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Ozone as an environmental driver of
influenza

Fang Guo 1,11, Pei Zhang1,11, Vivian Do 2,11, Jakob Runge3,4, Kun Zhang5,6,
Zheshen Han1, Shenxi Deng 1, Hongli Lin1, Sheikh Taslim Ali 1,7,
Ruchong Chen8, Yuming Guo 9 & Linwei Tian 1,10

Under long-standing threat of seasonal influenza outbreaks, it remains
imperative to understand the drivers of influenza dynamics which can guide
mitigation measures. While the role of absolute humidity and temperature is
extensively studied, the possibility of ambient ozone (O3) as an environmental
driver of influenza has received scant attention. Here, using state-level data in
the USA during 2010–2015, we examined such research hypothesis. For rig-
orous causal inference by evidence triangulation, we applied 3 distinct meth-
ods for data analysis: Convergent Cross Mapping from state-space
reconstruction theory, Peter-Clark-momentary-conditional-independence
plus as graphical modeling algorithms, and regression-based Generalised
Linear Model. The negative impact of ambient O3 on influenza activity at
1-week lag is consistently demonstrated by those 3 methods. With O3 com-
monly knownas air pollutant, thenovelfindings hereon the inhibition effect of
O3on influenza activitywarrant further investigations to informenvironmental
management and public health protection.

Influenza imposes a great health and economic burden worldwide,
killing about half a million people annually1,2. To ease the threat of
seasonal and novel influenza epidemics, improved understanding of
potential environmental drivers of influenza dynamics has been a
research priority. Influenza activity is affected by multi-dimensional
determinants, including antigenic drift, host susceptibility3, social
factors (e.g., population-mixing and contact rates)4, and environ-
mental conditions5. Previous epidemiological and experimental stu-
dies have examined the relationships of absolute humidity (AH) and
temperature (T) with influenza6,7. Recently, a negative association
between daily ambient ozone (O3) and influenza transmissibility has

also been reported in a time series study of Hong Kong8. This human
population finding of Hong Kong is consistent with some available
laboratory and clinical evidence that the commonly known air pol-
lutant and pulmonary irritant, O3, not only exhibits virucidal poten-
tial through its oxidizing power9,10, but also primes host immunity
against viral infection11–13. It would be intriguing to see whether the
O3-influenza relationship observed in subtropical Hong Kong also
holds true in temperate climates. In this work, we used the publicly
available weekly state-level data in the USA during 2010–2015 to
examine the acute effect of ambient O3 on influenza dynamics—
whether a change in weekly ambient O3 leads to a change in influenza
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activity within 2 weeks in the community when keeping all other
variables the same.

The totality of evidence has been proposed as a way forward to
strengthen causal inference with observational data14: cross-checking
multiplemethods can enable more robust causal interpretation that is
supported by multiple algorithms and conceptual principles but con-
tradicted by none. Here, we propose an integrative methodological
framework with three distinct approaches in examining the effect of
ambient O3 on influenza dynamics in the USA. Namely, (1) Convergent
cross mapping (CCM), a causality test kit based on state-space recon-
struction (SSR) for dynamical systems15,16, (2) a graphical modeling
approach called Peter-Clark-momentary-conditional-independence
plus (PCMCI+)17,18, and (3) a statistical regression method Generalized
Linear Model (GLM)19, are used in our study. Since these methods are
endowed with disparate theoretical assumptions and hidden biases,
we envision that the confidence tomake causal inference regarding the
scientific question of interest would be strengthened if consistent
findings are reached14,20.

Results
Dynamic data of environmental variables and influenza
Weekly time series of environmental variables (namely, O3, AH, and T)
and influenza activity (“Flu”) in the USA during October 3, 2010 to
May 31, 2015 are depicted in Fig. 1. “Flu” is calculated by taking the
product of two proportions: the proportion of influenza-like-illness
(ILI) cases among all clinical visits in the community and the propor-
tion of influenza-positive specimens, being an arguably good proxy
measure of influenza activity in the community (see details in the
“Method” section). Seasonality is observed in all the time series, with

influenza activity showing winter peak but summer trough, and
environmental variables showing the opposite to certain extent. There
are long stretches of 0 values in the influenza time series, especially
outside of influenza season, which contain little causal information for
exploration. As a consequence, this study only focused on the influ-
enza season (that is considered October through May) in the USA for
analysis. The weekly mean level of influenza activity is 4:25 × 10�3,
which can be understood as 425 expected cases per 100,000
population.

Environmental drivers of influenza
The estimated effects of environmental factors on influenza activity in
the USA using three methods (namely, CCM, PCMCI+, and GLM) are
summarised in Table 1. While thesemethods adopt different measures
of effect size, they share one common interpretation rule: a negative
value indicates a negative effect size, and vice versa. The negative
effect of 1-week laggedAHon influenza activitywasdetectedby PCMCI
+ andGLMbut not CCM, and the negative effect of 2-week lagged air T
on influenza was detected by GLM alone. Ambient O3 was found to
reduce influenza activity (p<1:0× 10�3) at lag 1 (week), consistently by
three distinct methods.

CCM under the umbrella of Empirical Dynamic Modeling (EDM)
approach was used to conduct the causality test in dynamical
systems15. The intuition behind CCM is to examine how well a hypo-
thesizeddriving variable can be cross-mapped (cross-predicted) by the
effect variable given putative causal information injected. And such
cross-mapping should perform better as more data points (i.e., larger
library size) are available to construct the attractor, showing a con-
vergence property, thus the name Convergent Cross-Mapping (CCM)

Fig. 1 | Weekly time series of environmental measurements and influenza
activity in 46 states of the USA during 2010–2015. Influenza activity is indicated
by the variable “Flu” which is the product of two proportions: the proportion of
influenza-like-illness cases among all clinical consultations in the community and

the proportion of laboratory confirmed influenza-positive specimens among all
specimens tested. Long stretches of 0 values for “Flu” in non-influenza season (June
to September), shaded in gray columns, contain little information for causal
inference and thus are omitted from data analysis.
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for causality test (see details in the “Methods” section). Here, the CCM
skill was calculated as the improved prediction accuracy obtained at
the maximum library size over that at the minimum library size
(ΔρCCM =ρmaxLib � ρminLib). To rule out the influence of shared sea-
sonality between time series, the CCM skill (ΔρCCM) of observed time
series was tested against surrogate data. Figure 2a presents the state-
level CCM surrogate tests on whether there is a causal effect of O3, AH
and T at 1-week lag on influenza activity; Fig. 2b presents a summary of
measured ΔρCCM of each state and the nationwide meta-significance
estimates by summing the logs of state-specific CCM test p values.
While the state-level relationships are variable and all three environ-
mental factors coulddrive influenza activity in some states (as signified
by filled red dots), the nationwide test indicates that O3 alone is an
environmental driver of influenza activity at the significance threshold
of pmeta<1:0× 10�3; moreover, CCM skill for O3 is significantly greater
than that for AH (p<2:8× 10�5) and T (p<4:3 × 10�5) by Wilcoxon rank
sum test. When repeating CCM in the nonsensical causal direction by
setting the candidate cause and effect in reverse, none of the CCM
results is significant (see Supplementary Fig. S1), addressing the con-
cern of spurious relationship generated by noncausal synchrony.

Following CCM causality test, multivariate S-map (sequential
locally weighted global linear map) is conducted to quantify the effect
magnitude of putative environmental drivers on influenza activity16,21.
Figure 3 plots the state-specific median effect size of O3, at 1-week lag,
on influenza activity onto the map, showing a mostly negative sign
across the states. The median effect size is −0.106; that is, one SD
increment in O3 (8.3 ppb) leads to a 0.106 SD decrease in logit-
transformed influenza activity in the following week. All states see
negative effect size except for the two states of Mississippi and Hawaii
though they do not pass the CCM causality tests (Fig. 2a). The effect
estimates of AH and T on influenza are also negative, but they fail to
pass the CCM causality tests (Table 1).

To cement the credibility of making causal inference, a probabil-
istic graphical modeling framework called PCMCI+ (see detailed
description in “Methods” section) is adopted to estimate the causal
networks of the underlying system17,18. The output of PCMCI+ reads as

a directed acyclic graph (DAG) which can be interpreted as random
variables (in nodes) linked by causal dependencies under certain
assumptions (Supplementary Table S1). Figure 4a shows the state-by-
state dependency networks. Eighteen out of 46 states see a direct link
from O3 to influenza activity, of which 17 are of a negative sign and 1 is
positive for North Dakota. Thirteen states see direct and/or indirect
links from AH to influenza activity: the effect sign is mixed but largely
negative. Fifteen states see negative link fromT to influenza activity, of
which 10 links are direct, but 5 are indirect through O3. Here, the
hyperparameter significance level (αPC) for iteratively filtering out
spurious links was set as 0.05 at the state-level analyses.

Figure 4b shows a summary dependency graph estimated by
concatenated time series from individual states; a more stringent cri-
terion αPC of 1:0× 10�3 was used to yield the nationwide graphical
output. Ambient O3 bears a direct negative effect on influenza activity
at lag 0 (i.e., within the same week) and a lag of 1 week; air T affects
influenza activity in a negative manner indirectly through O3 at lag 0.
With respect to AH, its total effect on influenza activity is obscure:
aside from a direct negative coupling at lag 1, it also has indirect but
positive effect through O3. AH and T are strongly coupled with each
other, as expected.

Supplementary to the above two causal discovery methods, cus-
tomary regression method of GLM is conducted at each state to ana-
lyze the relationship of environmental factors with influenza activity,
adjusting for secular trend, seasonality, as well as inherent auto-
correlation. Figure 5a indicates that 1-week lagged statistical associa-
tions between each environmental variable and influenza activity are
mixed at state level. The state-level regression coefficients are then
pooled using a meta-analysis model (Fig. 5b). One SD increment in O3

concentration is associated with a reduction of 0.102 (CI: −0.186,
−0.018; p<5:9× 10�5) in logit-transformed influenza activity 1 week
after (Table 1).Meanwhile, AH andT are also negatively associatedwith
influenza activity at lag 1 and lag 2, respectively (Table 1).

Discussion
This study made use of the weekly time series data of influenza and
environmental variables in the states of USA during 2010–2015 and
three distinct methods for dynamic data analysis (namely, CCM,
PCMCI+, and GLM) in order to provide more reliable answers to the
question on environmental drivers of influenza. Three sets of results
consistently demonstrate the negative impact of ambient O3 on
influenza activity in the community.

Hitherto, a limited number of population-level studies have
examined the relationship between ambient O3 and influenza, and the
findings have been mixed. The integrated assessment of O3 by the
USEPA22 cited two references that reported positive associations of O3

and influenza in Hong Kong and Brisbane23,24, respectively. The report
in Hong Kong, however, was not actually on the relation of O3 and
influenza specifically; rather, that report aggregated influenza and
pneumonia into one group, which was associated with environmental
O3. The other report on the positive association of O3 with pediatric
influenza in Brisbane did not strenuously control for potential tem-
poral confounding in the time-series analysis. A more recent time
series analysis using Hong Kong surveillance data during 1998–2013
demonstrated that ambient O3 is negatively associated with reduced
influenza transmissibility (i.e., real-time effective reproduction num-
ber, Rt)8. The current study based on the data in the USA, demon-
strates again an inhibiting effect of O3 on community-level influenza
activity.

One explanation of the O3 inhibition effect on influenza could
relate to its direct virucidal potential. O3 inactivation of influenza virus
has been reported in studies in vitro. Influenza virus (WSN strain)
suspended on a thin film was inactivated within a few hours by an O3

concentration of 160 ppb (342 µg/m3)25. In mice studies, however, O3

exposure at 500 ppb appeared to have no effect on pulmonary virus

Table 1 | Effects of environmental factors on influenza activity
estimated by three distinct methods, based on weekly state-
level data of the USA during 2010–2015

CCM PCMCI+ GLM

Effect p value Effect p value Effect p value

Ozone

Lag 0 −0.115 1.6 × 10−6 −0.073 1.2 × 10−9 −0.016 5.4 × 10−1

Lag 1 −0.106 1.9 × 10−7 −0.057 21 × 10−6 −0.102 5.9 × 10−5

Lag 2 −0.112 1.0 × 10−8 −0.030 1.2 × 10−2 −0.017 3.9 × 10−1

Absolute humidity

Lag 0 −0.114 8.3 × 10−2 0.010 4.0 × 10−1 −0.037 4.3 × 10−1

Lag 1 −0.088 1.4 × 10−2 −0.107 4.7 × 10−19 −0.310 6.7 × 10−8

Lag 2 −0.050 2.9 × 10−1 0.0013 9.1 × 10−1 −0.020 6.6 × 10−1

Temperature

Lag 0 −0.132 2.6 × 10−1 −0.039 1.2 × 10−3 0.075 2.6 × 10−2

Lag 1 −0.113 1.4 × 10−1 −0.034 4.8 × 10−3 0.076 1.1 × 10−1

Lag 2 −0.080 6.4 × 10−1 −0.034 4.3 × 10−3 −0.158 2.0 × 10−6

In all three sets of results, bold values suggest relationships with statistical significance of

p<1:0× 10�3. In CCM, causality test against 1000 seasonal surrogates was first performed for
each state and those p values were then pooled to obtain meta-significance for nationwide
results, while effect was estimated by multivariate S-map analysis. In PCMCI+, state-level data
were pooled to obtain one set of results for the nation, and effect is measured by momentary
conditional independence (MCI) test with partial correlation method. In GLM, regression with
logit link function was first performed for each state, the coefficients of which were then pooled
by meta-analysis for nationwide results.
CCM convergent cross mapping, PCMCI+ Peter-Clark-momentary-conditional-independence
plus, GLM generalized linear model.
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titers; rather,O3 diminishes the severity of influenza virus infectionand
lung injury evidenced by less widespread infection in the lung
parenchyma26,27. In the current study, the average level of daily max-
imum8-hO3 is less than 40 ppb in theUSA. At this low ambient level of
O3, O3-primed host immunity against influenza infection constitutes a
more plausible explanation of the population findings presented here.

Inhaled ambient O3 primes the pulmonary immune system
boosting allergic responses in healthy and susceptible populations28,29.
Following O3 exposure, a myriad of immune responses is triggered,
and multiple interleukins (IL) are released from epithelial cells, mac-
rophages, and other myeloid cells30. Among them, IL-33, acting as an
endogenous “alarmin” in response to airway barrier damage incurred
by O3

31,32, is endowed with pleiotropic and homeostatic functions
orchestrating airway injury and repair12,30. Likewise, IL-33 is also highly
expressed following invasion of influenza virus, playing a pivotal role
of dynamic immune modulator during the course of infection33,34. It is
plausible that O3-induced IL-33 in the cytokine milieu is involved in an
immune crosstalk assisting human defense against influenza.

In the setting of inflammation combating foreign antigen, over-
expressed IL-33, signaled via its receptor ST2, can be redirected from
the default type 2‑inducing capacity to augment type 1 immunity,
amplifying antiviral CD8+ T cell and natural killer cell responses13,35,36.
In mice models of influenza infection, exogenous IL-33 inoculation
could enhance recruitment of dendritic cells (DCs), increase secretion
of pro-inflammatory cytokine IL-12, and prime cytotoxic T-Cell
responses, facilitating viral clearance37. IL-33 may protect against
influenza by orchestrating Th1/Th2 paradigm and somaintaining a fine
balance of pro-inflammatory pathogen clearance and anti-
inflammatory tissue repair38,39. During the resolution phase of infec-
tion event, IL-33 acts on residential ST2-expressing group 2 innate
lymphoid cells (ILC2s) as well as regulatory T (Treg) cells to restore
airway tissue homeostasis, mediated at least partly by amphiregulin
(AREG)-dependent repair of virus-damaged epithelium40,41.

The hypothesis of O3-elicited IL-33 conferring cross-protection
against influenza gains strength further from the evidence of its pro-
mising role as a mucosal vaccine adjuvant42. Exogenous IL-33 co-
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Fig. 2 | Causality tests by convergent cross-mapping (CCM) for the effect of
environmental factors (ozone [O3], absolute humidity [AH], temperature [T])
at 1-week lag on influenza activity in the states of USA. a State-specific observed
CCM skills (as circles), ΔρCCM, and their null distribution in 1000 seasonal surro-
gates (as line ranges). Circles are filled to signify themeasuredΔρCCM for each state

exceeding 95% of its null values. b Summary of state-specific ΔρCCM values in violin
plots. Meta-significance estimate for the nation (pmeta) is tested by summing the
logs of state-level p values; CCM causality is deemed significant
with pmeta<1:0× 10�3.
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administered intranasally with recombinant influenza A hemagglutinin
(rHA) induced significantly higher antigen (Ag)-specific plasma
immunoglobulin G (IgG) and mucosal IgA antibody (Ab) levels as well
as enhanced production of both Th1 and Th2-related cytokines, all of
which resulted in better protective capacity of the vaccine43. Besides,
endogenous IL-33 release, within 24 h, after administration of alum-
adjuvanted nasal influenza vaccine, induced higher IgA Ab production
via enhancing Ag presentation on DCs and promoting ILC2
activation44. These findings allude to possible parallels between adju-
vanticity of nasally administered alum and ambient O3 exposure.

This study strives to triangulate the evidence by integrating
results from different research approaches with distinct theories and
working hypotheses. Under the combo methodological framework,
CCMemploys the idea of SSR for attractors of deterministic dynamical
systems thereby addressing better nonlinear state-dependent cou-
plings, but it is less well suited for time series of purely stochastic
nature that is better handled with PCMCI+ method45. By contrast,
PCMCI+ builds on assessing (conditional) probability distribution of
random variables, and thus lacks power to recover the non-separable
couplings in deterministic systems46. On the other hand, the difficulty
of PCMCI+ in handling latent (hidden) variables can be addressed in
the state-space based method of CCM47. The qualitative dependency
structure revealed by PCMCI+ can then be complemented by quanti-
tative risk estimates in the time series regression method of GLM by
properly controlling for confounding factors.

A few limitations and caveats of the current study require due
consideration. The first concern derives from its reliance on passive
surveillance data, which can be subject to measurement error. For
example, surveillance practices to identify laboratory-confirmed
influenza cases as well as healthcare-seeking behaviors due to
influenza-like-illness (ILI) can vary across states and years, which may
hamper our ability to accurately estimate the actual influenza activity.
However, by utilizing a comprehensive proxy measure that combines
the laboratory and clinical data, such issue has been minimized to our

best effort48. Secondly, with the scarcity of virologically confirmed
subtype data, we aggregated influenza cases across all influenza sub-
types to reduce the number of missing values. Since lineage-specific
differences might exist in the effects of O3 and other climatic
factors, future studies are warranted to integrate the subtyping and
antigenic information into analysis. Thirdly, note that our findings
are generated from publicly available state-level weekly data over
a time span of 5 years. It remains an important topic for future
studies to decode the nuanced relationships of environmental vari-
ables with influenza activity on finer spatial and temporal scale, since
factors such as demographic features, social connectivity, tourism
activities (e.g., Hawaii), as well as public health interventions can lead
to fundamentally different base transmission potential, which may
interact with environmental factors to shape the complex influenza
dynamics4,49.

In closing, this study reveals a negative impact of ambient O3 on
community-level influenza activity by triangulating evidence derived
from distinct data analysis approaches. Our finding warrants more
laboratory or molecular studies to corroborate the mechanisms
shaping the observed causal link in the population, so as to better
inform environmental management for public health protection.
Moreover, we hope that this work, through a novel integration of
divergent analytical frameworks, will catalyze further coordinated
efforts in causal discovery using observational dynamic data.

Methods
Influenza data
We retrieved state-level weekly laboratory confirmed influenza data
from the USA Center for Disease Control and Prevention (CDC) web-
site during the period from October 3, 2010 to September 27, 2015.
The counts of laboratory positive cases for influenza (by type A and
type B) were reported weekly by designated laboratories located in
each state through the platformofWorld Health Organization (WHO)/
National Respiratory and Enteric Virus Surveillance System (NREVSS)
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distinguish between positive (red) and negative values (blue). The darker the color,
the stronger the effect size in either direction. Four states (FL, NJ, RI, and VT)
shaded in gray are excluded from analysis due to influenza data missingness. Map
was plotted using “usmap” R package (version 0.6.1)60.
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Collaborating Labs. We also retrieved the weekly reported data on
medically attended visits for ILI from CDC for each state during our
study period. Over 3000 outpatient healthcare providers throughout
the country reported the number of patients with ILI and number of
total patient consultations via the U.S. Outpatient Influenza-like Illness
Surveillance Network (ILINet) each week.

Due to limited testing capacity in each state, laboratory surveil-
lance data are unable to fully represent influenza activity in the
population. Fortunately, ILI data from sentinel outpatient clinics pos-
sibly cover a wider spectrum of community influenza cases, despite
lower diagnostic specificity. In our study, we incorporated the infor-
mation from these two available sources to quantify the community-

a

b

Fig. 4 | Graphical modeling by PCMCI+ based on dynamic data of environ-
mental factors (ozone [O3], absolute humidity [AH], temperature [T]) and
influenza activity (Flu) in the states of USA. a State-specific causal graph esti-
mates. Curved and straight edges represent the lagged and contemporaneous
causal dependencies, respectively; the number on the curve indicates a lagged

relationship in weeks. Node color denotes autocorrelation strength (i.e., auto-MCI
[Momentary Conditional Independence] value); edge color depicts the causal
strength (i.e., cross-MCI) estimated via partial correlation. b Nationwide causal
graph estimate. The hyperparameter significance level (αPC) is set as 0.05 for
individual states and 0.001 for the nationwide analysis.
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level influenza activities. We computed the representative proxy of
influenza activity (denoted as “Flu”) in community by multiplying the
weekly proportion of ILI outpatient consultations with the weekly
proportion of specimens tested positive for influenza. That is,
Fluproxy = ðFlupositive=FlutotalÞ*ðILIoutpatient=OutpatienttotalÞ. This proxy
measure, developed and used by epidemiologists to minimize under-
reporting bias in the laboratory-confirmed influenza data as well as to
address unobservability of infection in the ILI data, has been validated
as a better linear correlate of influenza virus infections in the com-
munity population50–52.

Environmental variables data
To explore the proposed environmental drivers of influenza activity,
we obtained ambient O3 concentration data in the USA for each state
from the Tropospheric Ozone Assessment Report (TOAR) of the
International Global Atmospheric Chemistry (IGAC)53. Specifically,
station-based daily maximum 8-h average O3 levels (ppb) were
extracted and averaged by state for analysis. State-level weather data

were collected from the National Center for Environmental Informa-
tion (NCEI), the National Oceanic and Atmospheric Administration
(NOAA). During the extraction of environmental variables, a centering
approach was used to reduce the station-related measurement bias54.
That is, raw environmental measurements were centered with respect
to their long-term station-specific average and then added with the
state-wide average. The daily averages of air temperature (°F) and dew
point temperature (°F), computed from hourly land-based station
observations, were extracted and converted to Celsius values. Daily
absolute humidity, a measure of water vapor density in the air (g=m3),
was calculated from the dew point and air temperature, following
standard meteorological formulas55. The daily O3 and weather time
series were further aggregated into week to match the resolution of
influenza data.

Statistical analyses
There are many long stretches of 0 values in the influenza time series,
especially outside of flu season, which contain little or very limited
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Fig. 5 | Effects of environmental factors on influenza activity, at 1-week lag,
estimated by generalized linear model (GLM). a State-level point estimates of
regression coefficients (β) and their 95% confidence intervals shown as circles and
line ranges, respectively (n = 173 weeks of dynamic data); Circles are filledwhen the
p value for statistical significance test is <0.05 (two-sided). b Nationwide point risk

estimates with the corresponding 99.9% confidence intervals shown as circles and
line ranges, respectively, after pooling state-level coefficients (n = 46). Circles are
filled when the p value is <0.001 (two-sided) during meta-analysis. O3 ozone, AH
absolute humidity, T temperature.
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causal information about the environmental factors. Consequently,
this study only focused on the flu season (that is considered October
through May) in the USA for analysis56. States which have at least 3
consecutive years of available influenza data are included. Out of the
50 states, 46 were finally eligible for study; states of Vermont, Rhode
Island, New Jersey, and Florida were excluded.

The analytical framework in this study consists of three distinct
but complementary methods: CCM, PCMCI+, and GLM, to strive for
detection of causal links notably by evidence accumulation (Please
refer to a tabulated summary of these three methods in Supplemen-
tary Table S1). Firstly, the SSR-based CCM method was applied to
examine the existence and strength of causal imprint (as defined in
dynamical systems) of candidate drivers on influenza activity, followed
by quantification of the effect size using S-map. Secondly, graphical
modeling method PCMCI+ was conducted to depict the causal
dependency structure (detailed assumptions are explained below and
in Table S1) between environmental variables and influenza activity by
a DAG57. Finally, traditional time series regression GLM was applied to
estimate the statistical association of each environmental variable with
influenza activity while controlling for the other two simultaneously.
To explore the temporal structure of dependency, we tested multiple
time lags from0 to 2withweekly data.Our analyseswere conducted in
the R (version 4.1.1) and Python (version 3.8). The “rEDM” package
(version 1.9.2)58, a collection of methods for EDM, was utilized to
generate theCCMandS-map results. The “Tigramite”package (version
4.2) was harnessed to complete the PCMCI+ dependency network
modeling17. The “mgcv” (version 1.8-37)59 was adopted to fit the quasi-
Binomial regression model. Nationwide map for visualizing state-
specific S-map effect estimates was produced using “usmap” R pack-
age (version 0.6.1)60.

CCM
Given dynamic data, CCM which harnesses the technique of SSR for
dynamical systems47 was introduced to evaluate the potential driving
role of ambient O3, AH andT on the influenza activity. In the dynamical
system theory, as the system state evolves over time, its motion can
trace out a trajectory, which collectively forma geometric object often
called “attractor manifold”, in the multi-dimensional coordinate space
whose axes are the set of causally relevant variables such as humidity,
O3 concentrations, infection rates, and so forth. Therefore, time series
data of observed variables can be simply comprehended as projection
of the whole system dynamics onto certain axis. This underpins the
SSR technique following the basic tenet of Takens’ Theorem61; that is,
the original multivariate manifold (M) can be reconstructed using just
one of the system variables (e.g., Xt), by taking its delayed coordinates
(i.e., embedding) with a time lag τ: <X tð Þ,X t�τð Þ,X t�2τð Þ, . . . ,X t� E�1ð Þτð Þ>,
where E is the embedding dimension that can sufficiently “unfold” the
dynamics of system manifold so that reconstructed states on shadow
manifold MX map 1:1 to the original states on M15.

As one of the corollaries to Takens’ Theorem, CCM is the causality
test kit (from the aspect of dynamical systems) in the EDM framework
proposed by Sugihara’s researchgroup in 201215. Thismethod assumes
low-dimensional deterministic system with limited stochasticity45. The
basic idea is that if variable X has a causal influence on variable Y , then
the driven time series Y t with enough delayed embedding (i.e.,
reconstructed manifold MY ) should contain the necessary dynamics
information to recover or cross-predict the current values of Xt , but
not vice versa. This practice of using the response variable Y to fore-
cast the causative variable X seems counterintuitive, but it has been
well illustrated with algebraic equations by Sugihara’s group15. The
underpinning algorithms of CCM are built on simplex projection62.
Given the shadowmanifoldMY , the E + 1 nearest neighbors of yt which
correspond to similar system states sharing evolving patterns are first
selected. Next, the time indices of these neighboring points of yt are
adopted to locate the corresponding points in MX (a putative

neighborhood of the predictee). Then, a locally weighted average
of the E + 1 values of X is calculated to predict the cross-mapped
estimate of x̂t . Here, the weights are assigned based on the Euclidian
distance from yt to its eachnearest neighbor onMY . The value of E was
chosen over the range of 2 to 6 where the maximum of univariate
predictability is achieved via leave-one-out cross-validation (Table S2).
The lower limit of E = 2 was specified in order to embed at least one
external variable to reconstruct multivariate manifold; the upper limit
of E = 6 was specified because the maximum E should not be
larger than the square rootof the consecutive time series data length63,
which was 35 or 34 weekly data points in influenza season in the
current study.

After the cross-mapping is done, we can evaluate the accuracy
(i.e., predictability) by the correlation coefficient (ρ) between the
predicted and observed values of X series. As the number of data
points used for prediction (that is, library size, L) becomes larger, the
reconstructed shadowmanifoldMY will becomedenser, and the closer
nearest neighbors will accordingly lead to lower estimation error (i.e.,
higher ρ). Such behavior is referred to as “convergence” and is gen-
erally utilized to distinguish true causality (as defined in dynamical
systems) from simple correlations15. Here, we compared the cross-
mapping skill (ρ) obtained by themaximum library (i.e., thewhole data
length) to that obtained by the minimum library (i.e., E +2 data points
allowing for simplex projection), and quantified the convergence
property of cross-mapping as ΔρCCM =ρmaxLib � ρminLib. In the vein of
Deyle et al., shared seasonality of environmental exposures with
influenza activity is another ponderable issue in this context7. To
preclude spurious CCM results as an artifact of mutual seasonal for-
cing, we generated an ensemble of 1000 surrogates with randomized
seasonal anomalies for the putative cause time series7. Consequently, a
null distribution of CCM skill (ΔρCCM) using surrogate time series was
formed. As a test of statistical significance, the cross-mapping skill
obtained for the original time series should exceed the 95th percentile
of the null distribution built by seasonal surrogates (i.e., at the α<0:05
level). Then, the classical Fisher’s methods (that is summation of logs
of individual p values) was applied for meta-significance test for all the
states64. To combat the anti-conservativeness of meta-significance p
value estimate, we used a stringent significance threshold of α as
1:0× 10�3. We also repeated CCM analysis setting the candidate cause
and effect in the nonsensical reverse direction (i.e., to test whether
influenza drives environmental factor) to address the concern of
potential synchrony yielding spurious covariation65.

After qualitative causal relationship was tested, multivariate
S-map technique, a method also packed in EDM, was used to examine
how and to what degree the putative environmental driver (e.g., O3)
influences the influenza activity, thereby quantifying the effect size21.
Unlike simplex projection using just nearest neighbors, S-map pro-
cedure uses all available data points (thus “global”) in the library to fit
local linear regressions at each successive point along the manifold
attractor. Through including a nonlinear localization parameter θ,
S-map controls the weighting assigned to each point, thereby tuning
how strongly the regression is localized to the target states66. The θ
was chosen over the range [0.01, 9] that maximizes the univariate
S-map forecast performance using leave-one-out cross-validation
(Table S2). By taking multivariate embeddings (i.e., using putative
causal variable in addition to time-lagged vectors of the effect vari-
able itself) for SSR16,67, the S-map coefficients could approximate the
relevant Jacobian matrix elements (that is, partial derivatives
∂Flu=∂Env) in the dynamical multivariate state space, which ably
indicates the dynamically state-dependent effect strength of envir-
onmental factors (“Env”) on influenza activity (“Flu”)16,21. To ensure an
equal weighting for variables of different scales in the multivariate
SSR model, time series are normalized to unit mean and variance
before analysis, so the magnitude of EDM effects is in a standardized
metric.
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PCMCI+
PCMCI+, a novel conditional independence-based method proposed
by Jakob Runge in 202017, was employed as a complementary tool to
recognize the dependency structure between O3, AH, T and influenza
activity under the graphical modeling framework. Leveraging on the
classical PC algorithms (named after the developers Peter and
Clark)68,69 reoriented to observational time series70, PCMCI+ consists of
two main phases, namely skeleton learning phase and subsequent
orientation phase. Beyond that, PCMCI+ optimized the selection of
conditioning set in conditional independence tests and well exploited
autocorrelation, which was demonstrated to yield much higher
detection power and orientation recall with better-controlled false
positives. Below is a more detailed introduction of PCMCI+ in plain
terms. For a good review and comprehensive understanding of this
method including algorithms behind, please see Runge et al. papers17,18.

Skeleton phase. Initialized with a complete undirected graph (G)
where all nodes (variables) are inter-connected, the goal of skeleton
phase is to eliminate the spurious links caused by indirect paths and
common drivers via iterative conditional independence tests at some
significance threshold αPC. Here, for the sake of interpretability and
analytical tractability, we implemented conditional independence test
with Partial Correlation method (i.e., “ParCorr” in the kit) which
assumes linear dependencies but also suffices when the non-linear
links canbe linearly approximated46. As a tuninghyperparameter in the
condition-selection step, the significance thresholdαPC was set as 0.05
for state-by-state analysis, while significance was calibrated at a strin-
gent 1:0× 10�3 level when analyzing the nationwide graphical struc-
ture by concatenating all the state-level time series.

In practice, the skeleton edge removal phase is conducted for
lagged and contemporaneous conditioning sets separately. To illus-
trate, given Xj

t representing each variable/node in the system or target
graph (G), we firstly test its putative driver/parent (denoted as PðXj

tÞ)
over all the time-lagged variables Xi

t�τ , where i,j 2 f1, . . . ,Ng and τ 2
f1, . . . ,τmaxg (here, τmax was set as 2 based on domain knowledge). In
graphical terms, a causal link Xi

t�τ ! Xj
t will stand if and only if Xi

t�τ

andXj
t aredependent given any set of conditions. Startingwith thefirst

iteration (r =0), unconditional (i.e., bi-variate) independence tests are
performed for all the pairs ðXi

t�τ ,X
j
tÞ and Xi

t�τ is removed from the
hypothetical P̂ðXj

tÞ set if the p value cannot pass the significance level
αPC. In each next iteration (r ! r + 1), we first sort the P̂ðXj

tÞ obtained
from last iterationby the absolute valueof test statistic, and then select
the strongest r + 1 parents as the conditions to conduct conditional
independence tests for pairs ðXi

t�τ ,X
j
tÞ. After another round of

screening, the hypothetical P̂ðXj
tÞ set for each Xj

t is further narrowed
down and the algorithm will finally converge with no more conditions
available for test. In this way, we could identify the lagged potential
parents of each variable.

Secondly, to identify contemporaneous potential parents of each
Xj
t , this stage initializes the graph (G) with all contemporaneous vari-

ables presumptively linked, together with all lagged dependencies
screened from the previous stage. For all the pairs ðXi

t�τ ,X
j
tÞ (here,

τ 2 f0, . . . ,τmaxg to also examine contemporaneous causal links),
momentary conditional independence (MCI) tests are conducted,
iterating through all combinations of subset of the contemporaneous
conditions (denoted as S). Besides, the sets P̂ðXj

tÞ and P̂ðXi
t�τ Þ esti-

mated in the previous step are additionally conditioned on, aiming to
account for the common drivers, indirect links, and autocorrelation
(i.e., paths blocked) with higher detection power and recall. With
similar parents-filteringprocess at each iteration as theprevious step, a
skeleton of G with both contemporaneous and lagged links is finally
obtained.

Orientation phase. After discovery of the skeleton structure, it is
necessary to orient the edges on G to infer directionality of

relationship. Assumptions of causal stationarity (that is, Xi
t�τ ! Xj

t
holds for any t) and time-order (i.e., cause always precedes effect) are
applied to help constrain certain cases and simplify the orientation
task. For a lagged dependency or adjacency, time order reveals the
directionality without ambiguity. While for contemporaneous links,
the orientation process can be divided into two steps including a
collider orientation stage followed by additional PC constraint rules.

Based on the collider rule, for unshielded triple structures Xi
t�τ !

Xk
t � Xj

tðτ>0Þ and Xi
t�τ � Xk

t � Xj
tðτ =0Þ, we firstly conductMCI test for

pair ðXi
t�τ ,X

j
tÞ conditioning on all possible S, together with their

recognized lagged parents (see details above). Second, we store the S
when Xi

t�τ is independent of X
j
t . Then we calculate the fraction π of S

that contains Xk
t . Since a collider (i.e., common effect) would falsely

open the link between ðXi
t�τ ,X

j
tÞ (which turns to spurious link) if it were

conditioned on, S is not assumed to contain any collider of the pair
ðXi

t�τ ,X
j
tÞ when they are conditionally independent given S. Thus, π

could be an indicator of the possibility that Xk
t is not a collider. Finally,

we use the “majority” rule to decide the existence of colliders (see
details in this paper17). The considered structure is oriented as a triple
of collider when π<0:5, as unoriented when π>0:5, and as ambiguous
when π =0:5.

We further determine link directions for the remaining con-
temporaneous links with three complementary rules. Rule #1 (R1) is to
avoid “colliders”, since all the colliders are assumed to be already
recognized in the collider-hunting stage. For all remaining unshielded
structure Xi

t�τ ! Xk
t � Xj

t , orient it as a chain. Rule #2 (R2) is to avoid
“cycles” (assuming no feedback loops in the system; colloquially, a
variable cannot be its own descendant), which is a tacit assumption
when drawing DAGs. For multi-path motifs including Xi

t ! Xk
t ! Xj

t
with Xi

t � Xj
t , orient it as Xi

t ! Xj
t . Rule #3 (R3) is to avoid both “col-

liders” and “cycles”. For structures including Xi
t � Xk

t ! Xj
t and Xi

t �
Xl
t ! Xj

t where pair ðXl
t ,X

k
t Þ is independent (i.e., not linked) but pair

ðXi
t ,X

j
tÞ is of an unoriented link, then orient it as Xi

t ! Xj
t .

Finally, under the standard assumptions of Causal Markov, (adja-
cency) Faithfulness, causal sufficiency, and causal stationarity (see
detailed explanations in Table S1)18,68,71,72, the output of PCMCI+ algo-
rithms can be interpreted as the causal network structure of the sys-
tem, conveniently depicted by a directed (or partially directed) acyclic
graph (DAG) composed of nodes (representing random variables) and
directed edges (representing causal relations). Note that con-
temporaneous links can remain unoriented indicating the Markov
equivalence class ordue to conflictingorientation rules. Thenodecolor
denotes the autocorrelation (labeled “auto-MCI”), varying from 0 to 1,
at the lag with maximum absolute value. The link color stands for the
sign (i.e., negative or positive) and strength of the connection esti-
mated by MCI test (labeled “cross-MCI”) varying from −1 to 1. Straight
and curved edges represent the contemporaneous and lagged causal
links, respectively; if multiple lagged links occur between paired vari-
ables, the color of link will embody the strongest one but with numeric
labels indicating all significant lags sorted by cross-MCI values.

GLM
We applied a conventional time-series regression analysis using gen-
eralized linearmodel (GLM) to estimate the association of O3, AH, and T
with influenza activity within each state. Since influenza activity is pro-
portion data, a quasi-Binomial link with logit (i.e., log Y

1�Y

� �
) function that

is arguably a reasonable choice, was adopted73. By analogy with GLM
regression, the target variable “Flu” (i.e., influenza activity) was logit-
transformed in EDM and PCMCI+ analyses as well, which could give us
an overall interpretation benchmark. Besides, due to exponential
transmission pattern of influenza cases, such scale transformation can
help discern small differences in influenza activity. Tomodulate the case
when Y takes a value of 0, a random small number (i.e., 25% to 100% of
non-zero minimum “Flu” level for each specific influenza season) was
added to allow for defined transformation. To filter out the potential
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confounding effect of unmeasured variables, we included dummy
variables for the year to capture the secular trend, and dummy variables
for eachmonth of a year to capture seasonality in themodel. To account
for strong autocorrelation caused by disease transmission, we took the
logarithm of 1-week lagged outcome variable (i.e., log Y t�1

� �
) as another

covariate in the model, which was provably able to match the likely
mechanism better (so named “transmission term”) and predict out-
comes with reduced residual dispersion74.

When estimating the relationship of O3 with influenza, the same-
week AH and T are simultaneously included in the model as a linear
term to control for confounding. The regression coefficient estimates
together with their corresponding 95% confidence intervals (CIs) were
computed for exposures at lag 0, lag 1, and lag 2 (in weeks), respec-
tively, for each state. The state-wise and lag-specific effect estimates
were pooled with a random-effects meta-analysis (using restricted
maximum-likelihood estimator for the between-study variance)75, with
the statistical significance threshold set stringently as 1:0× 10�3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Th raw data on influenza and ILI are publicly available at https://www.
cdc.gov/flu/weekly/index.htm. The ozone data used in this study are
publicly available at http://www.igacproject.org/activities/TOAR. The
climate data used in this study are publicly available at https://www.
ncdc.noaa.gov/data-access/land-based-station-data/land-based-
datasets. The data set supporting the findings of this work is available
at the GitHub repository76.

Code availability
The codes for reproducing our results can be found at the GitHub
repository76: https://zenodo.org/records/10892898. A step-by-step
demonstration on data analysis is also provided in the Supplemen-
tary Materials, to facilitate understanding in a structured manner.
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