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The microstructure is a critical factor governing the functionality of ceramic materials. Meanwhile,
microstructural analysis of electron microscopy images of polycrystalline ceramics, which are
geometrically complex and composed of countless crystal grains with porosity and secondary

phases, has generally been performed manually by human experts. Objective pixel-based analysis
(semantic segmentation) with high accuracy is a simple but critical step for quantifying
microstructures. In this study, we apply neural network-based semantic segmentation to secondary
electron images of polycrystalline ceramics obtained by three-dimensional (3D) imaging. The deep-
learning-based models (e.g., fully convolutional network and U-Net) by employing a dataset based on
a 3D scanning electron microscopy with a focused ion beam is found to be able to recognize defect
structures characteristic of polycrystalline materials in some cases due to artifacts in electron
microscopy imaging. Owing to the training images with improved depth accuracy, the accuracy
evaluation function, intersection over union (loU) values, reaches 94.6% for U-Net. These loU values
are among the highest for complex ceramics, where the 3D spatial distribution of phases is difficult to
locate from a 2D image. Moreover, we employ the learned model to successfully reconstruct a 3D
microstructure consisting of giga-scale voxel data in a few minutes. The resolution of a single voxel is
20 nm, which is higher than that obtained using a typical X-ray computed tomography. These results
suggest that deep learning with datasets that learn depth information is essential in 3D microstructural
quantifying polycrystalline ceramic materials. Additionally, developing improved segmentation
models and datasets will pave the way for data assimilation into operando analysis and numerical
simulations of in situ microstructures obtained experimentally and for application to process
informatics.

In functional materials, the controlling of the microstructures that dominate
the material performance is essential. Recently, research on the multi-
dimensionality of the obtained structural information has been developing.
One example is the acquisition of three-dimensional (3D) spatial observa-
tions. Typical methods for obtaining 3D structures include optical micro-
scopy and X-ray computed tomography'”, serial sectioning’"* using a
scanning electron microscope with a focused ion beam (FIB-SEM), and
transmission electron microscope computed tomography"*™*. These 3D
images can be characterized as 3D voxel data rather than the conventional

2D pixel data, which allows information, such as phase connectivity, shape,
and surface topography, to be obtained with high accuracy'.

Meanwhile, as these microstructural images have become increasingly
multi-dimensional, the data obtained have also become enormous. Con-
sequently, there have been recent projects for objective and automated large-
scale data analysis using computer vision approaches™’™"'. Semantic
segmentation, which can accurately extract the material phase related to
functional appearance pixel by pixel, is notable*”’. Alternatively, machine

learning approaches of semantic segmentation, especially 3D
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Fig. 1 | Conceptual diagram of the neural network structure. The deep-learning-
based semantic segmentation models (FCN-32s, 16 s and 8 s, and U-Net). The
rectangles represent layers: light blue corresponds to the convolution layer + ReLU
layer, red to the MaxPooling layer, and green to the upsampling layer in the FCN
series; for U-Net, light blue represents the convolution layer + ReLU + Batch-
Normalization layer, red represents the MaxPooling layer, gray represents the layer
of upsampling as well as copying encoder features, and white represents the con-
catenate layer. FCN-8s, 16 s and U-Net have skip connections (indicated by arrows),
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so that these models do not lose the feature details when they are transmitted at each
layer of the network, and can obtain high-resolution output while preserving the
details of the features. Although FCN integrates feature maps from different layers
by adding values for each channel (add), U-Net concatenates the outputs of feature
maps obtained from the Encoder by adding them in parallel to the Decoder’s feature
maps (concatenate). Therefore, U-Net can learn while distinguishing between
Encoder and Decoder feature maps.

segmentation”*>”, are focused on X-ray computed tomography, which is

nondestructive and easier to acquire 3D microstructure owing to its higher
transparency than electrons. The semantic segmentation of 3D micro-
structures based on electron microscopes, which in principle have higher
resolution and can be applied to materials comprising light elements, is
expected; however, currently, it is limited to 2D images™***".

In quantitative analysis of microstructural images by electron micro-
scopy, functional polycrystalline materials containing considerable micro-
structural information, such as porosity, grain boundaries, structural
defects, and secondary phases, necessitate accurate segmentation. However,
some factors were difficult to recognize due to weak contrast or pseudo-
luminance changes caused by experimental artifacts. Besides, machine-
based batch segmentation methods, such as the thresholding method, lack
accuracy. Therefore, conventional segmentation, which is performed sub-
jectively by experts, has drawbacks, such as inaccurate surface reconstruc-
tion due to slight discrepancies in the decision between images and
enormous time consumption.

There are two major categories of semantic segmentation methods:
classical computer vision and machine learning-based approaches. The
thresholding method is one of the classical semantic segmentation methods.
Different phases in a microstructural image of a material often appear as
regions of different contrast values. When there are two or more phases with
different contrasts, the thresholding method that uses the peaks and valleys
corresponding to the contrast histogram for segmentation is simple and
effective. Software, such as Image]zg, is well-known. Studies that use the
thresholding method for microstructural segmentation by electron micro-
scopy include functional materials, such as superconducting materials™”,
lithium-ion batteries™, thermoelectric materials™, nanoporous materials™,
geomaterials™, and superalloys™. On the other hand, the field of computer
vision has made remarkable progress with advances in machine learning,
like neural networks, and the range of applications is expanding. Typical
problems in image recognition include object classification, identification,
and detection. Classification involves separating an input image into pre-
defined categories, for which highly accurate models, such as VGG-16 by

Simonyan et al.”. and AlexNet by Krizhevsky et al.”, are known. Detection
requires taking an input image and determining where the target is located.
For instance, it is applied in pedestrian detection and fingerprint recogni-
tion. Categorizing this detection pixel-based with high accuracy is defined as
machine learning-based semantic segmentation’”. The basic model for
semantic segmentation is the fully convolutional network (FCN) presented
by Long et al.”’. The FCN model significantly improved segmentation
accuracy by transferring pretrained classifier weights, fusing different layer
representations, and performing end-to-end learning on whole images®.
Based on these models, the U-Net and DeepLab models have been improved
for medical images'’ and automatic driving identification®, respectively.
As an example of functional polycrystalline ceramic materials, this
study performed neural network-based semantic segmentation on micro-
structural images of iron-based high-temperature superconductors***
obtained by serial sectioning using a scanning electron microscope. The
accuracy evaluation results were compared with the conventional automatic
thresholding methods. A giga-scale 3D microstructure reconstruction with
a single voxel size of 20 nm based on the learned models was demonstrated.

Results

Models and Datasets

The four semantic segmentation methods used in this study are the classical
thresholding method (Otsu method"), the local adaptive thresholding
method (Sauvola method**), FCN models, and U-Net model", which per-
form deep-learning based on a network structure (Fig. 1). Deep learning of
semantic segmentation models with neural networks requires training data:
a secondary electron image of a cross-sectional 3D microstructure is cut into
896 x 896 pixels (Fig. 2a). A training image was created by manually seg-
menting each of the ~800,000 pixels into two phases: the positive phase for
the superconducting phase and the negative phase for structural defects like
voids and impurities (Fig. 2b). A group of supervised graduate students with
experience in material synthesis or electron microscopy performed the
manual segmentation. First, a draft of roughly segmented images was
produced by manually bucket-filling regions in the image, which were
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Fig. 2 | Image datasets. a-g Original secondary electron images (a, d, f) paired with
their manually segmented images (b, e, g) from the training image and the contrast
histogram (c). d-g correspond to the magnified images of the areas enclosed by the
blue and red squares in a, respectively. Arrow (I) in (d) indicates the ion polishing
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trace artifact. h—j Original secondary electron image of the test image (h) paired with
its manually segmented image (i) and contrast histogram (j). The yellow and blue

regions correspond to the superconducting phase (positive phase) and micro-
structural defects, such as voids and impurities (negative phase).

preclassified in eight tones, using a painting software (Adobe Photoshop or
Clip Studio Paint Pro). Then, the process of searching for missegmented
pixels through visual inspection and improving the image draft was repeated
thrice. Artifacts due to ion polishing and impurity phases (indicated by
arrows (I) and (II) in Fig. 2d, respectively) were classified as positive and
negative phases, respectively. Polycrystalline materials generally contain
voids. Noteworthy is that the boundaries of positive phases on smooth
slopes adjacent to voids (the extent boundary to which they exist on the
corresponding xy cross-section for positive phases that extend continuously
in the z (depth) direction) are in many cases difficult to distinguish even by
human (for example, arrow (iii) in Fig. 2f). Exploiting the 3D-SEM obser-
vation feature using FIB', we improved the accuracy of the training image
by determining the positive phase based on the difference in brightness
between the cross-section of the target and the cross-sections above and
below and by considering the continuity of each microstructure and artifact
in the z (depth) direction. Using the same method as for the training images,
we created a test image used for accuracy evaluation with a size of 1100 x 924
pixels (Fig. 2h, i). To avoid the manifestation of the overfitting effects and
overestimation of segmentation accuracy of deep-learning models, the xy
slice cross-sectional position on the z axis of this test image was significantly
different from that of the training images.

Quantitative comparison
Table 1 shows the results of accuracy evaluation based on the confusion
matrix for Otsu’s and Sauvola’s thresholding methods, FCN models, and

Table 1 | Performance metrics for the classic and deep-
learning-based segmentation approaches

Model name Precision Recall loU

Otsu 0.9417 + 0.0005 0.6478 + 0.0049 0.6136 +0.0047
Sauvola 0.9316 + 0.0004 0.9936 + 0.0001 0.9246 + 0.0004
FCN-32s 0.8456 + 0.0003 0.9524 + 0.0005 0.8095 + 0.0004
FCN-16s 0.9147 £ 0.0002 0.9425 + 0.0003 0.8642 + 0.0002
FCN-8s 0.9597 + 0.0001 0.9574 + 0.0001 0.9188 + 0.0002
U-Net 0.9751 + 0.0002 0.9712 + 0.0001 0.9464 + 0.0002

U-Net model. For the evaluation functions of precision, recall, and inter-
section over union (IoU), the neural network-based model U-Net model
was the best. The confusion matrix, ROC curve, and Precision-Recall curve
are shown in Supplementary Table 1, Supplementary Fig. 1a, b, respectively,
with corresponding text in Supplementary Note 1.

The Otsu’s classic thresholding method provided the smallest IoU
values, especially the recall, which corresponds to the percentage of positive
phases in the correct image accurately identified as positive phases, which
was about 65%, which is significantly lower than the other models. This
outcome is primarily due to the misrecognition of the salt pepper-like noise
within the positive phase as a defect (i.e., corresponding to a false negative).
On the other hand, the best recall value was obtained by Sauvola’s local
adaptive thresholding method. Precision is an evaluation function that
decreases as negative phases are misrecognized as positive phases. It shows
differences among the neural network models, with a tendency for precision
to increase with the resolution of features concatenated during upsampling.
U-Net, which concatenates features at all resolutions, has the highest value
compared to the other models. The IoU, which evaluates the overall seg-
mentation accuracy of these models, was highest for U-Net, reaching 94.6%.
Note that the IoU value is surprisingly high for polycrystalline ceramics,
which contain voids, have continuous contrast variation, and are relatively
difficult to segment. It is one of the highest values compared to steel
materials, ex. steel (93.9%, Azimi)’' and complex-phase steel (>90%,
Durmaz)®, which contain few voids and have marked contrast among
phases.

Qualitative comparison (successful cases)

The characteristics of each segmentation method are discussed qualitatively,
taking specific microstructural structures as examples. Figure 3 shows, from
left to right, the original secondary electron image, the segmented images by
the Otsu and Sauvola thresholding methods, FCN-32s, FCN-16s, FCN-8s,
and U-Net, and the correct image. Figure 3a is the macroscopic view image,
and Fig. 3b-e show the local microstructure, which is a partially enlarged
version of (a).

First, focusing on the macroscopic view (Fig. 3a), it can be observed that
in the Otsu method, the upper part of the image is often misidentified as the
positive phase and the lower part as the negative phase, unlike the other
methods. This is because the cross-sectional SEM images in this experiment
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Fig. 3 | Segmentation results for successful cases. Shown from left to right are the
original secondary electron images, segmentation images by the Otsu and Sauvola
thresholding methods, FCN-32s, FCN-16s, FCN-8s, and U-Net, and the correct
image. a shows the macroscopic field-of-view image (768 x 768), and b-e show a
partially enlarged image of a. These are examples of areas where semantic seg-
mentation models based on neural networks have been relatively successful. The
dotted squares represent regions (I), (II), and (III). Region (I) in b shows ion

polishing traces in the vertical direction. Region (II) in the same image (b) contains
the ‘valley’ where a void (negative phase) exists between the left and right positive
phases. Region (III) in ¢ contains the small, independent voids in the positive phase
matrix. The pale blue, aqua, yellow and brown pixels in the segmented images
correspond to TP (True Positive), FP (False Positive), FN (False Negative), and TN
(True Negative), respectively.

were acquired from a 38° direction by cutting the center of the sample using
the FIB for its experimental ease and versatility. This acquisition method
decreases the background intensity at the bottom of the image due to geo-
metric artifacts where the surrounding cross-section absorbs the generated
secondary electrons. In contrast, the Sauvola method, the FCN and U-Net
models show that the same original image can be segmented with little effect
of changes in background intensity.

Region (I) in Fig. 3b has ion polishing traces in the vertical direction,
which appear as dark contrast stripes in the original secondary electron
image. Therefore, the Otsu method shows a stripe pattern extending ver-
tically in the corresponding region. However, the FCN and U-Net models
did not show any misidentification derived from these ion polishing traces.
This result suggests that these neural network models successfully learned
the features of ion polishing traces. The Sauvola method also succeeded in
segmentating stripes with dark contrast (region (I)), but for bright contrast,
missegmentation was observed in the surrounding areas (Fig. 3c). Region
(I) in the same image (b) is the ’valley’ where a void exists between the left
and right positive phases and where the positive phase is deeper than the
corresponding cross-section. The thresholding methods incorrectly identify
part of the areas with bright contrast, especially on the lower side, as the
positive phase. Meanwhile, FCN-8s and U-Net correctly identified these
areas as a negative phase, which was not affected by the depth reflection.

Figure 3c is a magnified image of the upper part of Fig. 3a, where the
contrast is relatively bright. Because the voids are sparsely distributed, and
the entire image’s contrast is bright, the thresholding methods do not

segment the relatively shallow part of the voids very well. Next, we consider
the differences between the FCN models, focusing on the small, indepen-
dent voids in the region (III): FCN-32s ignore the voids, and FCN-16s
roughly identify them, but their shapes are very different. In contrast, FCN-
8s identify the voids, including their rough shape. This is consistent with the
quantitative trend in the confusion matrix (Supplemental Table 1), where
the False Positive (FP) values were 13.1%, 6.7%, and 3.3% for FCN-32s,
FCN-16s, and FCN-8s, respectively. Table 1 shows that although no sig-
nificant changes were observed among the recall values of the FCN models,
the lower precision for FCN-32s than that of the other FCN models and
U-Net is mainly because of the large FP, which may reflect the character-
istics of high-resolution electron microscopy images of ceramics containing
fine voids. This depends on the number of times the upsampling layer is
expanded; the higher the value, the less specific the identification. This is
thought to have reduced the loss of positional information.

Figure 3d is a close-up of the upper part of Fig. 3a, where the contrast is
relatively dark. In the Otsu method, salt pepper-like misidentifications are
scattered within the positive phase. Figure 3e shows one of the darkest areas
in Fig. 3a. In this region, the accuracy of the Otsu method is significantly
degraded, and only the edges are correctly identified as positive phases.
However, in the FCN and U-Net models, the contrast brightness or dark-
ness does not seem to have much effect on the segmentation accuracy. The
local adaptive thresholding (Sauvola) method no longer missegments the
superconducting phase as nonsuperconducting, however, missegments the
nonsuperconducting phase with relatively bright contrast (e.g., the edges
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Fig. 4 | Segmentation results for failure cases. a—c From left to right, the original
secondary electron image, the segmentation images by the Otsu and Sauvola
thresholding methods, FCN-32s, FCN-16s, FCN-8s, and U-Net, and the correct
image. These are examples of where the neural network-based semantic segmen-
tation failed to identify. The dotted squares represent regions (IV), (V), (VI), and
(VII). Region (IV) in a shows an impurity phase with dark contrast. Region (V) in

a shows a submarine ridge-like superconducting phase in the void deeper than the
image cross-section, with relatively high brightness. Region (VI) in b comprises the
superconducting phase with negligible defects. Region (VII) in ¢ shows an island-like
superconducting phase surrounded by voids. The pale blue, aqua, yellow and brown
pixels in the segmented images correspond to TP, FP, EN, and TN, respectively.

and ’valleys’). These images are examples of semantic segmentation based
on neural networks successfully performed without being affected by arti-
facts from electron microscopy observations.

Qualitative comparison (failure cases)

Figure 4a—c shows the original secondary electron image, segmentation
images by the Otsu and Sauvola thresholding methods, FCN-32s, FCN-16s,
FCN-8s, and U-Net, and correct image, from left to right, as in Fig. 3. These
are examples of regions where semantic segmentation did not work well.

In the original secondary electron image in Fig. 4a, there is an impurity
phase (IV) and a shallow void (V) where the superconducting phase is
reflected in the depth (z axis) direction. Focusing on the impurity phase (IV),
the thresholding methods show noise due to its relatively low brightness.
Accurate segmentation is difficult even with neural network models.
Although U-Net can identify most of them, the accuracy is lower than the
segmentation of other voids. This may be because the number of impurity
phases in the training images was only six, and the training was insufficient.

Region (V) in Fig. 4a has a peaked superconducting phase in the void
deeper than the image cross-section (‘submarine ridge’); the brightness is
relatively high due to the secondary electron image feature. Consequently, the
ridge is misidentified by the thresholding methods and U-Net model.
However, among the FCN models, FCN-8s segmented properly. This is
because FCN-8s incorporate more global features than U-Net. Thus, it is less
affected by the local increase in contrast to the peaked superconducting phase.

The original secondary electron image in Fig. 4b shows that most of the
superconducting phase is composed of few defects, whereas U-Net mis-
identified the superconducting phase as defects mainly in the region (VI).
This is because the narrow receptive field of the U-Net discriminated the
superconducting phase in a narrow range, and the filter for void recognition
was dominant even if the contrast difference was small, resulting in the
misidentification.

In Fig. 4c, there is an island-like superconducting phase surrounded by
voids (i.e., the region indicated by (VII)), which any of the neural network
models, including U-Net, did not identify. In contrast, the thresholding
methods succeeded to some extent in the segmentation. The island-like area
was determined by considering the secondary electron images of the upper
and lower layers of the image. It will be an interesting future challenge to see

if a neural network model can accurately segment points that are difficult to
determine even with the human eye.

Accurate training images are indispensable for developing a better
semantic segmentation model. It is considered an effective method for
acquiring 3D microstructures and using the data of the upper and lower
layers of the target cross-section for creating training images.

3D reconstruction

Figure 5 shows the 3D reconstructed images of the 620 stacked original
secondary electron images and the 620 stacked images of the positive phases
segmented by each deep-learning model. Figure 5a-g shows macroscopic
regions (768 x 768 x 620 voxels), and Fig. 5Sh-n shows relatively localized
microregions (256 x 256 x 206 voxels) cut from the center of a-g. Focusing
on the continuity along the z axis, discontinuous background artifacts are
observed for the Otsu thresholding method (Fig. 5b). In contrast, the Sau-
vola thresholding method (Fig. 5c), the neural network-based models
appear to reconstruct the microstructure with continuity in the z axis
relatively smoothly (Fig. 5d-g). This suggests that the segmentation is well
reproduced and accurate between adjacent images in the z axis. The
superconducting phase is identified with the same high accuracy as obtained
in the test images throughout. The magnified images in Fig. 5k-m show that
the FCN-32s captured relatively globally rough defect features. In contrast,
in that order, the U-Net, FCN-8s, and FCN-16s identified more detailed
defect objects, as seen in the region (III) in Fig. 3c.

As a quantitative evaluation, the filling ratio of the superconducting
phase in each z section image is plotted for each semantic segmentation
method in Fig. 6. The mean and standard deviation are shown in Table 2.
The z dispersion of the positive phase ratio is because the polycrystalline
material’s microstructure can be locally coarse and dense. Compared to the
Otsu thresholding method, the smooth variation of the positive phase ratio
between successive layers in the z direction in the Sauvola thresholding
method and the neural network-based methods agrees considerably with
the qualitative results observed in Fig. 5. The percentage of positive phases in
the training and test images, which the experts manually segmented, were
74.2% and 79.7%, respectively. The difference from the percentage of
positive phases predicted by the U-Net and FCN-8s models was small,
within 2%.

npj Computational Materials | (2024)10:46



https://doi.org/10.1038/s41524-024-01226-5 Article

Otsu Sauvola FCN-32s

(c) l

FCN-16s

FCN-8s U-Net

(e) l (f) '
Otsu Sauvola FCN-32s
Original image g
Vv = AN (i)

FCN-16s FCN-8s U-Net

G ¥

Fig. 5 | 3D reconstructed images from each segmentation model. (Upper a-g) represents a wide area of 768 x 768 x 620 voxels, (lower h-n) a narrower area of
256 x 256 x 206 voxels cutout of the central part of the upper (a-g), enlarged.
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models show almost the same trend (overlapped). The positive phase ratios in the
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Table 2 | Mean and standard deviation of the percentage of
positive phases for 620 cross-sections for each model

Otsu Sauvola FCN-32s FCN-16s FCN-8s U-Net
0.6466 0.8272 0.8743 0.8009 0.7720 0.7728
+ 0.0649 +0.0111 +0.0104 +0.0137 +0.0151 +0.0143

Compared to the U-Net and FCN-8s models, the FCN-16s, Sauvola,
and FCN-32s models tended to overestimate the filling ratio in that order,
which was proportional to IoU value among the deep-learning models. On
the other hand, it is interesting to note that the Sauvola thresholding method
overestimated the filling ratio compared to the FCN-16s model, which has a
lower IoU value. This is due to the fact that FP and FN are nearly identical or
EN is higher than FP in the neural network models, thus balancing each
other out, whereas the Sauvola thresholding method shows a very small FN
(0.5%) and the impact of FP is significant.

Discussion

This study demonstrated a method for the automatic and rapid recon-
struction of electron microscopy-based 3D microstructures of poly-
crystalline functional materials with high accuracy using semantic
segmentation based on neural network-based models. Compared with the
conventional automatic thresholding method, this method significantly
increased the tolerance to artifacts associated with electron microscopy,
such as polishing marks added during sample preparation and edge
brightness derived from the electron microscopic observation. Additionally,
by learning patterns that incorporate surrounding information through
convolution, they are less susceptible to changes in the brightness of single
pixels, which have the advantage of being more noise resistant, such as salt
pepper. The segmentation accuracy of the present model is 94.6% for IoU,
which is among the highest for an automatic segmentation method*"*, but
inferior to that of an expert. However, by improving the model and dataset,
Al could successfully identify boundary regions in the depth direction,
which even experts cannot distinguish.

The ability to reconstruct electron microscopy-based 3D micro-
structures of polycrystalline functional materials on a voxel basis with higher
precision is expected to make it possible to quantitatively analyze micro-
structural factors in three dimensions, which has been done mainly for 2D
microstructural images. Specifically, 2D images may not produce a reliable
quantification of the hidden 3D network structure of voids, secondary
phases, and grain boundary phases, as well as the internal surface area, and
curvature, especially for materials with highly anisotropic structural feature.
Through contrasting experimental electrical or magnetic property mapping,
we can elucidate the mechanism of functional manifestation based on the
3D microstructure of the bulk material, including the depth direction.
Moreover, machine learning of the 3D voxel big data would result in new
microstructural features related to material function, which are not
immediately visible in SEM images. Alternatively, in systems where trans-
port phenomena are related to the functionality, such as critical current*>*
and phase transition” in superconductors, thermal and electrical conduc-
tion in thermal-interface/thermoelectric materials***’, and ionic conduction
in batteries™, the percolation theory states that the conduction mechanism
varies greatly depending on the system dimension™”. In the case of 3D bulk
materials, the 3D connectivity of the target phase significantly impacts the
macroscopic transport properties. In the case of superconductors, the degree
of texture in grain orientation” and network of voids and grain boundary
phases™ are known to significantly affect macroscopic critical current. In the
case of thermal-interface materials, high thermal properties of the epoxy-
based hybrid composites with binary fillers were reported, where a com-
bination of graphene fillers with (high-aspect ratio) and Cu-nanoparticles
fillers (small aspect ratio and nm-scale dimensions) contribute to thermal
and electronic percolations®. The ability to directly use 3D microstructural
information from 3D-SEM, which has become increasingly popular
recently™, is expected to provide insights into microstructural factors and

feedback on process design while understanding transport mechanisms
previously discussed based on inferences from 2D microstructural images.

Alternatively, the ability to handle a huge amount of data (i.e., more
than a billion) on a real voxel basis will pave the way for a ’digital twin” of
material microstructures that connects experimental data and computa-
tional simulations as the dataset infrastructure for microstructures of var-
ious functional materials is developed in the future. For example, it will be
possible to integrate experimental data from large-area 3D microstructure
observation™, in situ observation methods™, and operando analysis™® with
high spatial/temporal resolution, which have been difficult due to the large
data size, into multi-scale and multi-dimensional simulations of the
microstructural formation and physical properties. This can lead to the
development of more accurate prediction models and the application of
microstructure data to process informatics.

Methods

Sample preparation

The sample used in this study is a polycrystalline bulk Ba122, which is one of
the iron-based superconductors*'*>. Mechanically alloyed Bal22 powder
was prepared by high-energy planetary ball-milling of elemental metals
weighed so that the composition was BaFe; 34Cog 16As,. The 8% Co-doped
Bal22 polycrystalline bulk was prepared by sintering the alloyed Bal22
powder in a vacuum at 600 °C for 48 hours. All powder processes were
performed in a glove box in a high-purity Ar atmosphere to minimize
oxygen contamination that could cause impurity phases”*".

3D-SEM imaging

The three-dimensional structural observation was performed by serial
sectioning using FIB-SEM (Thermo Scientific Helios 600i)”. The secondary
electron images were acquired with an acceleration voltage of 5kV and an
Everhart-Thornley (ET) detector. The angle between the Ga ion and elec-
tron guns was 52°. The number of pixels in each image is (x, y) = (1536,
1024), and the 3D microstructure was acquired by stacking 620 images with
a pitch of 20 nm in the z direction; the equivalent size of one voxel in real
space is (x, ¥, z) = (20.8 nm, 26.4 nm, 20 nm). As the images contain areas
without the sample, an area measuring 1100 x 924 pixels was selected from
the central part to be used for segmentation.

Models

This study uses four semantic segmentation methods: the classical thresh-
olding method (Otsu method), the local adaptive thresholding method
(Sauvola method), the FCN models based on machine learning, and the
U-Net model. The Implementation Details section describes the thresh-
olding method; the FCN models are FCN-32s, FCN-16s, and FCN-8s. Their
accuracy varies depending on the original convolutional neural network
(CNN) models. Figure 1 shows the typical network architecture of the FCN
and U-Net models. These models perform segmentation by extracting
features using the existing CNN model, performing deconvolution based on
these features, and restoring the original image size. FCN-16s performs the
same deconvolution as FCN-32s to restore the original image size. It
combines the features at one higher resolution layer with the tensor in the
3D (concatenate). FCN-16s is a model that concatenates the features in a
higher resolution layer and achieves better accuracy than FCN-32s, whereas
FCN-8s performs a similar concatenation in two higher resolution layers
than FCN-32s to restore the original image size, resulting in even better
accuracy than the FCN-16s. U-Net is an improved version that can con-
catenate the features in all resolution layers, allowing it to focus on even
more detailed objects than the FCN models.

Automated training and testing dataset generation

The training dataset for the neural network models was prepared using data
expansion from training images. First, for a pair of original secondary
electron images of a certain z-section obtained by the 3D imaging men-
tioned above and its manually segmented image, a training dataset of 1000
images was created by cutting them from random positions to 256 x 256-
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pixel size and adding rotation and flipping operations randomly. Next, a test
dataset of 1000 images for evaluating the accuracy of the classical thresh-
olding method and neural network models were created using data
expansion in the same way: for a pair of original secondary electron images
of 1100 x 924-pixel size and their manually segmented image, a 256 x 256-
pixel size cropping was performed from random positions, and rotation and
flipping operations were also applied. Consequently, 10 training datasets
and 10 test datasets were created. These datasets will be published elsewhere.

Implementation details

As described in the Model section, we used four semantic segmentation
methods: Otsu’s thresholding method, Sauvola’s thresholding method, FCN
models, and the U-Net model. For the classic thresholding method, the
automatic thresholding method (Otsu method) was performed using
OpenCV. As shown in Fig. 2¢, (i), there is a difference in the brightness trend
between pixels corresponding to positive and negative phases. The auto-
matic thresholding method uses this brightness difference to segment the
two phases using a specific brightness value as the threshold boundary. For
the local adaptive thresholding method, the Sauvola method was performed
using scikit-image after applying Gaussian filter. For the deep-learning
models, the learning rate, Ir, was calculated using the following Eq. (1) with
initial_Ir=0.001, y = 0.5, and step_size = 20, where y is the decay rate, a
measure of how much the learning rate decreases with each step size relative
to the epochs.

Ir = initiallr x y(#fm) (1)

The number of training epochs is 120, and the time required for the
training is 2 h. In addition, the segmentation of 620 images of 768 x 768
pixels for 3D reconstruction takes only a few minutes. The time required for
performing automated semantic segmentation is significantly faster than
that for manual segmentation of each pixel [several days for a training image
of 896 x 896 (802,816) pixels; Fig. 2a].

The training was performed using Python 3.8.8 and TensorFlow 2.4.1
on Nvidia Quadro RTX5000 16 GB GPU.

Loss function

BCE Dice Loss, commonly used in semantic segmentation, was the loss
function. X; is the input image (original secondary electron image); y; is the
correct image (manually identified image); p; is the predicted image output
when input to the model. A per-pixel loss function £ (x;) calculated from
the following Eq. (2) is averaged over all pixels (N: number of pixels) to
obtain an image loss function.

Evaluation function
In this study, we used the confusion matrix as the evaluation function. This
method compares the predicted, correct images, assigns one pixel in the
predicted image to one of TP, FN, FP, or TN, and counts the number of
pixels by applying this process to all pixels. TP is called true positive, where
the pixel in the correct image is a positive phase, and the pixel in the
predicted image is also the positive phase. FN is called false negative, where
the correct one is a positive phase, and the prediction is in the negative phase.
FP is called false positive, where the correct one is the negative phase, and the
prediction is a positive phase. TN is called true negative, where the correct
one is the negative phase, and the prediction is also the negative phase. In
other words, TP and TN correspond to the correct cases. The models’
evaluation index can be calculated by the functions calculated using the
confusion matrix values.

Recall: Percentage of positive phase in the correct image that is cor-
rectly identified as positive: Recall = TP/(TP + FN)

Precision: Percentage of positive phase correctly identified among the
predicted positive phase: Precision = TP/(TP + FP)

IoU: Rigorous accuracy evaluation is known as the Jaccard index:
IoU = TP/(TP + FP + EN)

Data availability
Image datasets will be publicly available at https://github.com/
YamamotoLaboratory/3D-SEM-Segmentation.

Code availability
Codes will be publicly available at
YamamotoLaboratory/3D-SEM-Segmentation.

https://github.com/
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