Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Evolution of meristem zonation by CLE gene duplication in land plants

Abstract

In angiosperms, a negative feedback pathway involving CLAVATA3 (CLV3) peptide and WUSCHEL transcription factor maintains the stem-cell population in the shoot apical meristem and is central for continued shoot growth and organogenesis. An intriguing question is how this cell-signalling system was established during the evolution of land plants. On the basis of two recent studies on CLV3/ESR-related (CLE) genes, this paper proposes a model for the evolution of meristem zonation. The model suggests that a stem-cell-limiting CLV3 pathway is derived from stem-cell-promoting CLE pathways conserved in land pants by gene duplication in the angiosperm lineage. The model can be examined in the future by genomic and developmental studies on diverse plant species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Canonical CLV3–WUS signalling pathway in angiosperms.
Fig. 2: Gene duplication and the expansion of CLE family in land plants.
Fig. 3: M. polymorpha CLV3-type CLE is a positive regulator of stem-cell population size.
Fig. 4: A model for the evolution of meristem zonation by CLE gene duplication.

Similar content being viewed by others

References

  1. Steeves, T. A. & Sussex, I. M. Patterns in Plant Development (Cambridge Univ. Press, 1989).

  2. Evert, R. F. Esau’s Plant Anatomy. Meristems, Cells, and Tissues of the Plant Body—Their Structure, Function, and Development 3rd edn (Wiley, 2006).

  3. Frank, M. H. & Scanlon, M. J. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs. Mol. Biol. Evol. 32, 355–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Ambrose, B. A. & Vasco, A. Bringing the multicellular fern meristem into focus. New Phytol. 210, 790–793 (2016).

    Article  PubMed  Google Scholar 

  5. Hata, Y. & Kyozuka, J. Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes. Plant Mol. Biol. 107, 213–225 (2021).

  6. Hofmeister, W. F. B. On the Germination, Development, and Fructification of the Higher Cryptogamia, and on the Fructification of the Coniferae (Ray Society, 1862).

  7. Bowman, J. L. et al. Evolution in the cycles of life. Annu. Rev. Genet. 50, 133–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Kenrick, P. Changing expressions: a hypothesis for the origin of the vascular plant life cycle. Phil. Trans. R. Soc. Lond. B 373, 20170149 (2018).

    Article  CAS  Google Scholar 

  9. Catarino, B. et al. The stepwise increase in the number of transcription factor families in the Precambrian predated the diversification of plants on land. Mol. Biol. Evol. 33, 2815–2819 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Wilhelmsson, P. K. I. et al. Comprehensive genome-wide classification reveals that many plant-specific transcription factors evolved in streptophyte algae. Genome Biol. Evol. 9, 3384–3397 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bowman, J. L. et al. Evolution and co-option of developmental regulatory networks in early land plants. Curr. Top. Dev. Biol. 131, 35–53 (2019).

    Article  PubMed  Google Scholar 

  13. Nishiyama, T. et al. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc. Natl Acad. Sci. USA 100, 8007–8012 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Friedman, W. E. et al. The evolution of plant development. Am. J. Bot. 91, 1726–1741 (2004).

    Article  PubMed  Google Scholar 

  15. Aoyama, T. et al. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Development 139, 3120–3129 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Barton, M. K. Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev. Biol. 341, 95–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Gaillochet, C. & Lohmann, J. U. The never-ending story: from pluripotency to plant developmental plasticity. Development 142, 2237–2249 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, H. et al. Transcriptional circuits in control of shoot stem cell homeostasis. Curr. Opin. Plant Biol. 53, 50–56 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Vernoux, T. et al. What shoots can teach about theories of plant form. Nat. Plants 7, 716–724 (2021).

    Article  PubMed  Google Scholar 

  20. Hirakawa, Y. et al. Induction of multichotomous branching by CLAVATA peptide in Marchantia polymorpha. Curr. Biol. 30, 3833–3840 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Schlegel, J. et al. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways. eLife 10, e70934 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bowman, J. L. & Eshed, Y. Formation and maintenance of the shoot apical meristem. Trends Plant Sci. 5, 110–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Fletcher, J. C. et al. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911–1914 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Mayer, K. F. et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Brand, U. et al. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617–619 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Schoof, H. et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Yadav, R. K. et al. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev. 25, 2025–2030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Daum, G. et al. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 14619–14624 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, C. et al. A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nat. Plants 4, 205–211 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, Y. et al. HAIRY MERISTEM with WUSCHEL confines CLAVATA3 expression to the outer apical meristem layers. Science 361, 502–506 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clark, S. E. et al. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119, 397–418 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Laux, T. et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Smyth, D. R. Evolution and genetic control of the floral ground plan. New Phytol. 220, 70–86 (2018).

    Article  PubMed  Google Scholar 

  34. Clark, S. E. et al. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121, 2057–2067 (1995).

    Article  CAS  Google Scholar 

  35. Fuchs, M. & Lohmann, J. U. Aiming for the top: non-cell autonomous control of shoot stem cells in Arabidopsis. J. Plant Res. 133, 297–309 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lopes, F. L. et al. WUSCHEL in the shoot apical meristem: old player, new tricks. J. Exp. Bot. 72, 1527–1535 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Willoughby, A. C. & Nimchuk, Z. L. WOX going on: CLE peptides in plant development. Curr. Opin. Plant Biol. 63, 102056 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Nardmann, J. et al. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Mol. Biol. Evol. 26, 1745–1755 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Groß-Hardt, R. et al. WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev. 16, 1129–1138 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zumajo‑Cardona, C. et al. Expression analyses in Ginkgo biloba provide new insights into the evolution and development of the seed. Sci. Rep. 11, 21995 (2021).

    Article  CAS  Google Scholar 

  42. Sakakibara, K. et al. WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. Development 141, 1660–1670 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y. et al. Two-step functional innovation of the stem-cell factors WUS/WOX5 during plant evolution. Mol. Biol. Evol. 34, 640–653 (2017).

    CAS  PubMed  Google Scholar 

  44. Youngstrom, C. E. et al. A fern WUSCHEL-RELATED HOMEOBOX gene functions in both gametophyte and sporophyte generations. BMC Plant Biol. 19, 416 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Uchida, N. & Torii, K. U. Stem cells within the shoot apical meristem: identity, arrangement and communication. Cell. Mol. Life Sci. 76, 1067–1080 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Uchida, N. et al. ERECTA-family receptor kinases regulate stem cell homeostasis via buffering its cytokinin responsiveness in the shoot apical meristem. Plant Cell Physiol. 54, 343–351 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Kimura, Y. et al. ERECTA-family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem. Development 145, dev156380 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Ohno, S. Evolution by Gene Duplication (Springer, 1970).

  49. Van de Peer, Y. et al. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).

    Article  PubMed  CAS  Google Scholar 

  50. Clark, J. W. & Donoghue, P. C. J. Whole-genome duplication and plant macroevolution. Trends Plant Sci. 23, 933–945 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Li, F. W. et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants 4, 460–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Strabala, T. J. CLE genes in plant development: gain-of-function analyses, pleiotropy, hypermorphy and neomorphy. Plant Signal. Behav. 3, 457–459 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Goad, D. M. et al. Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. New Phytol. 216, 605–616 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, Z. et al. Predicting and clustering plant CLE genes with a new method developed specifically for short amino acid sequences. BMC Genomics 21, 709 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Suzaki, T. et al. Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice. Plant Cell 20, 2049–2058 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ohmori, Y. et al. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice. Plant Cell 25, 229–241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Je, B. I. et al. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat. Genet. 48, 785–791 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Rodríguez-Leal, D. et al. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480 (2017).

    Article  PubMed  CAS  Google Scholar 

  60. Liu, L. et al. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat. Plants 7, 287–294 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Nishiyama, T. et al. Chloroplast phylogeny indicates that bryophytes are monophyletic. Mol. Biol. Evol. 21, 1813–1819 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Puttick, M. N. et al. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Donoghue, P. C. J. et al. The evolutionary emergence of land plants. Curr. Biol. 31, R1281–R1298 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Lang, D. et al. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J. 93, 515–533 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Montgomery, S. A. et al. Chromatin organization in early land plants reveals an ancestral association between h3k27me3, transposons, and constitutive heterochromatin. Curr. Biol. 30, 573–588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, F. W. et al. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat. Plants 6, 259–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, J. et al. The hornwort genome and early land plant evolution. Nat. Plants 6, 107–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ito, Y. et al. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313, 842–845 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Hirakawa, Y. et al. Control of proliferation in the haploid meristem by CLE peptide signaling in Marchantia polymorpha. PLoS Genet. 15, e1007997 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Furumizu, C. et al. The sequenced genomes of nonflowering land plants reveal the innovative evolutionary history of peptide signaling. Plant Cell 33, 2915–2934 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ishizaki, K. et al. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. 49, 1084–1091 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Ishizaki, K. et al. Molecular genetic tools and techniques for Marchantia polymorpha research. Plant Cell Physiol. 57, 262–270 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Frangedakis, E. et al. An Agrobacterium-mediated stable transformation technique for the hornwort model Anthoceros agrestis. New Phytol. 232, 1488–1505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Taylor, T. N. et al. Paleobotany: The Biology and Evolution of Fossil Plants 2nd edn (Academic Press, 2009).

  75. Gerrienne, P. & Gonez, P. Early evolution of life cycles in embryophytes: a focus on the fossil evidence of gametophyte/sporophyte size and morphological complexity. J. Syst. Evol. 49, 1–16 (2011).

    Article  Google Scholar 

  76. Edwards, D. & Kenrick, P. The early evolution of land plants, from fossils to genomics: a commentary on Lang (1937) ‘On the plant-remains from the Downtonian of England and Wales’. Phil. Trans. R. Soc. Lond. B 370, 20140343 (2015).

    Article  Google Scholar 

  77. Harrison, J. C. Development and genetics in the evolution of land plant body plans. Phil. Trans. R. Soc. Lond. B 372, 20150490 (2017).

    Article  Google Scholar 

  78. Kerp, H. Organs and tissues of Rhynie chert plants. Phil. Trans. R. Soc. Lond. B 373, 20160495 (2018).

    Article  Google Scholar 

  79. Hetherington, A. J. et al. Multiple origins of dichotomous and lateral branching during root evolution. Nat. Plants 6, 454–459 (2020).

    Article  PubMed  Google Scholar 

  80. Takahashi, G. et al. An evolutionarily conserved coreceptor gene is essential for CLAVATA signaling in Marchantia polymorpha. Front. Plant Sci. 12, 657548 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kohchi, T. et al. Development and molecular genetics of Marchantia polymorpha. Annu. Rev. Plant Biol. 72, 677–702 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Whitewoods, C. D. et al. CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. Curr. Biol. 28, 2365–2376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nemec-Venza, Z. et al. CLAVATA modulates auxin homeostasis and transport to regulate stem cell identity and plant shape in a moss. New Phytol. 234, 149–163 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Cammarata, J. et al. Cytokinin-CLAVATA cross-talk is an ancient mechanism regulating shoot meristem homeostasis in land plants. Proc. Natl Acad. Sci. USA 119, e2116860119 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Hobe, M. et al. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Dev. Genes Evol. 213, 371–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. DeYoung, B. J. et al. The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J. 45, 1–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Nimchuck, Z. L. et al. Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. Development 142, 1043–1049 (2015).

    Article  CAS  Google Scholar 

  88. Cammarata, J. & Scanlon, M. J. A functionally informed evolutionary framework for the study of LRR-RLKs during stem cell maintenance. J. Plant Res. 133, 331–342 (2020).

    Article  PubMed  Google Scholar 

  89. Hirakawa, Y. & Bowman, J. L. A role of TDIF peptide signaling in vascular cell differentiation is conserved among euphyllophytes. Front. Plant Sci. 6, 1048 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jun, J. H. et al. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiol. 154, 1721–1736 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Foster, A. S. Structure and growth of the shoot apex in Ginkgo biloba. Bull. Torrey Bot. Club 65, 531–556 (1938).

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks J. L. Bowman, C. Furumizu, N. Uchida, G. Takahashi and J. P. Alvarez for discussion and comments on the manuscript, and apologizes to authors of literature that could not be cited due to space constraints. This work was supported by JSPS KAKENHI Grant No. JP19K06727 and JP22H02676 and by a Research Grant from the Abe Yoshishige Memorial Fund.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. conceived the idea, analysed the data, generated figures and wrote the manuscript.

Corresponding author

Correspondence to Yuki Hirakawa.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Plants thanks Jennifer Fletcher, Rüdiger Simon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirakawa, Y. Evolution of meristem zonation by CLE gene duplication in land plants. Nat. Plants 8, 735–740 (2022). https://doi.org/10.1038/s41477-022-01199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01199-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing