistical analysis functions and have user-friendly
graphical interfaces that are more suitable for novices. However,
these three analysis tools are less capable and efficient in
processing data, and the data analysis models provided are not
flexible enough to re-tune the models as necessary. Programmatic
tools, including R, MATLAB, and Python, provide a variety of
functions for mathematical calculations and statistical analysis,
enabling users to perform data analysis flexibly and even create
new statistical methods that meet their needs. The drawback of
programmatic tools is that they require some programming skills
of users. Therefore, in practice, analysts should choose the
appropriate data analysis tool according to their knowledge
background and the needs of the practical application.
Although data analysis methods represented by ML have

provided many effective algorithms and models for food safety
RAPW, there are still some knowledge gaps in the practical
application of food safety. Many experts in the food safety field
find it challenging to understand the distribution characteristics of
the raw data and to judge the accuracy of the analysis results
when making decisions because the principles and outputs of
most models are difficult to explain in human-comprehensible
language. Additionally, the data analysis process in food safety
usually requires the full online participation of experts from
analyzing raw data and adjusting model parameters to make
effective decisions. However, the existing analysis methods are
mostly fully automated processes, lacking the participation of
expert knowledge and experience. To close the gap in data
analysis, it is necessary to introduce some interpretable techni-
ques (e.g. visualization) to make the data analysis process visual
and engageable.

VISUALIZATION METHODS IN FOOD SAFETY
In the visual analytics pipeline, both raw data and data analysis
results can be presented to the user through visualization
techniques for further exploration and analysis. Visualization is
defined as the communication of information by using graphical
representations to help people accomplish analytical tasks more
effectively75. In this section, we introduce visualization techniques
and their applications in food safety RAPW based on data
characteristics, as presented in Table 3.

Multidimensional Data Visualization
Multidimensional data are widely available in food safety.
However, the physical limitations of display devices and the
human visual system do not allow direct display and rapid
recognition of structures with dimensions of more than two. For
these reasons, various visualization methods have been intro-
duced to convey multidimensional structural information visually
on a 2D screen, including scatterplots, scatterplot matrices, and
parallel coordinates.
The scatterplot represents data points on rectangular coordi-

nates to illustrate the relationship between two variables. A
scatterplot matrix76,77 is an extension of the scatterplot; it is used
to reveal the relationship between two of all the dimensions in the
data. A scatterplot matrix for n-dimensional data consists of
several scatterplots arranged in an n × n matrix following a certain
order, wherein each scatterplot is drawn from every two
dimensions of the n dimensions. Multidimensional visualization
will lead to visual clutter due to too many dimensions, and it
typically requires combining dimensionality reduction methods
for visualization, such as PCA, multiple dimensional scaling (MDS),
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and self-organizing maps (SOMs). Bian et al.78 proposed a
multidimensional projection method based on implicit function
differentiation, projecting the basis vectors obtained via PCA from
the wine dataset onto a 2D plane to form a scatterplot, as shown
in Fig. 2a. To explore the data correlation and dimensionality
correlation of high-dimensional data, Yuan et al.79 proposed a
dimensional projection matrix and applied it to analyze food
nutrition datasets, wherein each dimension represents a nutrient,
as shown in Fig. 2b. The United States Department of Agriculture
(USDA) food nutrition dataset is first projected onto a 2D
scatterplot via MDS. Then, the dimensions are divided into four
mutually exclusive groups on the basis of the clustering
characteristics in this plot. Finally, a dimensional projection matrix
is formed to help users explore and analyze correlations among
multiple nutrients in food.
Parallel coordinates represent data attributes through a set of

parallel axes, while a data object is represented by a line through
each axis wherein parallel axes are vertical or horizontal lines
distributed at equal distances80,81. The use of parallel coordinates
to present multi-attribute data can help users analyze the
correlations between dimensions and the distribution character-
istics in data. Chen et al.82 used parallel coordinates to show the
maximum residue limit (MRL) values of agricultural products in six
countries (or regional organizations), helping users compare the

differences among multiple MRL standards. However, as the
number of data dimensions and data objects increases, visual
clutter will occur in traditional parallel coordinates. To overcome
the drawback in which parallel coordinates with mass data
experience difficulty in quickly obtaining attribute values, Chen
et al.31 designed a visualization method that combined parallel
coordinates with a bar chart. This method supports the ranking of
several agricultural products by using multiple pesticide residue
assessment indicators. They also developed a visual analytics
system with multi-attribute ranking, enabling users to compre-
hensively explore the ranking of various agricultural products
contaminated with multiple pesticides through interactive means,
such as multi-view coordination, data filtering, and attribute
selection.

Associated and hierarchical data visualization
Food safety data exhibit typical associated and hierarchical
characteristics. Hierarchy is a specific form of association that is
primarily expressed as inclusion and subordination relationships
among entities. Visualization methods for association and
hierarchical data are similar, and thus, we discuss both in this
subsection. Three types of methods are available for visualizing
associated and hierarchical data: node-linked method, adjacency
matrix, and space-filling method.

Fig. 2 Examples of multidimensional data visualization. a Scatterplot shows the correlation between two attributes in red wine78.
b Scatterplot matrix displays the correlation between multiple nutrients in food79. c Parallel coordinates compare MRL values of pesticides for
various agricultural products in different countries or regions82.

Table 3. Visualization techniques commonly used in food safety RAPW over the last decade.

Categorization Visualization Techniques Application Cases in Food Safety

Multidimensional Data Visualization Scatterplot Show the correlations of two attributes in red wine data78

Scatterplot Matrix Analyze the correlations among multiple nutrients in food79

Parallel Coordinates Compare the differences between multiple maximum residue limit
standards82 and rank agricultural products by multiple indicators31

Associated and Hierarchical Data
Visualization

Node-linked Graph/Node-
linked Tree

Show the association between food and hazards83,84 and present the
classification of foods, food additives, and products85

Adjacency Matrix Represent the detection relationship86

Space-filling Methods Represent the distribution of pesticide residues87, the differences of multiple
maximum residue limits82,91, and the association between hazards and
products88–90

Spatial-temporal Data Visualization Map-based Methods Analyze the spatial distribution of pesticide residue92,94

Timeline Methods Capture temporal trends and seasonal patterns of salmonellosis118

Spatial-temporal Correlation
Methods

Capture the geographical distribution characteristics and the development
trend of food attributes over time87

Visualization Interaction Select / Filter / Navigate Quickly locate highly contaminated agricultural products and pesticides86

and compare maximum residue limit standards from different countries or
regions82

Overview + Detail

Focus + Context

Y. Chen et al.

7

Published in partnership with Beijing Technology and Business University npj Science of Food (2023)    49 



Node-linked methods. A node-linked method is a typical visua-
lization method for associated and hierarchical data. It uses nodes
of different shapes to represent entities (content information) and
the lines between nodes to represent the relationship among
entities (structural information). Graphs can be used to describe
the association relationship among entities, while trees are used to
describe the hierarchical relationship among them. The node-
linked method can clearly show the associated hierarchy of small-
scale data but with low space utilization in general. Therefore,
interactive techniques are required for presenting large-scale
associated and hierarchical data.
To analyze the contamination of various food by hazards and

their geographical distribution, Gao et al.83 used a network graph
to show the association of food, region, and hazards. Similarly,
Yang et al.84 used the node-linked method to associate a food
product with its detected nonconforming hazards. The higher the
detection frequency of hazards, the thicker the connecting link in
this graph. This method can help regulators locate key regulatory
foods and hazards. For hierarchical relationships, Qi et al.85 used
node-linked trees to construct a food classification map that
presents the classification of food and food additives.

Adjacency matrix. The adjacency matrix is one of the visual
representations of associated data. It is an N by N grid (where N is
the number of nodes), where position (i, j) represents the weight of
the link between nodes i and j. Chen et al.86 proposed an ordered
matrix representation method for the visual analytics of associated
data in Fig. 5. This method represents the detection relationship
between agricultural products and pesticides in a matrix heatmap.
In this heatmap, each row represents a pesticide, while each
column represents an agricultural product. The color of cells is
mapped onto the content of the pesticide residue. The darker the
color, the higher the pesticide residue content. The rows and
columns in matrix A are arranged alphabetically to facilitate users
in searching by name. The rows and columns in matrix B are
organized using the RW-Rank algorithm proposed in the paper.
This algorithm assists users in quickly locating pesticides with high
residue levels and heavily contaminated agricultural products.

Space-filling methods. A space-filling method is a visualization
method for hierarchical data that uses chunked areas of various
shapes to represent data. The hierarchical structure of data is
represented by enclosing relationships. In particular, parent nodes
enclose children and grandchildren nodes, indicating a parent-
child relationship in a tree. Space-filling techniques can maximize
the use of display space and are represented by treemaps, circle
packing, and radial rings.
A treemap is a recursive partitioning in rectangular space. It

consists of a series of nested rectangles with sizes that are

proportional to the corresponding node attribute values. A large
rectangle represents a branch of the data tree; it is subdivided into
smaller rectangles to represent the size of each node within this
branch. Chen et al.87 used a treemap to represent the distribution
of pesticide residues detected in fruits and vegetables in 10
regions of Tianjin, China (Fig. 3a). Each large rectangle in the
treemap represents a region of Tianjin, and one of the small
rectangles in each large rectangle represents fruits while the other
represents vegetables. The color indicates the rate of excess
pesticide residues, i.e., a higher excess rate is closer to red. The
treemap has been proven to meet the requirements for the
analysis of hierarchical structures and associative relationships in
the field of food safety. It maximizes the use of display space but is
not as clear as a node-linked graph in representing hierarchical
structures.
Circle packing combines the advantages of node-linked graphs

and treemaps by using the area of the circle to represent the
attribute values of the nodes and the nested relationship of the
circle to represent the hierarchical relationship among the nodes,
with all child circles contained in the parent circle. Chen et al.82

used two circle packings in juxtaposition (Fig. 6, view A2) to
visualize two MRL trees, enabling users to compare and analyze
the MRL standards of two countries or regions. MRL standards are
classified by agricultural products (which is a tree structure), and
the problem of comparing two MRL standards can be transformed
into a problem of comparing two trees. A nested structure is used
to describe the hierarchy of agricultural product classification, and
the area of the circle is used to represent the number of MRL
standard records for an agricultural product.
A radial ring is also a space-filling method, but its internal space

utilization is low. Therefore, to fully utilize the space near the
center of a radial ring, Chen et al.88 designed a combined method
based on the radial ring and node-linked methods, called sunburst
with ordered nodes based on hierarchical clustering (SONHC). The
designed method can simultaneously display two types of
hierarchical data, as shown in Fig. 3b. It uses the outer radial
ring to display the hierarchical structure of pesticides, and the
inner node-linked tree to display the hierarchical structure of
agricultural products. It establishes the association between
agricultural products and detected pesticides through the link to
help relevant analysts examine the relationship between them. A
chordal graph is also a combination of the radial ring and node-
linked methods. Postolache et al.89 designed a chordal graph to
show the association between hazards and dairy products in
Fig. 3c. Du et al.90 proposed a transformation-based graph, called
TransGraph, for analyzing relations in a dataset by combining
donut and radial rings. This graph supports the analysis of the
association between agricultural products and pesticides and the
hierarchical association of pesticide residues. Luo et al.91 designed

Fig. 3 Examples of hierarchical and associated data visualization. a Treemap shows the distribution of pesticide residues detected in fruits
and vegetables in 10 regions of Tianjin in January 201487. b SONHC displays the hierarchy of pesticides with an external radial ring and the
hierarchy of agricultural products with an internal node-linked tree88. c Chordal graph presents the association between hazards and dairy
products89.
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a sunburst with an embedded chordal graph (SECG) and an
overlapping circular treemap (OCT) to lay the foundation for a
comprehensive comparison of pesticide MRL standards.

Spatial-temporal data visualization
The spatial-temporal analysis of food safety data with spatial and
temporal characteristics enables researchers to identify the
geographical distribution and trends over time of food safety
risks. Visualization methods for spatial-temporal data include map-
based methods, timeline methods, and spatial-temporal correla-
tion methods.
Most spatial data involved in food safety are geographic area

data ranging from countries and provinces to as small as a block
or a supermarket. Representative visualization methods based on
maps are choropleth maps and cartograms. A choropleth map
assumes that the attributes of the data are evenly distributed
within an area. It uses colors to represent the inherent patterns of
the data, such as an atlas of pesticide residue levels in fruits and
vegetables on the market in China compiled by Pang et al.92.
Cartograms have been proposed to solve the problem of
asymmetry between data distribution and geographic area size
in choropleth maps. A cartogram can replace the real area of a
region with the size of an attribute value and then distort and
deform the geographic region to reflect quantitative character-
istics more intuitively93. Plaza-Rodrıguez et al.94 used a cartogram
to analyze the spatial distribution of the detection rates of
Campylobacter spp. in retail raw chicken meat in Germany
(Fig. 4a). The size of the states in the cartogram map was
modified by prevalence, such that small geographic areas with a
high prevalence can also receive attention.
The timeline method for time-series data can more intuitively

reflect the patterns and trends of data changes over time and also
show the data details. Time-series data are typically expressed in
the form of a timeline. Simpson et al.118 proposed multiple multi-
panel plots to capture temporal trends and seasonal patterns of
salmonellosis. A multi-panel plot includes a rotating histogram of
monthly rate frequency (left panel) and a time series of monthly
rates (right panel) for salmonellosis in the United States from 1996
to 2017. Overlaid annual time series plots of monthly rates, a box
plot of average monthly rates for the 22-year period, and overlaid
yearly radar plots of monthly rates comprise another multi-panel
plot for displaying seasonal signatures of salmonellosis monthly
rates in the United States from 1996 to 2017.
Spatial-temporal correlation is a common data analysis task in

food safety. Exploring spatial-temporal correlations in data enable
analysts to grasp the geographical distribution characteristics and

the development trend of food attributes over time. Chen et al.87

proposed a visualization method, called ordered small multiple
treemaps (OSMT), which used juxtaposed treemaps to visualize
the changes in pesticide residue exceedance rates of fruits and
vegetables in 10 regions of Tianjin for each month in 2014
(Fig. 4b). Twelve treemaps are juxtaposed to represent the
changes in twelve months, and each treemap represents the
exceedance rate of pesticide residues in fruits and vegetables in
ten regions of Tianjin within a certain month.

Interaction in visualization
Interaction, where user actions cause the view to change, is crucial
for building a visualization system that handles complexity6. When
datasets are large enough, the limitations of both people and
displays preclude just showing everything at once, changing the
view over time, and switching among multiple linked views
through the interaction are good solutions. For example, an
interactive visualization tool can support investigation at multiple
levels of detail, ranging from a very high-level overview down
through multiple levels of summarization to a fully detailed view
of a small part of it.
A view that changes over time can dynamically respond to user

input, rather than being limited to a static image. The common
interaction operations in visualization are selection, navigation,
and filtering. Selection, or marking data objects of interest, is
commonly performed by selecting objects with interactive
hardware, such as a mouse, keyboard, etc. Navigation, which
typically involves the actions of zooming, panning, and rotating,
refers to observing the different aspects of the dataset by
changing the viewpoint. Filtering displays a part of the data based
on certain conditions. Shneiderman proposed that the golden rule
of visualization design is “overview first, zoom and filter, and
details on demand”95. The basic idea is to first display an overview
of the dataset and then show the details of interest to the user by
zooming and filtering. The overview provides the user with a
general impression of the data structure and other global
information. The details are the information filtered through user
interaction and help users to explore the data of their interest in
depth. Consequently, the “overview + details” is one of the
primary modes of visual interaction and makes delving deeper
into the implied relationships between data become easier for
the user.
Switching among multiple linked views is another popular

choice in visual design. Multiple views juxtaposed side by side are
spread out in space is an alternative to a changing view where the
information is presented to the user. It mainly includes two

Fig. 4 Examples of spatial-temporal data visualization. a Prevalence rates of Campylobacter spp. in raw chicken meat in German are
compared by choropleth map (A1) and Cartogram (A2)94. b Ordered small multiple treemaps show the excess rate of pesticide residues for
fruits and vegetables in 10 areas of Tianjin for 12 months in 201487.
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methods: (1) the multiform design is to use a different encoding in
each one to show the same data; (2) the small multiples
coordination design involves partitioning the data between views.
In practical analysis, users typically need to switch between
multiple views and observe the dataset at different levels. Chen
et al.86 proposed a Rank-Vis system with multi-view coordination
to help users quickly locate highly contaminated agricultural
products and pesticides with high residue levels, as shown in
Fig. 5. Users can select a dataset and filter the data of interest in
the parameter panel (View E). After selecting the data, two matrix
heatmaps for the product–pesticide association will be created in
Views A1 and A2. The word clouds on the right show the names
and detection frequencies of pesticides (View B1) and agricultural
products (View B2). When users click on pesticide in the word
cloud (View B1), a pie chart is generated, showing the percentage
of detected pesticides in four residue levels (View C). When users
click on an agricultural product in the word cloud (View B2), a
parallel coordinate is generated, presenting detailed information
about the agricultural product (View D). Through interaction, users
can quickly find agricultural products with serious contamination
and pesticides with high residue levels, enabling them to analyze
their categories, residue levels, and MRLs comprehensively.
Another multi-view coordination visual analytics system, called

the multi-comparable visual analytics system (McVA), was
proposed by Chen et al.82. It provides interactive techniques to
help users compare MRL standards of two different countries or
regions. As shown in Fig. 6, when users select the product
category and country or region in View A1, View A2 will display the
MRL standards for selected agricultural products in the selected
regions by using two juxtaposed circle packings. Users can use the
lasso tool to circle the subcategory of produce in View A2 and then
compare the difference in the number of standard limits in two
regions for each agricultural subcategory. The product data
displayed in other views (View B1, B2, B3, C) are updated as the

user circles the data. The radar in View C compares the hierarchical
structure of MRL standards in two regions from six dimensions,
including three indicators to assess the overall structure and three
indicators to assess the substructures chosen by users. The word
cloud in View B1 and the parallel coordinates in View B2 can
effectively filter and show the MRL value of user-specified
agricultural products and the distribution of pesticide toxicity.
The bar chart in View B3 not only helps users compare the
quantities of agricultural products, pesticides, and standard limits
in different regions but also explore the relationship between the
selected and total data. Through an efficient interactive approach,
McVA provides users with considerable convenience in comparing
and analyzing two different MRL standards in a comprehensive
and multi-level manner.

Visual Analytics Tools
Visual analytics tools can generally be divided into two categories:
interactive and programmatic visualization tools. Interactive
visualization tools typically complete the editing and drawing of
visual charts by dragging data and selecting templates. Excel is
the most common and basic visualization software. However, it
can only draw simple visual graphs with fixed graph styles, such as
bar charts and pie charts. Tableau96 is an easy-to-use visualization
software that allows users to perform data analysis and create
visual charts in a WYSIWYG manner, without programming.
DataV97,98 is a mature drag-and-drop chart creation production
built upon a web-based architecture. It allows users to edit and
save their visual creations in an online editor without professional
knowledge of programming. Programmatic visualization tools are
frequently a JavaScript library that can be introduced into visual
design projects to support the autonomous creation of interactive
visual interfaces. Echarts99 is an open-source visualization library
that is compatible with most current browsers; it can provide
intuitive, interactive, and highly customizable data visualization

Fig. 5 Interactive visual analytics system Rank-Vis for quickly locating pesticides with high residue levels and highly contaminated
agricultural products86. After selecting the pesticide-residue dataset and filtering the data of interest in the parameter panel (View E), two
matrix heatmaps for the product–pesticide association will be created in Views A1 and A2. View B1 and B2 are the word clouds, in which the
sizes of the pesticide and agricultural product names are mapped to the pesticide residue detection frequencies. Pie chart in view C shows the
percentages of four residue levels in different agricultural products selected by clicking their names in view B1. Parallel coordinate in View D
shows the detailed information of a specific agricultural product selected by clicking its name in View B2.
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charts. Its website100 also contains a rich set of examples and
tutorials that are easy to use. D3 (Data-driven documents)101,102

provides efficient data-driven document object model (DOM)
manipulation and supports custom charts and complex interac-
tion designs, which is widely used in the academic community.

OPPORTUNITIES AND CHALLENGES
Although visual analytics has been widely applied to solving food
safety problems and has achieved promising results, several
challenges remain. Here, we discuss the major challenges and
potential horizon for the applications of visual analytics in food
safety RAPW.

Visual analytics of multimodal food safety data
With advances in detection instruments and information technol-
ogy, food safety data is not only growing rapidly in quantity but
also diversifying in data types, such as digital, text, image, audio,
video, etc. Deep learning, with a large number of successful cases
in image processing, speech recognition, text mining, object
detection, and so on, has recently been the data analysis tool to
solve the problems and challenges in food domain, including food
recognition, calories estimation, quality detection of fruits,
vegetables, meat and aquatic products, food supply chain
management and detection of food contamination4. However,
only a few multimodal food safety data were used in visual
analytics of food safety risk. This is because most existing visual
analysis methods for food safety data focus on small-scale, single-
source, single-modality data. Joint analysis of data from different
sources and modalities is required to obtain complementary
information in practical applications. Food knowledge graphs,
which emerged in recent years, can transform huge amounts of
multidisciplinary and heterogeneous food data from different

sources into entities and relations in the form of graphs, and can
effectively express the semantic relations between entities. They
have been applied in the food science and industry for food
search and question answering, personalized dietary recommen-
dation, food analysis and visualization, and food traceability103,104.
Multimodal data fusion can automatically analyze and synthesize
multimodal data to accomplish the required decision-making and
assessment tasks, showing great potential in food risk identifica-
tion and monitoring. Therefore, a key trend in this industry is to
explore broad-spectrum visual analytics techniques that combine
data fusion, knowledge graph, text mining, image recognition,
and video processing in the visual analytics pipeline for analysis of
multimodal food safety data, enabling more accurate food safety
assessments and prewarning.

Application of AI in the visual analytics pipeline
AI represented by ML and DL has begun to be applied to improve
performance at each stage of the visual analytics pipeline. In the
data analysis stage, AI can offer precise and effective solutions for
data preprocessing, transformation, projection, and other steps,
while providing scientific models for food safety risk assessment
and prewarning. Compared with traditional data analysis meth-
ods, DL methods can better solve classification, prediction, and
recommendation problems in food safety. For instance, DL models
like CNN and LSTM have achieved promising results62,105 in food
identification, risk assessment, risk prediction, and healthy recipe
recommendation. In the future, advanced DL models like
Recurrent Neural Network (RNN), Transformer, Generative Adver-
sarial Network (GAN), and Graph Neural Network (GNN) will be
introduced to further enhance the processing and analysis
capabilities of food safety data. In the visualization stage, AI
techniques such as neural networks, knowledge graphs, and
reinforcement learning are applied to learn data characteristics

Fig. 6 A Multi-comparable Visual Analytic system (McVA) for comparing the MRL standards of different countries or regions82. Users can
select the product category and country or region in View A1, then compare the difference in the number of standard limits in two regions for
each agricultural subcategory in View A2. The word cloud in View B1 and the parallel coordinates in View B2 show the MRL value of user-
specified agricultural products and the distribution of pesticide toxicity. The bar chart in View B3 can helps users compare the quantities of
agricultural products, pesticides, and standard limits in different regions. View C can help users compare the hierarchical structure of MRL
standards in two regions from six dimensions.
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and analysis tasks, enabling the automatic selection of visualiza-
tion design schemes that better match the requirements of data
and analysis tasks106–108. For example, it is possible to auto-
matically select mapping methods (e.g., scatterplot, parallel
coordinates, and node-linked graph), layout (e.g., orthogonal
and radial), and color scheme using LSTM, RNN, Translating
Embedding (TransE), Deep Q-Network (DQN) and other mod-
els109–112. These techniques of automatically creating visualization
schemes will considerably lessen the workload of visualization
design for experts in food safety, enabling them to analyze and
predict food safety risks more efficiently. In particular, the
popularity of ChatGPT has led to a keen awareness that Artificial
Intelligence Generated Content (AIGC) will lead the way to the
latest paradigm in research. In food safety RAPW, AI automated
design and generation of visualization schemes will also become a
hot research topic. In summary, another significant trend in this
industry will be the deep integration of AI and visualization
approaches to achieve more scientific and effective food safety
risk analysis and prewarning.

Building and sharing of multimodal food safety database
Future AI-based visual analytics of multimodal food safety data
will heavily rely on large-scale data. More specifically, food safety
association visual analysis requires cross modal, cross spatial-
temporal, and cross domain data to design charts, while ML and
DL require a large amount of fine-grained food safety data to train
models. Currently, detailed information on food classification,
physicochemical properties of contaminants, sampling informa-
tion, limit standards, and warning reports is available in some
online databases released by food safety authorities (as described
in Section Data Sources). Some food nutrition databases (typically
represented by MADiMa113 and Nutrition5k114) released by
academic research teams provide food images, ingredient
information, and nutrient content together with the correspond-
ing annotations and labels. Although these data serve as the
foundation for association visual analysis of food safety risks, they
are still insufficient for visual risk analysis and prewarning, in terms
of data type, data granularity, and data content, and still need to
be constantly updated and supplemented. In addition, the ability
of a person, research team, institution, or country to collect data is
limited4. It is essential to establish data sharing mechanisms to
maximize the sharing of multimodal food safety data. Meanwhile,
more efforts should be made to enable the entire industry
compliance with General Data Protection Regulation (GDPR) rules
to protect data privacy while allowing data sharing due to the
sensitive nature of food safety data. In short, the building,
accumulation, and sharing of multimodal food safety databases
will be a long-term issue to be addressed for AI-based visual
analytics of multimodal food safety data.

More user-friendly visual analytics systems
Data visualization and interaction are two important means by
which visual analytics can help users gain insight into the data.
Designing easy-to-understand data visualization representations
and user-friendly interactions are two important aspects in the
development of visual analytics systems. Typically, most people
working in food safety data analysis, with extensive food domain
expertise and experience, are not computer domain professionals
and not necessarily familiar with computer expertise, especially
visualization techniques. Many existing visual analytics systems
provide relatively complex visual representations that require a
certain level of visualization knowledge learning and training for
non-computer professional users to become proficient in their
use. This prevents experts in food from focusing on domain issues
and limits the widespread use of visual analytics systems in food
safety. Therefore, it is an urgent problem to design visualization
schemes that are more easily understood by domain users, such

as improvements and combinations of their familiar scatter, bar
charts, pie charts, and node-link diagrams. In addition, most
interactions used in existing visual analysis systems are limited to
traditional keyboard and mouse interactions, which do not give
full play to human perception and cognitive abilities. Applying
advanced human-computer interaction techniques, such as eye
tracking, gesture recognition, speech recognition, and natural
language processing, to develop more convenient and easy-to-
use interaction methods that enable users to communicate more
naturally with computer systems115–117, is also one of the future
research opportunities. In conclusion, the design of more user-
friendly (i.e., easier to understand and use) visual analytics systems
based on specific data characteristics and analysis tasks in food
science and engineering is also one of the future efforts.

DISCUSSION
In this paper, we reviewed data analysis methods and visualization
approaches in food safety, which are categorized via the visual
analytics pipeline, emphasizing the application of techniques
involved in each stage of the pipeline for food safety RAPW. The
reviewed literature shows that visual analytics techniques have
played an important role and shown great potential in practices of
food safety RAPW in recent years. The deep integration of
visualization and AI can overcome the limitations of traditional
techniques related to RAPW. However, some challenges remain
unsolved in this field due to the complexity of food safety risk
factors and risk analysis. We also provide the latest ideas for future
development of RAPW, such as the visual analysis of multimodal
food safety data and the application of AI techniques to the visual
analytics pipeline. The objective of this work is to stimulate
researchers to propose more excellent visual analytics solutions
for more effective food safety RAPW and to provide strong
support to food safety regulation.
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