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Aerosol jet printed capacitive strain gauge for soft
structural materials
Kiyo T. Fujimoto 1,2,3, Jennifer K. Watkins 1,2,4, Timothy Phero 1,2, Doug Litteken 5, Kevin Tsai3, Takoda Bingham6,
Kshama Lakshmi Ranganatha7, Benjamin C. Johnson7, Zhangxian Deng6, Brian Jaques 1,2 and David Estrada 1,2✉

Soft structural textiles, or softgoods, are used within the space industry for inflatable habitats, parachutes and decelerator systems.
Evaluating the safety and structural integrity of these systems occurs through structural health monitoring systems (SHM), which
integrate non-invasive/non-destructive testing methods to detect, diagnose, and locate damage. Strain/load monitoring of these
systems is limited while utilizing traditional strain gauges as these gauges are typically stiff, operate at low temperatures, and fail
when subjected to high strain that is a result of high loading classifying them as unsuitable for SHM of soft structural textiles. For
this work, a capacitance based strain gauge (CSG) was fabricated via aerosol jet printing (AJP) using silver nanoparticle ink on a
flexible polymer substrate. Printed strain gauges were then compared to a commercially available high elongation resistance-based
strain gauge (HE-RSG) for their ability to monitor strained Kevlar straps having a 26.7 kN (6 klbf) load. Dynamic, static and cyclic
loads were used to characterize both types of strain monitoring devices. Printed CSGs demonstrated superior performance for high
elongation strain measurements when compared to commonly used HE-RSGs, and were observed to operate with a gauge factor of
5.2 when the electrode arrangement was perpendicular to the direction of strain.
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INTRODUCTION
Soft structural textiles, also known as softgoods, that are
lightweight while also exhibiting high strength are of particular
interest to the space industry for inflatable habitats, parachutes
and decelerator systems. The advantages of these technical
textiles over traditional structural materials such as metal alloys
and rigid composites are found in the significant mass and volume
savings that they provide1. Benefits aside, complexities emerge
from the need to incorporate non-destructive/non-invasive testing
methods for structural health monitoring (SHM), which requires
monitoring systems capable of measuring very high rates of
strain2. SHM systems for inflatable habitats, parachutes and
decelerating systems are used to ensure the safety of crewmem-
bers, aim to establish an emergency notification system, and
enable smart entry, descent, and landing (EDL) operations. Ideally,
SHM systems for these applications would provide continuous
monitoring of strain/load to detect, diagnose and locate damage
in real time for continuous monitoring and also after incident3.
Detecting mechanical deformations is achieved with a variety of

sensing mechanisms such as capacitance, resistance or piezo-
electric properties. However, the most widely used strain sensing
devices, are resistance-based strain gauges (RSG)4. Traditionally,
strain gauges are intended for use with metals, they employ
relatively stiff substrates, operate most effectively at room
temperature before corrections must be incorporated, experience
strains under 5%, display hysteresis in long-term testing, and
undergo mechanical failure at higher strains2–5. When considering
soft structural materials strain gauges must be capable of
withstanding high rates of strain (5–50%) associated with
materials being under high load, but the inherent stiffness of
traditional strain gauges results in device failure, and classifies

them as unsuitable for the inspection of soft structural materials3,5.
Additional limitations of the more popular RSGs are found in the
dependence of resistivity upon operating temperature and
applied strain4,6,7. Dependencies such as this result in a non-
linear strain response and device hysteresis caused by variable
sensitivity as the gauge factor does not remain constant during
testing6–8. Finally, the fabrication of traditional strain sensors
involves complex preparation processes resulting in high fabrica-
tion cost and material waste, which can limit their application and
development. Hence, developing strain sensing methods for soft
structural materials requires the ability to fabricate devices having
high flexibility and a robustness that enables them to withstand
harsh environments to include high strain and high temperatures.
Capacitance based strain gauges (CSGs) provide a robust

sensing mechanism capable of addressing the performance issues
associated with resistivity hysteresis of RSGs. CSGs are largely
dependent on geometry changes between the electrodes and the
dielectric layer which typically do not suffer permanent plastic
deformation during cyclical testing2,9. These devices, in general,
include parallel-plate capacitors or an interdigitated electrode
design4,5,10,11. CSGs can be used for many of the same applications
as RSGs, and typically display higher gauge factors of 15–30, while
also having reduced sensitivity to noise and temperature2.
Currently, commercial CSGs are available, and typically consist of
a parallel plate design restricting strain measurements to those
that are perpendicular to the gauge direction, are limited in the
geometries they can monitor, or require bulky electromechanical
devices for mechanical attachment2,12. These issues can be
overcome by using CSGs having an interdigitated electrode
design13,24. Interdigitated electrodes preserve the advantages
associated with CSGs vs RSGs in harsh environments, while also
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providing a vehicle by which CSGs can integrate directly onto
structural components. Previous testing has been conducted on
Kevlar webbing with flexible strain gauges and it was concluded
that CSGs performed better than RSGs in dynamic and long term
loading conditions similar to those that were investigated within
this work3. Finally, using capacitance as the sensing mechanism
makes the sensor more suitable for applications where wireless
strain sensor measurements are required10,14. This would be
tremendously advantageous for SHM during smart EDL
operations.
Introducing the flexibility needed for SHM of soft structural

materials can be achieved by making use of recent advances in
additive manufacturing for printed and flexible electronics.
Additive manufacturing techniques such as aerosol jet printing
(AJP) are relatively simple and low-cost manufacturing processes
that can be used to fabricate flexible CSGs where typical
substrates employed for flexible applications include polyimide,
polyethylene terephthalate and polydimethylsiloxane2,15–18.
Printed electronics involve the use of a functional material in
the form of a nanoparticle suspension, or ink, that is then
deposited onto a flexible polymer backing. After deposition, the
solvent and dispersing/capping agents are removed to produce a
functional device, which is then attached to either the users
clothing or skin. This cross-cutting technology demonstrates
significant potential for SHM of soft structural materials as the
functionality of these devices are dependent upon their high
flexibility, long durability, fast response, fast recovery time and
high sensitivity to strain.
The AJP technology is a non-contact deposition based on the

atomization of inks to form a fine mist or aerosol that is deposited
on a substrate. The aerosol jet process eliminates many of the
limitations associated with conventional fabrication methods by
introducing the ability to print with a wide range of materials such
as metal nanoparticles, carbon nanomaterial, functional ceramics,
semiconductors, biological molecules and other functional mate-
rials as inks can range from 1 to 2500 cP15,19–23. In addition, device
designs are no longer material or geometry limited as AJP
introduces the ability to print on a variety of substrates/surfaces,
and provides a wide range of feature sizes that span 10 µm to
5mm24–27. With the ability to achieve higher print resolutions, AJP
has the potential to enhance device sensitivity by maximizing the
design space of structural health monitoring systems, and
provides a low-cost option for sensor fabrication28–30.
In this work we report, on the response of aerosol jet printed

flexible CSGs having an interdigitated electrode design (adapted
from Hu et al.) targeted for use on soft structural materials31. The

strain response of these printed gauges was then compared to
that of commercially available high elongation resistance-based
foil strain gauges (HE-RSG). This comparison was used to evaluate
the benefits of utilizing the advanced manufacturing technique of
AJP to fabricate a robust and flexible strain gauge, while also
serving to validate the advantages of a capacitive sensor for
measuring the strain of soft structural materials. Flexible CSGs
were fabricated via AJP using silver nanoparticle ink and a flexible
polymer substrate to monitor military grade Kevlar webbing under
high load as this material is typically used in EDL operations and
inflatable habitat structures. However, the focus of this work was
towards inflatable habitats. Dynamic, static, and cyclic loads were
used to characterize both types of strain monitoring devices.
Printed CSGs demonstrated superior performance for high
elongation strain measurements of Kevlar webbing when under
high load when compared to commonly used HE-RSGs, and were
observed to operate with a gauge factor of 5.2 when an electrode
arrangement perpendicular to the direction of strain was used.

RESULTS
Printed CSG design
Military grade Kevlar webbing is used for the construction of
inflatable habitats and parachutes, and the ability to measure the
strain experienced by these structures is a challenge for NASA3. To
produce a capacitive strain gauge, an interdigitated structure was
employed, which operates in a similar manner to having multiple
parallel plate capacitors in series. A schematic representation of
the device layout can be found in Fig. 1a, and an optical image of
the actual printed sensor in Fig. 1b. Capacitance was a result of an
interdigitated structure spanning 3.6 cm and 1.6 cm with 50 digit
pairs or 100 total electrodes. These specific design parameters
were chosen to maximize both the theoretical capacitance and
the sensing area. Additionally, size limitations were associated
with the capabilities of the aerosol jet printing technology, and
the 2.54 cm wide Kevlar webbing. Silver epoxy was used to attach
copper wire leads to the device, and poly methyl methacrylate
(PMMA), having a dielectric constant of 5.70, was used both as a
protective layer and as the dielectric between the electrodes to
enhance the device capacitance over what could be achieved if air
served the same function20. Finally, Kapton (FPC 5mil, 125 µm)
was selected as the flexible substrate as it is capable of
withstanding elongation that is significantly higher than the
maximum elongation of the Kevlar straps when subjected to
maximum loading capacity32. The CSGs were attached to the
Kevlar straps using All-Purpose Barge Cement (APBC).

Fig. 1 Design of printed flexible interdigitated electrode capacitive strain gauge. a Schematic of the sensor configuration having an
interdigitated electrode structure containing 50 digit pairs, b Optical image of capacitive strain gauge on Kapton substrate attached to Kevlar
strap (scale bar represents 1 cm).
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In Fig. 2, representative higher magnification images are shown
of the digits (Fig. 2a center and Fig. 2b ends) along with their
respective height profiles (Fig. 2c). As depicted, the electrode
morphology varies due to the formation of a bulb-like structure at
the electrode ends where variation is seen in both height and
width. Rahman et al. reported the formation of a similar feature at
the ends of their printed electrodes while also stating that this
change in morphology could be controlled by increasing the
printer’s shutter speed while using Clariant Prelect TPS 50G2 with
the ultrasonic atomizer33.
For this study, devices were printed using the pneumatic

atomizer for a silver nanoparticle based ink, PVNanoCell SicrysTM

160PM-116, known for having excellent adhesive properties with a
variety of substrates, and near bulk resistivity (10−6Ω cm). During
the printing process the shutter speed is ultimately controlled by
the “rapid” process speed, which controls the speed at which the
printer platen moves between depositions. For the fabrication of

the CSGs the maximum rapid speed was used, but the formation
of the bulb resulted despite modifications to other print
parameters such as atomizer, exhaust, and sheath flow rates. This
demonstrates that the quality of the print and ultimately the
device is dependent upon the ink and atomization process
being used.

Printed CSG structure
To further characterize the structure of the printed CSG, cross-
sectional SEM was performed to investigate both the quality of
the printed CSG and that of the dielectric layer (Fig. 2d). Preparing
the sample for imaging required the device to be mounted in
Quickstick 135 mounting wax prior to slicing with a microtome,
and finally the cross-section was carbon coated to minimize
surface charging while imaging. A top-down view of the overspray
is provided in Fig. 2a, and a cross-section view is presented in Fig.

Fig. 2 Micrographs depicting the morphology of silver lines deposited with aerosol jet printing. a and b Optical microscope images of
silver strain gauge on polyimide substrate (Scale bar represents 250 µm), and the c optical profilometry of AJP deposited silver electrodes on
polyimide. Cross-sectional scanning electron microscopy characterization to show d silver electrodes representative of AJP deposited strain
gauges (scale bar represents 50 µm), e PMMA dielectric thickness (scale bar represents 10 µm) and f printed silver thickness (scale bar
represents 2.5 µm).
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2e with the overspray creating a “tail” on either end of the digit.
From Fig. 2e, the overspray is more pronounced on the left side of
the digit, which indicates that N2 flow was not symmetrical
through the nozzle and/or the virtual impactor. The PMMA layer
was uniform having a thickness of 10.2 ± 0.1 µm demonstrating
that the drop cast method is an effective way of encapsulating the
digits, which is crucial for maximizing the measured capacitance
of CSG devices. The maximum thickness of the digit was 2.7 ±
0.1 µm, which is in good agreement with results obtained from
stylus profilometry (2.2 ± 0.5 µm). The cross-section profile shows
the porous nature of the printed structure, and with image
analysis software the porosity was determined to be 16.1 ± 0.4% of
the total electrode volume. Gaps/voids providing a porous
structure are an inherent feature found within AM devices that
is highly dependent upon the ink being printed26.

Printed CSG capacitance evaluation
The theoretical initial capacitance, C0, and theoretical strained
capacitance, were derived from previous work by Hu et al. and
Kim et al., and are expressed by4,31

C0 ¼ pt 2l � aþ 2wð Þ 2n� 1
d

� �
ε0 (1)

Cperpendicular ¼ ptð1� νeÞ ð1� veÞð2l � aþ 2wÞð Þ 2n� 1
dð1þ eÞ

� �
ε0

(2)

Cparallel ¼ ptð1� νeÞ ð1þ veÞð2l � aþ 2wÞð Þ 2n� 1
dð1� eÞ

� �
ε0 (3)

where p is dielectric constant of PMMA, t is the thickness of the
printed silver digit, l is the length of the digit, a is the total width
of the interdigitated electrodes, w is the width of the digit, n is the
number of digit pairs, d is the spacing between the digits of the
electrodes, e is the strain in the sensitive axis of the strain sensor
and ε0 is the permittivity of free space. The expected change in
capacitance resulting from a strain incident perpendicular and
parallel to electrode orientation is depicted in Eq. 2 and Eq. 3,
respectively. Briefly, when the device experiences strain perpen-
dicular to electrode orientation the spacing between electrodes is
expected to increase by a factor of d0(1+ e). However, due to
Poisson contraction, it is expected that a, w, and l will change by a
factor of (1+νe) from their original values, where ν is the Poisson
ratio of the encapsulating polymer. For the printed CSGs, the
encapsulating material is PMMA with a Poisson ratio of 0.3734.
With this phenomenon it is expected that as the PMMA is
elongated in one direction it compresses in the two directions
perpendicular to the direction of strain4. A schematic detailing the
variables used in Eq. 1 and 2 is provided in Fig. 3a, and the
associated dimensions are found within Fig. 3b. From the device
dimensions, the initial capacitance of the printed CSGs is expected
to range from 4.56 to 6.70 pF. However, the actual capacitance
was measured to range between 42 pF and 15 nF. The initial
capacitance values for each device can be found in Table 1., where
uncertainty in C0 and R0 is the standard deviation in measure-
ments. The significant deviation from theoretical capacitance is
attributed to the unique geometry of the digit introduced by the
printing process, which is evident in Fig. 2a–e where the electrode
structure with trailing ends associated with overspray is observed
in addition to a porous structure.

Fig. 3 Device design parameters for printed CSG interdigitated electrode structure. a Schematic detailing the variables to calculate
theoretical capacitance, and the b values associated with these variables, where dimension values are reported as an average with standard
deviations of measurements representative of the entire device.

Table 1. Summary of experiments.

Device Device type Test Type Electrode orientation relative to strain direction C0 or R0 Figure #

a Capacitive Dynamic, static Perpendicular 46.436 ± 0.002 pF 4a, 4c

b Capacitive Dynamic, static Perpendicular 15.22 ± 0.03 nF 4a, 4c

c Capacitive Dynamic, static Perpendicular 9.25 ± 0.04 nF 4a, 4c

d Capacitive Dynamic, static Parallel 42.51 ± 0.02 pF 4b, 4d

e Capacitive Dynamic, static Parallel 43.61 ± 0.02 pF 4b, 4d

f Capacitive Cyclic Perpendicular 11.07 ± 0.03 nF 4e

g Capacitive Cyclic Perpendicular 43.57 ± 0.04 pF 4e

h Capacitive bending N/A 6.22 ± 0.02 pF 4f

HBM_1 Resistive Dynamic, Static Perpendicular 353Ω 5a, 5c

HBM_2 Resistive Dynamic, Static Perpendicular 353Ω 5a, 5c

HBM_3 Resistive Cyclic Perpendicular 350Ω 5c

HBM_4 Resistive Cyclic Perpendicular 350Ω 5c
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Overspray is caused by the smallest droplets within the aerosol,
and can be minimized to some extent by varying the sheath,
exhaust, or atomizer flow rates35,36. However, overspray, like void
formation, is an inherent feature of aerosol jet printed devices and
was found to contribute between 5 and 25 µm of additional width
to the digits. Additionally, an internal capacitance may exist within
the digits themselves which is associated with the structure voids
themselves with air serving as the dielectric. While AJP provides
significant versatility from its compatibility with a broad range of
materials, consistency and reproducibility are challenges that
need to be overcome. For experienced users, optimizing print
parameters to mitigate these challenges can require extreme
measures which include, but are not limited to, frequent
replacement of ink and extensive time spent towards empirical
optimization for this sensitive process21,23,35,37,38.

CSG and RSG tensile testing
Capacitance and resistance measurements for printed CSGs and
commercial RSGs, respectively, were collected for each sample
prior to any load/strain being imparted to the Kevlar strap, and
compared to measurements obtained before the samples were
mounted into the test system to verify that no damage to the
gauge had occurred during transport and setup. For each device
that was tested the initial capacitance and resistance measure-
ments can be found in Table 1. Final measurements were
recorded for each sample at the conclusion of testing after the
strain was released and the strap allowed to relax. However, due
to the natural stretch of the Kevlar material the straps did not
return to their original dimensions, and were permanently
elongated after tensile loading.
Printed CSG’s exhibited initial capacitance measurements that

ranged from ~45 pF to ~15 nF at 10 kHz with a 5 V bias. As the
observed range is significant between the printed strain gauges,
representative devices from both the pF and nF regime were
originally included with both perpendicular and parallel arrange-
ment of electrodes with respect to the direction of strain.
However, the device detached during dynamic testing with the
representative nF device with electrodes parallel to the direction
of strain.
As this work was a result of a collaboration with NASA Johnson

Space Center, testing was performed in a manner that was in
agreement with previously performed testing procedures3. The
response of both capacitive and resistive devices was investigated
while under dynamic, static, and cyclic loading. Mechanical testing
was performed by subjecting the Kevlar webbing to targeted
loading conditions rather than strain. This was the method for
testing due to the fact that variations in the Kevlar webbing,
attributed to the weaving process of these textiles, causes samples
subjected to the same loading conditions to exhibit a different
strain response between samples32. As the webbing is rated
according to a maximum loading capacity of 26.7 kN, a peak load
of 18.7 kN was selected for dynamic and static testing as it is 70%
of the maximum capacity of the Kevlar webbing. Furthermore,
cyclic testing was performed at targeting loads of 5.3 kN (1.2 klbf)
and 10.7 kN (2.4 klbf) or 20% and 40% of maximum loading
capacity of the Kevlar webbing, respectively. The targeted loads
for dynamic and static testing resulted in a strain response of >5%,
which still classifies the strain at which these samples were
subjected to as relatively high. For reference, a summary of
experiments can be found in Table 1. In addition, loading
conditions were achieved with a ramp rate of 45 N s−1 or (10 lbf
s−1). Throughout dynamic testing measurements were collected
at 4.4 kN (1.0 klbf), 8.9 kN (2.0 klbf), 13.3 kN (3.0 klbf), 17.8 kN
(4.0 klbf) and 18.7 kN (4.2 klbf).

CSG Tensile testing results
For CSGs having electrodes arranged perpendicular to the
direction of strain an inverse relationship was observed as
depicted in Fig. 4a, where the MRCC (maximum relative change
in capacitance) was ~20% for devices having a starting
capacitance in the nF regime, and ~3% for a pF starting
capacitance. This negative change in capacitance for electrodes
positioned perpendicular to the direction of strain is due to the
increasing elongation of the strap, which increases the distance
between the electrodes resulting in a decrease to the capacitance.
The indirect relationship between strain and capacitance was
confirmed through 3D finite element modeling utilizing key
material properties (Supplementary Fig. 1 and Table 1). However,
the magnitude of relative capacitance change and corresponding
gauge factor is significantly different, and that is attributed to the
device features introduced from the printing process (Supple-
mentary Fig. 2). During testing, images were captured at each
change, targeted load, and/or time point. Utilizing Digimizer
software, and images obtained while testing when electrodes
were perpendicular to the direction of strain, the change in
distance between the top of the first electrode to the bottom of
the last electrode from an applied load of zero to 18.7 kN
(4.20 klbF) was determined to be 815 µm. So, as the Kevlar
webbing was under high load, the sensor experienced a strain of
0.037 while the webbing experienced an average strain of 0.060 ±
0.001. With that, a gauge factor of 5.2 was obtained for the
perpendicular orientation with devices having a starting capaci-
tance within the nF range. In contrast, a direct relationship
between load and capacitance was observed for devices with
electrodes arranged parallel to the direction of strain. As the strap
is elongated, and the polyimide substrate is stretched, the spacing
between the electrodes is decreased resulting in larger capaci-
tance values. From Fig. 4b the MRCC differed by a factor of 2.3
where the MRCC for Device D was 1.6%, and for Device E was
3.7%. Dynamic testing finished immediately after a maximum load
of 18.7 kN (4.2 klbF) had been reached, and static testing began.
To demonstrate the printed CSGs ability to maintain a signal while
under a constant load, the devices were held for a total of 65 min
with measurements collected in 5 min intervals (Fig. 4c). As shown
in Fig. 4c, d, while all devices were able to maintain a signal for the
duration of testing, the arrangement with electrodes perpendi-
cular to the direction of strain produced a signal having less
hysteresis over the observed timeframe. Finally, cyclic testing was
conducted for devices having electrodes arranged perpendicular
to the direction of strain by cycling between 5.3 kN (1.2 klbf) and
10.7 kN (4.2 klbf) for a total of ten cycles (Fig. 4e).
For practical application of the printed CSG’s it will be necessary

to quickly and efficiently obtain the capacitance read out for
analysis while minimizing the effects of interference. The ability to
accommodate a large capacitance range from printed strain
gauges while having a fast and efficient response can be achieved
using a digital read out that uses frequency rather than voltage
(See Supplementary Figs. 3–5).

RSG tensile testing results
Utilizing the same attachment strategy and testing conditions, the
resistance behavior of commercially available HE-RSGs (HBM, Inc.,
1-LD20-6/350) having a similar Kapton backing as the CSGs was
investigated to compare and evaluate their suitability for SHM of
soft structural materials. For HE-RSGs, per manufacturer instruc-
tion, the electrodes were positioned parallel to the direction of
strain. The mechanism for RSG response to strain is explained with
the following relationship

R ¼ ρL
A

(4)

where R is resistance, ρ is a material’s resistivity, L is total foil
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length, and A is the cross-sectional area of the foil. For strain
testing of these Kevlar straps, device elongation occurs with strain,
and it is expected that the resistance would increase with
increasing load. The response of HE-RSGs during dynamic testing
is shown in Fig. 5a, where a direct relationship between resistance
and load was observed up to 4.4 kN (1 klbf). While this direct
relationship is expected, after the load of 4.4 kN is reached the
resistance behavior transitions to an indirect relationship with the
applied load at 8.9,13.3,17.8, and 18.7 kN (2, 3, 4, and 4.2 klbf,
respectively). This behavior indicates that testing conditions may
have caused the gauge to exceed its elongation limit, and
demonstrates well-known limitations of foil based gauges for high
elongation applications39,40. For high elongation applications
where the plastic elongation conditions are met, the linearity of
the strain device can vary as the gauge factor is known to modify

using the guideline of 2+ ε, where ε is the strain such that the
gauge factor at a strain level of 10% is expected to be around 2.1
in tension33,39,. Immediately after a maximum load of 18.7 kN
(4.2 klbf) was achieved with dynamic testing, static testing began
for period of 65 min (Fig. 5b). Another limitation is revealed during
dynamic testing as signal hysteresis is shown to progress over the
observed timeframe for all HE-RSG devices, which demonstrates
an inability to reliably monitor strain for extended periods of time
while under a constant load. Finally, HE-RSGs were subjected to
cyclic testing (Fig. 5c). Cyclic testing provided further support of
the aforementioned limitations of HE-RSGs as similar resistance
behavior was observed after the initial target load is achieved, and
signal degradation was apparent for each cycle after equilibrium
had been achieved. The first cycle reveals that an equilibrium
must be established prior to conducting strain measurements as

Fig. 4 Printed capacitance-based strain gauge dynamic, static and cyclic tensile testing results. Relative change in capacitance (%) for
printed CSGs where a total of seven different devices (Table 1) were utilized for either dynamic (devices a–e), static (devices a–e), or cyclic
(devices f, g) testing. Results for dynamic testing with a target load of 18.7 kN for devices having electrodes a perpendicular (devices a–c) and
b parallel (devices d–e) to the direction of strain. Results for static testing performed at 18.7 kN for those same devices having electrodes
c perpendicular (devices a–c) and d parallel (devices d-e) to the direction of strain, and e cyclic testing of two different devices (f, g) having
electrodes perpendicular to the direction of strain. Error bars are the estimated experimental uncertainty (Supplementary Discussion). In all
images, scale bars represent 1.0 cm.
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the resistance decreases with the transition from 5.3 kN (1.2 klbf)
to 10.7 kN (2.4 klbf). However, the following cycles produce the
expected resistance response where an increase in resistance is
observed as the applied load increases, and a decrease in
resistance is observed as the applied also decreases. Notably,
signal hysteresis associated with the HE-RSGs is observed for all
three testing conditions and provides evidence that printed CSGs
exhibit superior performance with high elongation testing
conditions resulting in these devices being considered better
suited for SHM for soft structural materials than HE-RSGs.

DISCUSSION
Variation in initial capacitance values, device response for the first
couple of strains, etc., can be compensated for with calibration for
the intended application of structural health monitoring of soft
structural materials for inflatable habitats. For a crewed, inflatable
space habitat, a series of strain sensors would be used in a
network for structural health monitoring of the habitat. The
sensors would be calibrated on the ground before launch when a
precise amount of strain could be applied to the straps. Once the
calibration is completed, the strain sensors would be powered off
until needed again in space. After launch, deployment, and
pressurization, an initial reading would be taken to get a starting
strain for the strap material. This strain level would be compared
to the levels recorded during the ground calibration testing to
ensure no strain changes occurred during the launch phase. While
the habitat will stay pressurized during its lifetime, the strain in the
straps and in the gauge will change over time. This change will be
tracked at regular intervals throughout the length of the mission
to provide an understanding of the structural health of the

habitat. Initial change during the first couple of strains can be
compensated with similar calibration exercises on the ground
before launch. The habitat will be testing in the space environ-
ment before it is launched and strain changes will be measured.
Those strain values are expected to be representative of what
would be seen during the initial change in strain once the gauges
and the habitat are in space. By conducting a series of ground
tests, we can fully understand and predict the behavior of the
habitat and the strain measurement system and use that
prediction to compensate the readings in space.
In summary, a capacitive based strain gauge was fabricated via

aerosol jet printing where silver served as the capacitive material
and PMMA the dielectric. Printed CSGs exhibited starting
capacitance values ranging from 42 pF to 15 nF. A flexible
substrate, Kapton, was employed to provide the required flexibility
for these devices to withstand high load/strain, and All-purpose
Barge Cement served as the adhesive between the Kapton and
the Kevlar strap. Dynamic and static testing was performed for
arrangements where the electrodes were oriented either perpen-
dicular or parallel to the direction of strain, and the perpendicular
arrangement was used for cyclic testing. Furthermore, HE-RSGs
were tested utilizing the same attachment strategy, under the
same conditions, to compare their response to printed CSGs, and
to evaluate their suitability for SHM of soft structural materials.
Devices having a starting capacitance in the nF range demon-
strated the highest sensitivity, and a gauge factor of 5.2 was
obtained for those devices having their electrodes arranged
perpendicular to the direction of strain. Finally, printed CSGs were
determined to be the better candidates for high elongation
application as they performed better in static situations, dynamic

Fig. 5 Strain response for commercial resistance-based strain gauges. The strain response of commercial RSGs having their electrodes
arranged parallel to the direction of strain during a dynamic testing with a ramp of 44.5 N/sec, b static testing at a load of 18.7 kN and c cyclic
testing utilizing loads of 5.3 kN and 10.7 kN. Error bars are the estimated experimental uncertainty (Supplementary Discussion). Scale bar
represents 4.0 mm.
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and cyclic events when compared to commercially available HE-
RSGs.

METHODS
Device fabrication
The layout of the interdigitated CSG device is shown in Fig. 1a. Device
fabrication began by depositing SicrysTM 160PM-116 (PV Nanocell) onto a
125 µm thick DuPontTM Kapton (FPC). Printing was achieved with the
pneumatic atomizer (PA) of an Optomec Aerosol Jet 200 equipped with a
200 µm nozzle. While printing, the ink was held at 23 °C to stabilize the ink,
and the printed films were heated at 300 °C for 30min. to remove any
residual solvent. The tool platen temperature, nozzle diameter, and
pneumatic atomizer, pneumatic exhaust and sheath gas flows were
optimized to ensure the line widths and material deposition of functional
materials were adequate to obtain conductive traces. Silver epoxy (Epotek,
H20E) was used to adhere 30-gauge copper wire to the printed contact
pads, and a layer of 950 PMMA A11 (Kayaku Advanced Materials, Inc.) was
drop-coated onto the surface of the device to serve as the dielectric. Both
the printed CSG and commercially acquired HE-RSG (HBM, Inc., 1-LD20-6/
350) devices were attached to Kevlar straps having a maximum loading
capacity of approximately 27 kN (6 klbf) with All-Purpose Barge Cement.

Characterization
Device imaging and dimensions were obtained by digital microscopy
(Keyence VHX-5000), scanning electron microscopy (FEI Teneo Field
Emission Scanning Electron Microscopy) and laser microscopy (Keyence
VK-Z260K 3D Laser Scanning Confocol Microscope). Additional height
profiles were obtained with a Bruker Dektak XT-A Stylus Profilometer fitted
with a 2 µm stylus. A Leica EM UC6 microtome equipped with glass blades
was used to produce CSG cross-sections. Furthermore, cross-sectioning
required devices to first be encapsulated in Quickstick 135 mounting wax
(Scanning Microscopy Services) prior to slicing. CSG cross-sections were
carbon-coated to prevent charging of the specimen.

Device attachment
Strain gauges were attached to Kevlar webbing (1991-25.4mm, Type VI,
Class 9) nominally rated at 26.7 kN (6 klbf), and manufactured to Mil-T
87130 manufacturing specifications. Attaching the gauges to the Kevlar
webbing was accomplished with a contact cement known as APBC (All-
Purpose Barge Cement; Barge Cements, Inc.). This cement is a
polychloroprene based adhesive that is well known for its high strength
and flexibility and is typically used in the leather, shoe and prosthetic
industries. While the tensile modulus for APBC is not reported or available,
polychloroprene is reported to have a tensile modulus of 21MPa41. This is
well below the tensile modulus for Kapton and Kevlar, which indicates that
it is well-suited for the intended application. For testing purposes, multiple
adhesives were considered including Double/Bubble epoxy, Pliobond 25,
DAP Cove Base Zocalo construction adhesive, and GE silicone II caulk.
However, APBC was the only adhesive capable of maintaining the integrity
of the bond while under high strain such as that produced while testing
Kevlar straps. Adhering the printed CSGs and RSGs to the Kevlar strap
began by applying a thin layer of APBC to both the testing strap and the
backside of the printed CSG or RSG. The two items were immediately
bonded together with the adhesive sandwiched between the CSG or RSG
backing and the strap. The bond was cured for 24 hours.

Testing
After the bond was fully cured the Kevlar straps were attached to the
webbing grips on the MTS test system by wrapping each end of the strap
at least three times around the grip to ensure the strap would not come
loose during testing. The grips were positioned such that there was ~24
inches between the base of each grip with the strain gauge positioned in
the center. Samples tested included gauges mounted with electrodes both
perpendicular and parallel to the direction of strain resulting in positive
and negative changes in capacitance, respectively. The leads to the LCR
meter were attached and supported to ensure the leads would not come
into contact with each other, would not place undue tension on the
copper wire attachments, and would remain relatively stable during
testing. CSG devices were attached both perpendicular and parallel to the
direction of strain while RSG devices were only tested having electrodes

parallel to the direction of strain, and both types of devices were attached
to Kevlar straps with All-Purpose Barge Cement. Strain testing was
performed with an MTS 810 Material Test System equipped with a 100 kN
load head, ADMET GRW-50T (Part No. 3218-00225) webbing grips, and
FlexTest SE Station Manager software. Capacitance measurements were
obtained with an Agilent HP 4284A Precision LCR Meter (10 kHz at 5 V), and
resistance measurements were obtained with a Keithley 2182A/6220 (−1
to 1 mA), Printed CSG and commercial RSG devices were studied under
dynamic, cyclic, and static loads while Kevlar straps were subjected to a
maximum load of 18.7 kN (4.2 klbf) during static and dynamic loads at a
ramp rate of 45 N s−1 (10 lbf s−1). During dynamic testing capacitance
measurements were obtained every 4.5 kN (1 klbf) up to the maximum
load of 18.7 kN (4.2 klbf), and static loads were held for a total of one hour
ten minutes with capacitance measurements taken every five minutes.
Additionally, printed CSGs and commercial RSGs were characterized under
cyclic loading of 5.3 kN (1.2 klbf) and 10.7 kN (2.4 klbf) for ten total cycles
with a ramp rate of 89 N s−1 (20 lbf s−1) with capacitance measurements
taken at 90 s intervals between each cycle. Macro images of the CSGs were
taken in tandem with capacitance measurements in order to determine
the gauge factor for the CSGs. Images were recorded with a Canon EOS
70D digital SLR camera outfitted with a Tamron AF 90mm f/2.8 1:1 macro
lens. The camera was held stationary on a tripod and a remote trigger was
used to eliminate vibration during image exposure. The ruler imaged next
to the CSG during testing was kept in-plane with the device for use in
measuring the dimensional change experienced by the CSG at strain.
Gauge factor calculations were completed using values for the dimensional
changes obtained in conjunction with digital imaging processing software.
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