Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mycoheterotrophy in the wood-wide web

Abstract

The prevalence and potential functions of common mycorrhizal networks, or the ‘wood-wide web’, resulting from the simultaneous interaction of mycorrhizal fungi and roots of different neighbouring plants have been increasingly capturing the interest of science and society, sometimes leading to hyperbole and misinterpretation. Several recent reviews conclude that popular claims regarding the widespread nature of these networks in forests and their role in the transfer of resources and information between plants lack evidence. Here we argue that mycoheterotrophic plants associated with ectomycorrhizal or arbuscular mycorrhizal fungi require resource transfer through common mycorrhizal networks and thus are natural evidence for the occurrence and function of these networks, offering a largely overlooked window into this methodologically challenging underground phenomenon. The wide evolutionary and geographic distribution of mycoheterotrophs and their interactions with a broad phylogenetic range of mycorrhizal fungi indicate that common mycorrhizal networks are prevalent, particularly in forests, and result in net carbon transfer among diverse plants through shared mycorrhizal fungi. On the basis of the available scientific evidence, we propose a continuum of carbon transfer options within common mycorrhizal networks, and we discuss how knowledge on the biology of mycoheterotrophic plants can be instrumental for the study of mycorrhizal-mediated transfers between plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The intricate root matrix of a forest ecosystem on the slopes of Mount Pirongia in New Zealand.
Fig. 2: Mycoheterotrophy in plants and its phylogenetic and geographic distribution.
Fig. 3: The autotrophy–mycoheterotrophy continuum of mycorrhizal plants.

Similar content being viewed by others

References

  1. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Academic Press, 2008).

  2. Newman, E. Mycorrhizal links between plants—their functioning and ecological significance. Adv. Ecol. Res. 18, 243–270 (1988).

    Article  Google Scholar 

  3. Gorzelak, M. A., Asay, A. K., Pickles, B. J. & Simard, S. W. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB Plants 7, plv050 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

  5. Simard, S. W. et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997).

    Article  CAS  Google Scholar 

  6. Wohlleben, P. The Hidden Life of Trees: What They Feel, How They Communicate—Discoveries from a Secret World (Greystone Books, 2016).

  7. Grant, R. Do trees talk to each other? Smithsonian 48–57 (March 2018).

  8. Sheldrake, M. Entangled Life: How Fungi Make Our Worlds, Change Our Minds and Shape Our Futures (Random House, 2020).

  9. Simard, S. W. Finding the Mother Tree: Discovering the Wisdom of the Forest (Knopf Doubleday, 2021).

  10. Karst, J., Jones, M. D. & Hoeksema, J. D. Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests. Nat. Ecol. Evol. 7, 501–511 (2023).

    Article  PubMed  Google Scholar 

  11. Robinson, D. & Fitter, A. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J. Exp. Bot. 50, 9–13 (1999).

    Article  CAS  Google Scholar 

  12. Figueiredo, A. F., Boy, J. & Guggenberger, G. Common mycorrhizae network: a review of the theories and mechanisms behind underground interactions. Front. Fungal Biol. 30, 735299 (2021).

    Article  Google Scholar 

  13. Henriksson, N. et al. Re-examining the evidence for the mother tree hypothesis—resource sharing among trees via ectomycorrhizal networks. New Phytol. 239, 19–28 (2023).

  14. Robinson, D. G. et al. Mother trees, altruistic fungi, and the perils of plant personification. Trends Plant Sci. 29, 20–31 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Bever, J. D. et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25, 468–478 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kamienski, F. Les organes végétatifs du Monotropa hypopitys L. Mem. Soc. Natl Sci. Nat. Math. Cherb. 24, 5–40 (1882).

    Google Scholar 

  17. Johnson, N. A., Graham, J. A. & Smith, F. A. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol. 135, 575–585 (1997).

  18. Bidartondo, M. I. The evolutionary ecology of myco-heterotrophy. New Phytol. 167, 335–352 (2005).

  19. Leake, J. R. The biology of myco-heterotrophic (‘saprotrophytic’) plants. New Phytol. 127, 171–216 (1994).

  20. Merckx, V. S. F. T. (ed.) Mycoheterotrophy: The Biology of Plants Living on Fungi (Springer, 2013).

  21. Jacquemyn, H. & Merckx, V. S. F. T. Mycorrhizal symbioses and the evolution of trophic modes in plants. J. Ecol. 107, 1567–1581 (2019).

    Article  Google Scholar 

  22. Graham, S. W., Lam, V. K. & Merckx, V. S. F. T. Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes. New Phytol. 214, 48–55 (2017).

  23. Heide-Jørgensen, H. S. Parasitic Flowering Plants (Brill, 2008).

  24. Taylor, D. L. & Bruns, T. D. Independent, specialized invasions of the ectomycorrhizal mutualism by two non-photosynthetic orchids. Proc. Natl Acad. Sci. USA 94, 4510–4515 (1997).

  25. Bidartondo, M. I. et al. Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419, 389–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Ogura-Tsujita, Y., Gebauer, G., Hashimoto, T., Umata, H. & Yukawa, T. Evidence for novel and specialised mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc. R. Soc. B 276, 761–767 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Bidartondo, M. I., Kretzer, A. M., Pine, E. M. & Bruns, T. D. High root concentration and uneven ectomycorrhizal diversity near Sarcodes sanguinea (Ericaceae): a cheater that stimulates its victims? Am. J. Bot. 87, 1783–1788 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Gomes, S. I. F., Fortuna, M. A., Bascompte, J. & Merckx, V. S. F. T. Mycoheterotrophic plants preferentially target arbuscular mycorrhizal fungi that are highly connected to autotrophic plants. New Phytol. 235, 2034–2045 (2022).

  29. Tisserant, E. et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl Acad. Sci. USA 110, 20117–20122 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol. 205, 1443–1447 (2015).

  31. Kohler, A. et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410–415 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, Y. et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172–1175 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Trudell, S. A., Rygiewicz, P. T. & Edmonds, R. L. Nitrogen and carbon stable isotope abundances support the mycoheterotrophic nature and host specificity of certain achlorophyllous plants. New Phytol. 160, 391–401 (2003).

  34. Zahn, F. E. et al. Novel insights into orchid mycorrhiza functioning from stable isotope signatures of fungal pelotons. New Phytol. 239, 1449–1463 (2023).

  35. Gomes, S. I. F. et al. Stable isotope natural abundances of fungal hyphae extracted from the roots of arbuscular mycorrhizal mycoheterotrophs and rhizoctonia-associated orchids. New Phytol. 239, 1166–1172 (2023).

  36. Hynson, N. A. et al. in Mycoheterotrophy: The Biology of Plants Living on Fungi (ed. Merckx, V. S. F. T.) 297–342 (Springer, 2013).

  37. Gomes, S. I. F., Merckx, V. S. F. T., Kehl, J. & Gebauer, G. Mycoheterotrophic plants living on arbuscular mycorrhizal fungi are generally enriched in 13C, 15N, and 2H isotopes. J. Ecol. 108, 1250–1261 (2020).

    Article  CAS  Google Scholar 

  38. Björkman, E. Monotropa hypopitys L.—an epiparasite on tree roots. Physiol. Plant. 13, 308–327 (1960).

    Article  Google Scholar 

  39. McKendrick, S. L., Leake, J. R. & Read, D. J. Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol. 145, 539–548 (2000).

  40. McKendrick, S. L., Leake, J. R., Taylor, D. L. & Read, D. J. Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterisation of its mycorrhizal fungi. New Phytol. 145, 523–537 (2000).

  41. Bougoure, J. J., Brundrett, M. C. & Grierson, P. F. Carbon and nitrogen supply to the underground orchid, Rhizanthella gardneri. New Phytol. 186, 947–956 (2010).

  42. Bidartondo, M. I., Bruns, T. D., Weiß, M., Sérgio, S. & Read, D. J. Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc. R. Soc. B 270, 835–842 (2003).

  43. Figura, T., Tylová, E., Šoch, J., Selosse, M.-A. & Ponert, J. In vitro axenic germination and cultivation of mixotrophic Pyroloideae (Ericaceae) and their post-germination ontogenetic development. Ann. Bot. 123, 625–639 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Schweiger, J. M. I., Bidartondo, M. I. & Gebauer, G. Stable isotope signatures of underground seedlings reveal the organic matter gained by adult orchids from mycorrhizal fungi. Funct. Ecol. 32, 870–881 (2018).

    Article  Google Scholar 

  45. Gebauer, G. & Meyer, M. 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol. 160, 209–223 (2003).

  46. Julou, T. et al. Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol. 166, 639–653 (2005).

  47. Cameron, D. D., Preiss, K., Gebauer, G. & Read, D. J. The chlorophyll-containing orchid Corallorhiza trifida derives little carbon through photosynthesis. New Phytol. 183, 358–364 (2009).

  48. Zimmer, K. et al. Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytol. 175, 166–175 (2007).

  49. Liebel, H. T. et al. C and N isotope signatures reveal constraints to nutritional modes in orchids of the Mediterranean and Macaronesia. Am. J. Bot. 97, 903–912 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Preiss, K., Adam, I. K. & Gebauer, G. Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proc. R. Soc. B 277, 1333–1336 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hynson, N. A., Mambelli, S., Amend, A. S. & Dawson, T. E. Measuring carbon gains from fungal networks in understory plants from the tribe Pyroleae (Ericaceae): a field manipulation and stable isotope approach. Oecologia 169, 307–317 (2012).

    Article  PubMed  Google Scholar 

  52. Matsuda, Y., Shimizu, S., Mori, M., Ito, S.-I. & Selosse, M.-A. Seasonal and environmental changes of mycorrhizal associations and heterotrophy levels in mixotrophic Pyrola japonica (Ericaceae) growing under different light environments. Am. J. Bot. 99, 1177–1188 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Suetsugu, K., Ohta, T. & Tayasu, I. Partial mycoheterotrophy in the leafless orchid Cymbidium macrorhizon. Am. J. Bot. 105, 1595–1600 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Lallemand, F. et al. Mixotrophic orchids do not use photosynthates for perennial underground organs. New Phytol. 221, 12–17 (2019).

  55. Roy, M. et al. Why do mixotrophic plants stay green? A comparison between green and achlorophyllous orchid individuals in situ. Ecol. Monogr. 83, 95–117 (2009).

    Article  Google Scholar 

  56. Stöckel, M., Meyer, C. & Gebauer, G. The degree of mycoheterotrophic carbon gain in green, variegated and vegetative albino individuals of Cephalanthera damasonium is related to leaf chlorophyll concentrations. New Phytol. 189, 790–796 (2011).

  57. Matsuda, Y. et al. Communities of mycorrhizal fungi in different trophic types of Asiatic Pyrola japonica sensu lato (Ericaceae). J. Plant Res. 133, 841–853 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Giesemann, P., Rasmussen, H. N. & Gebauer, G. Partial mycoheterotrophy is common among chlorophyllous plants with Paris-type arbuscular mycorrhiza. Ann. Bot. 127, 645–653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lallemand, F. et al. The elusive predisposition to mycoheterotrophy in Ericaceae. New Phytol. 212, 314–319 (2016).

  60. Wang, D., Jacquemyn, H., Gomes, S. I. F., Vos, R. A. & Merckx, V. S. F. T. Symbiont switching and trophic mode shifts in Orchidaceae. New Phytol. 231, 791–800 (2021).

  61. Zackrisson, O., Nilsson, M.-C., Dahlberg, A. & Jäderlund, A. Interference mechanisms in conifer–Ericaceae–feathermoss communities. Oikos 78, 209–220 (1997).

    Article  Google Scholar 

  62. Smith, J. M., Whiteside, M. D. & Jones, M. D. Rapid nitrogen loss from ectomycorrhizal pine germinants signaled by their fungal symbiont. Mycorrhiza 30, 407–417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gomes, S. I. F., van Bodegom, P., Merckx, V. S. F. T. & Soudzilovskaia, N. Global distribution of mycoheterotrophic plants. Glob. Ecol. Biogeogr. 28, 1133–1145 (2019).

    Article  Google Scholar 

  64. Merckx, V., Bidartondo, M. I. & Hynson, N. A. Myco-heterotrophy: when fungi host plants. Ann. Bot. 104, 1255–1261 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hynson, N. A. & Bruns, T. D. Evidence of a myco-heterotroph in the plant family Ericaceae that lacks mycorrhizal specificity. Proc. R. Soc. B 276, 4053–4059 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Roy, M. et al. Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi. BMC Biol. 7, 51 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hynson, N. A. & Bruns, T. D. Fungal hosts for mycoheterotrophic plants: a nonexclusive, but highly selective club. New Phytol. 185, 598–601 (2010).

  68. Merckx, V. S. et al. Mycoheterotrophic interactions are not limited to a narrow phylogenetic range of arbuscular mycorrhizal fungi. Mol. Ecol. 21, 1524–1532 (2012).

    Article  PubMed  Google Scholar 

  69. Perez-Lamarque, B., Selosse, M.-A., Öpik, M., Morlon, H. & Martos, F. Cheating in arbuscular mycorrhizal mutualism: a network and phylogenetic analysis of mycoheterotrophy. New Phytol. 226, 1822–1835 (2020).

  70. Větrovský, T. et al. GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high-throughput sequencing metabarcoding studies. New Phytol. 240, 2151–2163 (2023).

  71. Bidartondo, M. I. & Bruns, T. D. Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure. Mol. Ecol. 10, 2285–2295 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Leake, J. R., McKendrick, S. L., Bidartondo, M. I. & Read, D. J. Symbiotic germination and development of the myco-heterotroph Monotropa hypopitys in nature and its requirement for locally distributed Tricholoma spp. New Phytol. 163, 405–423 (2004).

  73. Winther, J. & Friedman, W. Arbuscular mycorrhizal symbionts in Botrychium (Ophioglossaceae). Am. J. Bot. 94, 1248–1255 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Franklin, J. F. et al. Ecological Characteristics of Old-Growth Douglas-Fir Forests (United States Department of Agriculture, 1981).

  75. Cheek, M. & Williams, S. in African Plants: Biodiversity, Taxonomy and Uses (eds Timberlake, J. & Kativu, S.) 39–49 (Royal Botanic Gardens Kew, 1999).

  76. Haeussler, S., Bedford, L., Leduc, A., Bergeron, Y. & Kranabetter, J. Silvicultural disturbance severity and plant communities of the southern Canadian boreal forest. Silva Fenn. (Hels) 36, 307–327 (2002).

    Google Scholar 

  77. Moola, F. & Vasseur, L. Recovery of late-seral vascular plants in a chronosequence of post-clearcut forest stands in coastal Nova Scotia, Canada. Plant Ecol. 172, 183–197 (2004).

    Article  Google Scholar 

  78. Philip, L., Simard, S. & Jones, M. Pathways for below-ground carbon transfer between paper birch and Douglas-fir seedlings. Plant Ecol. Divers. 3, 221–233 (2010).

    Article  Google Scholar 

  79. Teste, F. P., Simard, S. W., Durall, D. M., Guy, R. D. & Berch, S. M. Net carbon transfer between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance. J. Ecol. 98, 429–439 (2010).

    Article  CAS  Google Scholar 

  80. Pickles, B. J. et al. Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas. New Phytol. 214, 400–411 (2017).

  81. Lerat, S. et al. 14C transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia 132, 181–187 (2002).

    Article  PubMed  Google Scholar 

  82. Suetsugu, K. et al. Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species. Oecologia 192, 929–937 (2020).

    Article  PubMed  Google Scholar 

  83. Suetsugu, K. et al. Isotopic and molecular data support mixotrophy in Ophioglossum at the sporophytic stage. New Phytol. 228, 415–419 (2020).

  84. Kuga, Y., Sakamoto, N. & Yurimoto, H. Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms. New Phytol. 202, 594–605 (2014).

  85. Hadley, G. & Williamson, B. Analysis of the post-infection growth stimulus in orchid mycorrhiza. New Phytol. 70, 445–455 (1971).

  86. Cameron, D. D., Johnson, I., Read, D. J. & Leake, J. R. Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol. 180, 176–184 (2008).

  87. Smith, S. E. Physiology and ecology of orchid mycorrhizal fungi with reference to seedling nutrition. New Phytol. 65, 488–499 (1966).

  88. Ponert, J., Šoch, J., Vosolsobě, S., Čiháková, K. & Lipavská, H. Integrative study supports the role of trehalose in carbon transfer from fungi to mycotrophic orchid. Front. Plant Sci. 12, 793876 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Li, M. H. et al. Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy. Nat. Plants 8, 373–388 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ho, L. H. et al. GeSUT4 mediates sucrose import at the symbiotic interface for carbon allocation of heterotrophic Gastrodia elata (Orchidaceae). Plant Cell Environ. 44, 20–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Bécard, G., Doner, L. W., Rolin, D. B., Douds, D. D. & Pfeffer, P. E. Identification and quantification of trehalose in vesicular-arbuscular mycorrhizal fungi by in vivo 13C NMR and HPLC analyses. New Phytol. 118, 547–552 (1991).

  92. Martin, F., Boiffin, V. V. & Pfeffer, P. E. Carbohydrate and amino acid metabolism in the Eucalyptus globulus–Pisolithus tinctorius ectomycorrhiza during glucose utilization. Plant Physiol. 118, 627–635 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lunn, J. E., Delorge, I., Figueroa, C. M., Van Dijck, P. & Stitt, M. Trehalose metabolism in plants. Plant J. 79, 544–567 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Selosse, M.-A. & Roy, M. Green plants eating fungi: facts and questions about mixotrophy. Trends Plant Sci. 14, 64–70 (2009). 2009.

    Article  CAS  PubMed  Google Scholar 

  95. Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).

    Article  CAS  Google Scholar 

  96. Leake, J. R. & Cameron, D. D. Physiological ecology of mycoheterotrophy. New Phytol. 185, 601–605 (2010).

  97. Simard, S. W. et al. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol. Rev. 26, 39–60 (2012).

    Article  Google Scholar 

  98. Klein, T., Siegwolf, R. T. W. & Körner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Cahanovitc, R., Livne-Luzon, S., Angel, R. & Klein, T. Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. ISME J. 16, 1420–1429 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Avital, S., Rog, I., Livne-Luzon, S., Cahanovitc, R. & Klein, T. Asymmetric belowground carbon transfer in a diverse tree community. Mol. Ecol. 31, 3481–3495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Klein, T., Rog, I., Livne-Luzon, S., van der Heijden, M. G. A. & Körner, C. Belowground carbon transfer across mycorrhizal networks among trees: facts, not fantasy. Open Res. Eur. 3, 168 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Selle, A. et al. The high-affinity poplar ammonium importer PttAMT1.2 and its role in ectomycorrhizal symbiosis. New Phytol. 168, 697–706 (2005).

  103. Couturier, J. et al. The expanded family of ammonium transporters in the perennial poplar plant. New Phytol. 174, 137–150 (2007).

  104. Nehls, U. & Plassard, C. Nitrogen and phosphate metabolism in ectomycorrhizas. New Phytol. 220, 1047–1058 (2018).

  105. Stuart, E. K. & Plett, K. L. Digging deeper: in search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses. Front. Plant Sci. 10, 1658 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Govindarajulu, M. et al. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435, 819–823 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Karandashov, V. & Bucher, M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci. 10, 22–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Bidartondo, M. I., Burghardt, B., Gebauer, G., Bruns, T. D. & Read, D. J. Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc. R. Soc. B 271, 1799–1806 (2004).

  109. Gilliam, F. S. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 57, 845–858 (2007).

    Article  Google Scholar 

  110. Dirnböck, T. et al. Substantial understory contribution to the C sink of a European temperate mountain forest landscape. Landsc. Ecol. 35, 483–499 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Landuyt, D. et al. The functional role of temperate forest understorey vegetation in a changing world. Glob. Change Biol. 25, 3625–3641 (2019).

    Article  Google Scholar 

  112. Bronstein, J. L., Alarcón, R. & Geber, M. The evolution of plant–insect mutualisms. New Phytol. 172, 412–428 (2006).

  113. Merckx, V. & Bidartondo, M. I. Breakdown and delayed cospeciation in the arbuscular mycorrhizal mutualism. Proc. R. Soc. B 275, 1029–1035 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Walder, F. & van der Heijden, M. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat. Plants 1, 15159 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Henriksson, N. et al. The mycorrhizal tragedy of the commons. Ecol. Lett. 24, 1215–1224 (2021).

    Article  PubMed  Google Scholar 

  116. Durant, E. et al. Herbivore-driven disruption of arbuscular mycorrhizal carbon-for-nutrient exchange is ameliorated by neighboring plants. Curr. Biol. 33, 2566–2573 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Field, K. J. et al. From mycoheterotrophy to mutualism: mycorrhizal specificity and functioning in Ophioglossum vulgatum sporophytes. New Phytol. 205, 1492–1502 (2015).

  118. Eriksson, O. & Kainulainen, K. The evolutionary ecology of dust seeds. Perspect. Plant Ecol. Evol. Syst. 13, 73–87 (2011).

    Article  Google Scholar 

  119. Giesemann, P., Rasmussen, H. N., Liebel, H. T. & Gebauer, G. Discreet heterotrophs: green plants that receive fungal carbon through Paris-type arbuscular mycorrhiza. New Phytol. 226, 960–966 (2020).

  120. Perotto, S. & Balestrini, R. At the core of the endomycorrhizal symbioses: intracellular fungal structures in orchid and arbuscular mycorrhiza. New Phytol. https://doi.org/10.1111/nph.19338 (2023).

  121. Sheldrake, M. et al. A phosphorus threshold for mycoheterotrophic plants in tropical forests. Proc. R. Soc. B 284, 20162093 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gomes, S. I., Aguirre-Gutiérrez, J., Bidartondo, M. I. & Merckx, V. S. Arbuscular mycorrhizal interactions of mycoheterotrophic Thismia are more specialized than in autotrophic plants. New Phytol. 213, 1418–1427 (2017).

Download references

Acknowledgements

V.S.F.T.M. thanks the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101045057). S.I.F.G. thanks the Novo Nordisk Foundation (Silva Nova; grant no. NNF20OC0059948). M.I.B. thanks the Leverhulme Research Centre for the Holobiont.

Author information

Authors and Affiliations

Authors

Contributions

The focus of this Perspective was conceived by all the authors. V.S.F.T.M. led the writing, with contributions from S.I.F.G., D.W., C.V., H.J., F.E.Z., G.G. and M.I.B.

Corresponding author

Correspondence to Vincent S. F. T. Merckx.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merckx, V.S.F.T., Gomes, S.I.F., Wang, D. et al. Mycoheterotrophy in the wood-wide web. Nat. Plants (2024). https://doi.org/10.1038/s41477-024-01677-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41477-024-01677-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing