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Human connectome topology directs
cortical traveling waves and shapes
frequency gradients

Dominik P. Koller 1,2 , Michael Schirner 1,2,3,4,5 & Petra Ritter 1,2,3,4,5

Travelingwaves and neural oscillation frequency gradients are pervasive in the
human cortex. While the direction of traveling waves has been linked to brain
function and dysfunction, the factors that determine this direction remain
elusive. We hypothesized that structural connectivity instrength gradients —
defined as the gradually varying sum of incoming connection strengths across
the cortex — could shape both traveling wave direction and frequency gra-
dients. We confirm the presence of instrength gradients in the human con-
nectome across diverse cohorts and parcellations. Using a cortical network
model, we demonstrate how these instrength gradients direct traveling waves
and shape frequency gradients. Our model fits resting-state MEG functional
connectivity best in a regime where instrength-directed traveling waves and
frequency gradients emerge. We further show how structural subnetworks of
the human connectome generate opposing wave directions and frequency
gradients observed in the alpha and beta bands. Our findings suggest that
structural connectivity instrength gradients affect both traveling wave direc-
tion and frequency gradients.

Cortical traveling waves are signals of neuronal origin, measured e.g.,
with M/EEG, VSD, LFP, fMRI, that propagate systematically across
space and time (e.g., plane waves, expanding waves, spiral waves, or
impulse waves). They have been found across brain sites, frequency
bands, spatial scales, and behavioral states1. Their properties have
been linked to memory processes2–4, visual perception5–7, motor
planning and execution8, amongmany other functions. Cortical waves
often follow preferred directions: for instance, waves formed by the
alpha rhythm travel fromparietal to anterior andposterior sites during
rest andmemory-tasks measured with ECoG3,9; waves formed by sleep
spindles rotate from temporal to parietal to frontal regions during
sleep measured with ECoG2; and infra-slow waves propagate from uni-
to transmodal functional regions during rest measured by fMRI10.
Clinical studies have found that schizophrenia11, ADHD12, and memory

deficits13 are related to altered cortical wave directions. Understanding
mechanisms of wave direction could yield insights on healthy and
pathological cognition. In this work, we propose a mechanism that
directs traveling waves — operationally defined as oscillations that
show repeated (periodic) spatial propagation of their phase from
sources to sinks.

Early theoretical work has shown that distance-dependent con-
nectivity or time delays (Fig. 1a) give rise to traveling waves in weakly-
coupled oscillator networks, a frequently used system to study syn-
chronization phenomena14–16. Further simulation studies demon-
strated that traveling waves can be directed by intrinsic frequency (IF)
gradients, where IF is the frequency of an oscillatory unit disconnected
from a network (Fig. 1b)15. IF gradients are gradual changes of IF across
space, e.g., increasing IF along a chain of weakly-coupled oscillators.
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Once coupled in a network, traveling waves propagate from high to
low IF oscillators (Fig. 1e). The IF gradient mechanism has been pro-
posed to explain the propagation direction of cortical traveling waves
in experimental recordings3,17 but we lack evidence for IF gradients
across the human cortex due to methodological challenges. In non-
human animals, IF gradients have been measured invasively by slicing
neural tissue into disconnected self-oscillatory units18,19.

While we speculate that cortical IF gradients exist in humans, we
propose an additional mechanism that could affect the direction of
traveling waves and is accessible through non-invasive tractography,
namely structural connectivity (SC) instrength gradients — the sum of
incoming connection strengths (with number of streamlines as proxy
for connection strength; also known as weighted in-degree; Fig. 1c).
Here, SC instrength gradually changes across cortical space similar to
other cortical gradients such as functional connectivity20, gene
expression21, receptor distributions22, myelin content23, cortical
thickness24, or synaptic spine density25,26. We postulate that this
instrength gradient directs travelingwaves from low to high instrength
cortical regions. While previous computational studies investigated
the emergence of traveling waves (Fig. 1a)27,28, we focus on their pro-
pagation direction (Fig. 1b).

Zhang and colleagues have found that cortical traveling wave
direction correlateswith effective frequency (EF) gradients3.We define
EF as the oscillation frequency that emerges when a unit (e.g., cortical
region, neuronal population, or weakly-coupled oscillator) is con-
nected to a network (Fig. 1d); this contrasts the self-generated IF of a
disconnected unit introduced earlier. EF is the oscillation frequency
that we typically estimate in MEG, EEG, or ECoG from the connected
cortical network in humans. Zhang and colleagues found that alpha
and theta traveling waves measured by ECoG propagated from high to
low EF regions but whether this association is causal or correlative
remains unknown3. Other studies have found large-scale EF gradients
across the human cortex but did not investigate traveling waves29–33.
Previous theoretical studies have shown that increasing instrength

decreases an oscillators’ EF in a weakly-coupled oscillator network34,35.
Thus, we hypothesized that instrength gradients could systematically
suppress EFs thereby explaining experimentally observed large-scale
EF gradients.

In sum, we investigated if instrength gradients determine both
traveling wave direction and EF gradients. We tested this hypothesis
with a combination of cortical network models, graph-analysis of
human SCs, and analyses of resting-state MEG signals. Our findings
suggest that human connectome instrength gradients direct traveling
waves and shape EF gradients, thereby unifying both phenomena.

Results
Instrength gradients direct traveling waves and shape effective
frequency patterns in a 2D network model
We studied if traveling waves followed instrength gradients in a 2D
weakly-coupled oscillator network model using Kuramoto oscillators
(see Methods)36. We chose distance-dependent connectivity and con-
duction delays because they allow the emergence of traveling waves
(Fig. 1a)16,37,38. We constructed random networks with connection
strength and probability decreasing exponentially with euclidean dis-
tance from each oscillator. First, we normalized the connection
strengths to create a uniform instrength distribution. Then, we created
an instrength gradient by weighting the oscillators’ incoming con-
nection strengths with two gaussians placed on the top-right and
bottom-left of the network, respectively (Fig. 2a). We calculated the
time delays by dividing the euclidean distances between oscillators
with a conduction speed of 3m/s corresponding to estimates in white
matter fibers39–41. We hypothesized that emerging traveling waves
follow the gradient from low to high instrength oscillators (Fig. 1b−e).

We chose an intrinsic oscillation frequency of 10Hz and simulated
100 random networks (~10% connection probability) for 10 s with
random initial phases. We set the global coupling scaling heuristically
such that clear traveling waves emerged in our system (see Fig. 2b and
Supplementary Movie 1). We assumed that waves travel from sources
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Fig. 1 | Mechanisms of wave emergence and direction in weakly-coupled
oscillator networks. a Mechanisms of wave emergence are based on neighbor-
hoodconnectivity. Illustrated is a cortical networkwhere circles and lines represent
oscillators and their connections (top). The zoomed in graph (bottom) shows a
chain of oscillators and how their connection strengths decrease with distance
(blue line; this could also be connection probability), while their conduction delay
increases (beige line). These mechanisms create neighborhood connectivity by
emphasizing local synchronization between oscillators. b Mechanisms of wave
direction include instrength gradients (top) and intrinsic frequency gradients
(bottom). Intrinsic frequency is the frequency at which the nodes oscillate isolated
from the network (connections are removed). Here, the intrinsic frequency is equal
across oscillators in the instrength gradient mechanism indicated by the same
oscillator color and example activity (black sine curves). In contrast, the intrinsic
frequency gradient mechanism is exemplified by a gradual increase of intrinsic
frequency along the anterior-posterior axis illustrated by a gradual change of
oscillator color. c Instrength is the sum of incoming connection strengths. This is
illustrated for two oscillators by the additionof connections with different strength

(thick and thin black lines are high and low strength connections, respectively). The
instrength increases along the anterior-posterior axis for the instrength gradient
mechanism, while it is equal for the intrinsic frequency gradient mechanism.
d Effective frequency is the frequency assumed by oscillators connected within a
network (black lines present). Here, effective frequency is again illustrated by the
oscillator color and activity examples. The instrength gradient mechanism gen-
erates a smooth effective frequency gradient decreasing along the anterior-
posterior axis (opposite of instrength gradient), while the intrinsic frequency gra-
dient mechanism shows clusters with gradually increasing effective frequency
along the anterior-posterior axis (same as intrinsic frequency gradient). e Traveling
waves emerge in both networks from the mechanisms described in (a) and are
directed by the instrength or intrinsic frequency gradient mechanisms. Traveling
waves propagate from low to high instrength oscillators and from fast to slow
intrinsic frequency oscillators as illustrated by the thick black arrows and the color
gradients. Both mechanisms of wave direction can interact as shown in Fig. 3.
Figure 1 re-uses parts of Fig. 5 in ref. 98.
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to sinks and developed a method to detect these singularities (see
Methods). Briefly, we computed spatial phase gradients from the
oscillators’ instantaneous phases and quantified their alignment with
an idealized diverging phase gradient around each oscillator using
their angular similarity. The angular similarity is 1 if the phasegradients
are fully aligned, 0 if they are unorganized or orthogonal, and −1 if they
are opposing each other. Therefore, sources and sinks have positive
and negative angular similarities, respectively. We detected traveling
waves by identifying at least one significant sink or source per time-
point using permutation tests (see Methods).

Using this wave detection method, we found that traveling waves
emerged in the network for 100% of time across all simulations
(median; see Supplementary Fig. 1 for detailed proportions and dis-
tributions). An example traveling wave propagating from top-right to
bottom-left shown in Fig. 2b (top) suggested that emerging waves
followed the instrength gradient as predicted. We further character-
ized wave propagation using flow potentials along which waves travel
from local maxima to minima (see Methods). The average flow
potential across all waves negatively correlated with the synthesized
instrength gradient (r = -0.94, p < 0.01; Fig. 2a, c), indicating that
emerging waves traveled from low to high instrength oscillators.
Correlating the flow potential of each timepoint with the instrength
gradient showed that 94% of all waves across all simulations were
instrength-directed (Fig. 2d).

Next, we built a control model with uniform instrength distribu-
tion testing if the instrength gradient caused the wave direction. The
control model produced waves 39% of the time across all simulations

(Supplementary Fig. 1). Complex spatiotemporal patterns including
traveling and rotating waves emerged in the control model (Fig. 2b
bottom; Supplementary Movie 2). We did not quantify rotating waves
in our analyses but visual inspection suggested they could make up a
large proportion of time (for example Supplementary Movie 2). The
averaged flow potential across control simulations showed no sys-
tematic pattern becausewave source and sink locations variedwithout
instrength gradient. As expected, the average flow potential did not
significantly correlate with the top-right to bottom-left instrength
gradient of the original model (r = −0.51, p = 0.213; Fig. 2c) and the
time-resolved analysis reflected this (Fig. 2d and S1). The average flow
potentials and thus traveling wave directions of the gradient and uni-
form models were not significantly correlated (r =0.55, p =0.316).

Previous studies have found that higher compared to lower
instrength suppresses the EF in weakly-coupled oscillator models with
time delays (see Supplementary Fig. 6a)34,35. We defined EF as the fre-
quency that oscillators assume if connected in a network; this con-
trasts their IF at which they oscillate in isolation. Thus, we wondered if
instrength gradients could generate EF gradients in our 2D network
model. To address this question, we calculated the EF patterns across
time and simulations for the gradient and uniform models (see
Methods). Indeed, we found that the gradient model generated an EF
gradient that negatively correlated with the instrength gradient
(r = −0.92, p <0.01; Fig. 2e left). The generated EF range was small but
we will see later that the human connectome generates EFs with a
wider range similar to empirical findings (see section The human
connectome produces cortical frequency gradients). The uniform

Fig. 2 | A 2D weakly-coupled oscillator network model produces traveling
waves that follow instrength gradients. a The instrength distribution of the
gradient network model increases gradually from the top right corner to the bot-
tom left corner, thereby creating a wave source and sink. b The top row shows an
example time series of a traveling wave emerging in the network model with an
instrength gradient (see a; network activity was defined as the cosine of the
instantaneous phase). The wave sources out from the low instrength region and
propagates to the high instrength region of the network (see Supplementary
Movie 1). The time series at the bottom shows traveling and rotating waves emer-
ging in the control network model with a uniform instrength distribution (see
Supplementary Movie 2). These complex waves are highly variable across simula-
tions and do not show a systematic direction. c The average flow potentials
describe how emerging waves propagate across the 2D network models

from higher to lower potentials (100 simulations of 10 s duration initialized with
random phases and 1 s initial transients removed). The left figure shows that waves
emerging in the gradient network flow along the instrength gradient shown in (a).
On the right, the average flow potential of the control model with uniform
instrength appears unsystematic. d The gradient model’s flow potential is nega-
tively correlated with the instrength across time and simulations (green; thick lines
and shaded areas represent average and standard deviation across simulations).
The uniform model’s average flow potential hovers around zero across time and
simulations show larger variance compared to the gradient model (purple). e The
average effective frequencypatterngeneratedby the gradientmodel resembles the
instrength gradient (see a), while the average pattern in the uniformmodel appears
unsystematic. Source data are provided as a Source Data file.
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model’s EF pattern was unsystematic and uncorrelated with the
instrength gradient (r = 0.06, p = 0.558; Fig. 2e right). EF patterns
generated by the gradient and uniform models were not associated
(r = −0.09, p =0.508). We showed that instrength gradients determine
traveling wave direction and generate EF gradients in a 2D net-
work model.

Instrength and intrinsic frequency gradients interact in a 2D
network model
Previous studies proposed that IF gradients direct travelingwaves in the
human cortex3,18. We hypothesize that instrength gradients contribute
to travelingwave direction and interactwith IF gradients. To investigate
this, we generated superimposed instrength and IF gradients with the
exact same shape from a gradient template (Fig. 3a). Notably, the two
mechanisms generate opposing wave directions from low to high
instrength and high to low IF15, respectively. We scaled the IF gradient
from zero (IF is 10Hz for all oscillators) to range from 8.5 to 11.5Hz
(gradient scaling = 1.5) with a superimposed fixed instrength gradient.
The instrength gradient fully directed traveling waves without the IF
gradient as assessedbygradient template andflowpotential correlation
(Fig. 3b top row). This is also reflected in the average flow potential and
illustrated for an example wave timeseries (Fig. 3c, e top). The
instrength gradient’s influence weakened with increasing IF gradient
scaling until both balanced each other out (gradient scaling ≅ 0.75;

IF gradient ranging from 9.25 to 10.75Hz; Fig. 3b). At this point, simu-
lated activity varied: we observed spiral waves, planewaves, source-sink
waves, and full synchrony (Fig. 3e middle). The average flow potential
suggested that waves source from the periphery and sink into the net-
work center (Fig. 3c) but individual simulations’ flow potentials varied
reflecting the diversity of waves observed. A further increasing IF gra-
dient switched the wave direction from instrength- to IF-directed
(Fig. 3b) as shownby the averageflowpotential (Fig. 3c) and an example
timeseries (Fig. 3e).

Earlier, we showed that instrength gradients shape EF patterns
(Fig. 2e). We next investigated if instrength and IF gradients could
cooperatively shape EF patterns. We found that the correlation
between gradient template and EF switched from strongly negative to
positive as we increased the IF gradient scaling (Fig. 3b, d). This sug-
gests that instrength and IF gradients together shaped EF gradients in
the 2D network model.

Do instrength gradients directly guide traveling waves or do they
shape EF gradients which in turn direct traveling waves? We reasoned
that EF cannot be a mediating mechanism of wave direction if para-
meters exist where EF patterns do not match traveling wave direction.
We found a set of parameters that produced reliable instrength-
directed traveling waves but varying EF patterns (Supplementary
Fig. 2) including some that were orthogonal to or opposing the flow
potential (Supplementary Fig. 2d, e). We found that all but one flow

Fig. 3 | Instrengthand intrinsic frequency gradients interact todeterminewave
direction and shape effective frequency. aGradient template used to create scaled
intrinsic frequency gradients (0 to 1.5) and the instrength gradient. The intrinsic fre-
quency gradients entered the 2D networkmodel through the intrinsic frequency term
ωi, while the instrength gradient was used to scale the connectivity matrix before it
entered through the local coupling term aij . b The top figure shows how the gradient
template and flow potential correlated depending on the intrinsic frequency gradient
scaling. The bottom figure shows how the gradient template correlated with the
effective frequency pattern. Both graphs are based on 100 randomly initialized
simulations of 10 s duration (1 s initial transient removed) per gradient scaling. The

thick blue lines show the mean correlation and the light blue shaded areas show the
standard deviation across simulations. c Average flow potentials for three distinct
gradient scalings describe the average propagation of traveling waves from higher to
lower potentials. d Effective frequency maps show how the gradient scaling affects
effective frequency patterns. e Example timeseries of activity (cosine of instantaneous
phases) emerging at three distinct gradient scalings are shown. The top row shows a
traveling wave following the instrength gradient. The middle row shows a spiral wave
that emerged when instrength and intrinsic frequency gradients were balanced. The
bottom row shows a traveling wave that follows the intrinsic frequency gradient.
Source data are provided as a Source Data file.
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potential across 100 randomly initialized simulations correlated sig-
nificantly with the instrength gradient, while only one simulation had a
significant flow potential – EF correlation (Supplementary Fig. 2a).
Thus, instrength gradients guide traveling waves directly and not
through mediating EF gradients. However, further systematic investi-
gations of the precise relation between instrength gradients and EF are
needed.

Our simulation experiments showed that instrength and IF gra-
dients cooperatively direct traveling waves and shape EF patterns in a
2D weakly-coupled oscillator network. We expect that both mechan-
isms concert waves and EF in intact neural systems.

The human connectome hosts instrength gradients
Previously, we showed that traveling waves followed a synthesized
instrength gradient in a 2D networkmodel. Do SC instrength gradients
exist in the human connectome? To address this question, we studied
the SC estimated from diffusion-weighted MRI of 776 participants of
the Human Connectome Project (HCP)42. First, we estimated fiber
tracts with probabilistic tractography between brain regions. Then, we
mapped each subject’s tractogram to the Schaefer parcellation with
1000 regions43 and created a group averaged SC with consistency-
thresholding (see Methods and Fig. 4a)44. We used the number of
streamlines as a proxy for connection strength between cortical areas.
High-resolution parcellations with approximately equally sized

regions, such as the one used here, are well suited to investigate cor-
tical wave propagation.

Additionally, we estimated the average fiber lengths connecting
brain regions. We replicated the common finding that connection
strengths decrease with fiber lengths (Fig. 4b)45. Fiber lengths
increased with increasing euclidean distance while connection
strengths decreased (Fig. 4c and Supplementary Fig. 5b). Such
distance-dependent connectivity profiles enable traveling wave
emergence in weakly-coupled oscillator models (Fig. 1a)27,37,38,46.

Next, we calculated each brain region’s instrength by summing
the incoming SC connection strengths and found that instrength is
significantly right-skewed indicating that few regions have very large
instrength (skewness = 1.33, z = 13.48, p <0.01) whilemost haveweaker
connections (Fig. 4d).

Visually, instrength resembled a spatial gradient increasing from
temporal and parietal to frontal and occipital areas (Fig. 4e). To
quantify cortical instrength patterns, we used spectrospatial mode
analysis – extending classical Fourier analysis to surface meshes (see
Methods)47. Fig. 4f shows six modes ordered from higher to lower
spatial wavelengths or lower to higher spatial frequency. Projecting
the instrength onto each mode quantifies their contribution to spa-
tial instrength patterns. We found that low-frequency modes sig-
nificantly contributed to the group-averaged instrength pattern
(Fig. 4g, f). Mode 5 dominated the instrength pattern with a spatial

Fig. 4 | The human connectomehosts instrength gradients. aAverage structural
connectivity based on 1000 cortical regions of the Schaefer parcellation (log10
weights threshold at 90th percentile). The connection weights were estimated
from 776 subjects of the Human Connectome Project. b The log-transformed
connectionweights are negatively correlatedwith the fiber lengths. cThe euclidean
distances between connected regions are positively correlated with fiber lengths.
d The instrength distribution across all regions of the parcellation is right-skewed.
e Instrength derived from the average structural connectivity projected onto the
cortical regions of the Schaefer atlas. An instrength gradient increasing from
temporal and parietal areas to frontal and occipital areas is visible. See also Sup-
plementary Fig. 3 for instrength gradients found in other cohorts and parcellations.
fModes that significantly explained the group-averaged instrength pattern in (e,g).

These modes were computed by decomposing the Laplace-Beltrami operator of
the parcellated mesh and used for modal spectrospatial analysis (see Methods).
Note that the spatial wavelength increases with the modes. g Modal power spec-
trum of the group-averaged instrength pattern (blue). Statistical significance was
assessed with one-sided permutation tests (n = 10,000; Bonferroni-corrected;
beige line represents mean modal power of all permutations and shaded area the
respective standard deviation; see Methods). h Average modal power of subject-
level power spectra (thick blue line is the mean and the shaded area represents the
standard deviation). i Percentage of subjects for which significant modes were
identified. The inset shows the first 20 modes in more detail. Source data are
provided as a Source Data file.
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wavelength of 202mm matching the visually observed gradients
(Fig. 4e). We confirmed that low-frequency modes also dominated
individual subjects’ instrength patterns (Fig. 4h, i). Remarkably,
mode 5 contributed significantly to all subjects’ instrength patterns
(Fig. 4i). We validated instrength gradients in distinct cohorts and
parcellations. The three validation sets showed instrength gradients
(Supplementary Fig. 3a, e, i) and low-frequency modes significantly
dominated their modal spectra on the group- and subject-level
(Supplementary Fig. 3b, c, d, f, g, h, j).

In summary, we found that the human connectome hosts low-
frequency instrength gradients across different cohorts and
parcellations.

The human connectome directs traveling waves in a cortical
network model
Connection strength and probability decrease with distance from a
brain region (Fig. 4b, c)45. This connectivity pattern along with con-
duction delays allows the emergence of cortical traveling waves
(Fig. 1a). Instrength gradients identified in the previous section suggest
that the human connectome could not only produce but also direct
traveling waves. We explored this possibility in a cortical Kuramoto
model with 1000 brain regions connected through the empirically
estimated SC (seeMethods and Fig. 4a). For our initial experiments,we
chose a 10Hz IF and conduction delays calculated by dividing the
tractography-derived average fiber lengths with a biologically realistic
conduction speed of 3m/s (see parameter exploration for a broader
range of conduction speeds). Resulting conduction delays depended
on distance because fiber length depends on euclidean-distance
(Fig. 4c). We simulated this model 100 times for 10 s with random
initial phases.

We saw that traveling waves emerged in our cortical network
model (Fig. 5a and Supplementary Movie 3) and detected waves using
themethod described earlier (seeMethods). Traveling waves emerged
87.2% of time across all simulations (median; Supplementary Fig. 3a
shows detailed proportions and distributions for left and right hemi-
spheres for all cortical models). The average flow potential across
detected waves correlated significantly with the instrength gradient
found in the human connectome (r = −0.74, p <0.01; Figs. 4e and 5b)
suggesting that waves travel from temporal and parietal to frontal and
occipital areas (Fig. 5b - Model). More specifically, we found that all
emerging traveling waves followed the instrength gradient (see Sup-
plementary Fig. 4a). Over time the average instrength – flow potential
correlation across all simulations stabilized around −0.7 for both
hemispheres (Fig. 5b). In conclusion, instrength gradients directed
traveling waves in our cortical network model.

We built several control models to rule out alternative explana-
tions for directed traveling waves. In our first control model, we ran-
domly shuffled the connection strengths between existing
connections to destroy the instrength gradient (Fig. 5b - Shuffled
connections; Supplementary Movie 4). Shuffling also eliminates the
connection strength’s dependence on euclidean distance. Conse-
quently, almost no traveling waves emerged across simulations (Sup-
plementary Fig. 4a) and the average flow potential did not correlate
with the original instrength gradient (r =0.02, p =0.808). Their
moment-to-moment correlation remained close to zero throughout
simulations (Fig. 5 - Shuffled connections).

Next, we built a control model that preserved the connection
strength’s dependence on euclidean distance while destroying the
original instrength gradient (Fig. 5b - Distance dependent connections;
Supplementary Movie 5). We fit an exponential model to the empirical
euclidean distance – connection strength relationship and synthesized
a surrogate network (see Methods and Supplementary Fig. 5a, b).
While this model produced traveling waves across all time and simu-
lations they did not follow the original instrength gradient (average
flow potential – instrength correlation: r = −0.04, p = 0.862; Fig. 5b and

Supplementary Fig. 4a). Instead, the average flow potential suggested
frontal to parietal wave propagation determined by the instrength
gradient that emerged from the network’s generating process and the
cortical regions’ spatial embedding.

To understand the role of conduction delays, we removed time
delays while preserving the original SC and instrength gradients
(Fig. 5b - Zero delay; Supplementary Movie 6). We found that waves
emerged 24.1% of time. Surprisingly, none of these waves followed the
original instrength gradient (Fig. 5b - Zero delay and Supplementary
Fig. 4a) reflected by low average flowpotential – instrength correlation
(r = −0.02, p = 0.853). Thus, conduction delays are crucial for the
instrength gradient mechanism of wave direction.

We wondered if distance-dependent conduction delays are
important for instrength-directed traveling waves or if a constant
conduction delay is sufficient. We replaced distance-dependent con-
duction delays with their average delay across all connections (23ms;
Fig. 5b - Constant delay; Supplementary Movie 7). This control model
produced traveling waves for 96.3% of time and 95.1% of those waves
followed the instrength gradient (Supplementary Fig. 4a). Conse-
quently, the average flow potential was significantly correlated with
instrength (r = −0.64, p <0.01). These findings show that distance-
dependent or constant time delays along with an instrength gradient
direct traveling waves.

We also investigated a control model with instrength-normalized
SC tooutrulenode-degree influences onwavedirection (seeMethods).
We found that thismodel produced travelingwaves 94.7% of times but
none of them followed the original instrength gradient (Supplemen-
tary Fig. 4a). Notably, a systematic average wave potential indicated
that emergingwaves propagated from visual cortex andmedial frontal
sites to the temporal lobe and lateral frontal sites (Fig. 5b – instrength-
normalized; SupplementaryMovie 8) suggesting a distinctmechanism
directing thosewaves.We tested if the systematicwave potential could
be explained by node degree (r = 0.11, p =0.049), betweeness cen-
trality (r = 0.1, p = 0.011) or eigenvector centrality (r =0.14, p =0.292)
but we could not identify a significant relationship. Hub-structure did
neither determine instrength-directed waves nor systematic wave
propagation emerging in this model. However, the emerging EF cor-
related significantly with thewave potential (r =0.39, p <0.01). Further
research needs to identify the mechanism at play in this model.

Finally, we investigated if traveling waves emerge and follow
instrength gradients in a more realistic cortical Jansen-Rit model
(Supplementary Fig. 4a−d and Supplementary Movie 9) where a pyr-
amidal neuron population excites inhibitory and excitatory inter-
neuron populations that provide feedback. Each region communicates
with other brain regions through the pyramidal population.We set the
Jansen-Rit regions to achieve approximately 10Hz local field potential
oscillations within the network (see Methods and Supplementary
Table 1). Thismodel expressed travelingwaves for 71.8% of time across
all simulations and of those waves 41.7% followed the instrength gra-
dient (Supplementary Fig. 4a). The average flow potential significantly
correlated with instrength (r = −0.63, p <0.01) suggesting that travel-
ing waves emerge and follow instrength gradients in a more realistic
model and can be understood with the weakly-coupled oscillator
mechanism.

Further, our results were robust in cortical network models with
added noise (Supplementary Fig. 4e−g; Supplementary Movie 10) and
random IF dispersion (Supplementary Fig. 4h−j; Supplementary
Movie 11).

Returning to our original cortical networkmodel, we studied how
IF, conduction speed, and global coupling scaling affect travelingwave
emergence and direction (Fig. 6 and Methods). We explored four IFs
roughly reflecting delta, alpha, beta and gamma rhythms (1, 10, 20,
40Hz); conduction speeds from 1 to 10m/s inspired by experimental
estimates from white matter fibers39–41; and global coupling scalings
from 10−5 to 10. We calculated proportions of traveling waves and
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instrength-directed waves across ten randomly initialized simulations
per parameter combination.

Traveling waves emerged (Fig. 6 - top row) and followed the
instrength gradient (Fig. 6 - mid row) for a wide range of parameter
combinations in all frequency bands. A negative instrength – flow
potential correlation suggested that emerging waves primarily flow
from low to high instrength regions (Fig. 6 - bottom row). Cortical
network models did not generate traveling waves for very low or high
coupling scalings (Fig. 6 - top row). Presumably, low coupling scalings
did not exceed the critical coupling sufficient for partial synchroniza-
tion to generate traveling waves. Very large coupling scalings resulted
in full synchronization or erratic behavior. The wide range of para-
meter combinations where traveling waves emerged lies between

these two extremes. We observed that cortical network models with
higher IF required faster conduction speeds to sustain travelingwaves.
Simulated traveling waves propagated at speeds consistent with
empirical large-scale cortical waves (<5m/s; Supplementary Fig. 6b)2,3.

We showed that traveling waves emerge and follow instrength
gradients for a variety of IFs, coupling scalings, and conduction speeds
in cortical network models with empirical SC.

The human connectome produces cortical frequency gradients
Earlier, we showed that instrength gradients shaped EF gradients— the
frequency assumed by connected oscillators— in a 2D networkmodel.
We wondered if instrength gradients in the human connectome could
produce EF gradients similar to those found empirically3,31.

Fig. 5 | Traveling waves emerge in the cortical network model and follow the
instrength gradient of the human connectome. a Example time series showing
traveling waves emerging in the cortical network model (Network activity was
defined as the cosine of the instantaneous phase; see Supplementary Movie 3).
b Average flow potentials show how emerging waves propagate across the cortical
network model and controls (left; 100 simulations of 10 s duration initialized with
random phases and 1 s initial transients removed). The instrength – flow potential
correlation shows how wave propagation changes in time (right; thick lines and
shaded areas represent averages and standard deviations across simulations).
Model: the average flow potential of the original cortical network model suggests
that emerging waves propagate from temporal and parietal to frontal and occipital
regions (see Supplementary Movie 3). The instrength – flow potential correlation
indicates a strongnegative correlation across time and simulations forboth cortical
hemispheres. Shuffled connections: after shuffling the connection weights within
existing connections the average flow potential appears random. The corre-
sponding instrength – flow potential correlation suggests that waves do not con-
sistently propagate along the original instength gradient (see Supplementary

Movie 4). Distance dependent connections: synthesizing a connectome based on
exponentially decaying connection strengths results in waves propagating from
frontal to parietal areas (see Supplementary Movie 5). These waves do not follow
the empirical instrength gradient of the human connectome as can be seen from
the instrength – flow potential correlation. See also Supplementary Fig. 5a for a
comparison of the empirical and synthesized left hemisphere SCs and the con-
nection strength – euclidean distance relationship used to derive the exponential
model. Zero delay: if time delays are removed emerging traveling waves do not
follow the instrength gradients (see SupplementaryMovie 6). Constant delay: using
an average time delay instead of distance-dependent delays results in pronounced
traveling waves that follow the instrength gradient as visible from the average flow
potential and the instrength – flow potential correlation (see Supplementary
Movie 7). Instrength-normalized: normalizing the structural connectivity by
instrength created a systematic flow potential that does not resemble the original
instrength gradient. The instrength – flow potential correlation shows that emer-
gingwaves donot follow the original instrength gradient (SupplementaryMovie 8).
Source data are provided as a Source Data file.
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To study this question, we calculated the simulated average EF of
each region for the same parameter combinations introduced earlier
(see previous section).We found that EF patterns negatively correlated
with instrength gradients for most parameter combinations where
traveling waves emerged (compare Fig. 6 and Fig. 7a) suggesting that
they propagated from fast to slow oscillators. The EF pattern differed
from the instrength gradient for most delta band models that pro-
duced waves, possibly affected by the nearby non-oscillatory regime.

Inspecting EF patterns at distinct parameter combinations
revealed diverse arrangements from smooth gradients closely resem-
bling the instrength gradient (Fig. 7b - 10Hz) to more clustered pat-
terns (Fig. 7b - 1, 20 and 40Hz) and fromnarrow (Fig. 7b - 1 Hz) to wide
(Fig. 7b - 40Hz) EF ranges. Notably, these patterns existed in all IF
bands. Some of the alpha band EF patterns closely resembled the EF
pattern observed in ECoG recordings during a memory task (Fig. 7b -
10Hz)3. Our cortical network model also generated EF gradients of
similar range but different structure compared to previously observed
resting-state MEG EF gradients31.

We found that EF patterns did not emerge in control models with
randomly shuffled connections or zero delay (using the cortical

network models presented in Fig. 5). Additionally, the original
instrength gradient differed from the EF gradient of the control model
with euclidean distance-dependent connection strength relationship
(r = −0.07, p =0.638).

Our findings show that large-scale cortical EF gradients could be a
network effect resulting from conduction delays and instrength
gradients.

Simulated instrength-directed traveling waves and smooth
frequency gradients are consistent with MEG resting-state
functional connectivity
Connectome instrength gradients are relatively stable over time
because white matter changes on slow timescales48,49. We hypothesize
that permanent instrength gradients affect traveling waves across
brain states but their influence is probably pronounced during resting-
state without task-dependent modulation.

Previous studies have found that traveling waves coordinate
functional connectivity (FC)10,50. We investigated if instrength-directed
travelingwaves and EF gradients are consistent with this frameworkby
fitting our cortical network model to resting-state MEG FC of 80

Fig. 7 | Effective frequency gradients co-emerge with traveling waves in a cor-
tical network model. a Parameter exploration of average instrength – effective
frequency correlation for each hemisphere (left, right). The parameters explored
were the intrinsic frequency, the global coupling scaling, and conduction speed
(see Fig. 6). All metrics were estimated from 10 cortical network simulations with a
duration of 10 s per parameter combination (phases were initialized randomly;

1 s initial transients removed). b Examples of different effective frequency patterns
(thresholds at 5th and 95th percentiles). Different parameter combinations resul-
ted ingradient- or cluster-like effective frequencypatterns. See also Supplementary
Fig. 6a for estimated average effective frequency across time, regions, and simu-
lations. Source data are provided as a Source Data file.

Fig. 6 | Instrength-directed travelingwaves emerge in a cortical networkmodel
within a wide range of parameters. This figure shows the average proportion of
time where traveling waves were detected (first row), the average proportion of
waves that are directed by instrength (second row), and the instrength – flow
potential correlation (third row) for each hemisphere (left, right). The parameters
explored were the intrinsic frequency (columns), the global coupling scaling, and

conduction speed. All metricswere estimated from 10 cortical network simulations
with a duration of 10 s per parameter combination (phases were initialized ran-
domly; 1 s initial transients removed). See also Supplementary Fig. 4 for estimated
wave speeds and average EF across time, regions, and simulations. Source data are
provided as a Source Data file.
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healthyHCP subjects.We reconstructed the source activity at the 1000
Schaefer atlas regions from MEG sensor recordings filtered in the
alpha, beta and gamma bands (see Methods). Next, we computed
frequency-specific average FCs across subjects using the phase locking
value (PLV)51 — a measure of neural synchrony. Similarly, we estimated
simulated PLV-FC for our parameter exploration presented above
(excluding the delta band due to HCP filter settings). The resting-state
alpha PLV-FC and an example simulated alpha PLV-FC are shown in
Fig. 8b.We found that across frequencybands simulated and empirical
PLV-FC fit increased if directed traveling waves emerged (Fig. 8a). The
best fitting cortical network models had a PLV-FC correlation above
0.56 (alpha:0.564, beta:0.591, gamma:0.594; Fig. 8c−e) and instrength
correlated strongly with flow potential (alpha: −0.66, beta: −0.65,
gamma: −0.65) and EF patterns (alpha: −0.85, beta: −0.86, gamma:
−0.87). In contrast to clustered EF patterns that some cortical network
models produced (Fig. 7b) the best fitting models produced smooth
alpha, beta, and gamma EF gradients (Fig. 8c−e).

Signal volume conduction can result in spurious zero-lag phase
relations with high PLV. We additionally analyzed FC based on the
phase lag index (PLI)52, which ignores spurious but also true zero-lag
interactions. Resting-state alpha PLI-FC decreased notably compared
to the PLV (Fig. 8g, b). We found that simulated and empirical PLI-FCs
strongly correlated in the alpha band (r =0.46), while beta and gamma
bands had weaker correlations (beta: 0.36; gamma: 0.14; Fig. 8f). This
suggests that non-zero-lag phase interactions could be frequency-
specific; we investigated this further in the next section.

We also explored if simulated cortical network dynamics exhibit
metastability and found similar synchronization variability and state

dwell times between the best fitting cortical network models and
resting-state MEG (Supplementary Fig. 7)27,53–55.

We found that our cortical network model achieved high corre-
lation with empirically derived PLV-FCs if directed traveling waves
emerged and smooth EF gradients were produced across the alpha,
beta, and gamma bands. PLI-FC fit decreased from alpha to beta to
gamma band. Our findings suggest that zero-lag FC across frequency
bands could be coordinated by cortical traveling waves following SC
instrength gradients, while non-zero-lag FC is more specific to the
alpha band.

Connectome subnetworks explain effective frequency gradients
and traveling wave direction in alpha and beta bands
Mahjoory and colleagues31 found large-scale EF gradients in resting-
state MEG; alpha EF gradients increased along the anterior-posterior
axis while beta EF gradients decreased. Does our cortical network
model with instrength gradients generate EF patterns consistent with
those observations?

We computed resting-state MEG EF gradients in the alpha and
beta bands (see Methods). We found an alpha EF gradient increasing
from occipital to prefrontal areas, while a beta EF gradient increased
from prefrontal to occipital regions (Fig. 9a). Our findings corroborate
the EF gradients that Mahjoory and colleagues observed31. Next, we
explored the fit between empirical and simulated EF for the same
coupling scalings and conduction speeds as before. We used the
concordance correlation coefficient (CCC) to evaluate empirical and
simulated EF fit (see Methods). CCC comprehensively measured if the
empirical and simulated EFs were correlated and of similarmagnitude.

Fig. 8 | Fittingcortical networkmodelswithMEGfunctional connectivityyields
instrength-directed travelingwaves and smooth effective frequency gradients.
a Average correlation between empirical MEG and simulated functional con-
nectivity (FC) for different intrinsic frequencies, coupling scalings, and conduc-
tion speeds (see Figs. 6 and 7; filter settings of the Human Connectome Project
pipeline excluded the delta band from this analysis). The empirical and simulated
FCs were estimated using the phase locking value (PLV)51. The average empirical
PLV-FC was determined from source-reconstructed resting-state MEG activity of
80 subjects that participated in the Human Connectome Project. The average

simulated PLV-FC was calculated from 10 simulations of the cortical network
model (phases were randomly initialized; 1 s initial transients removed).
b Empirical and simulated (best fit) PLV-FC for the alpha band (10Hz).
c−e Average flow potentials and effective frequency patterns (thresholds at 5th
and 95th percentiles) for the best fitting cortical network models with 10, 20, and
40Hz intrinsic oscillation frequency. f Average correlation between empirical
MEG and simulated FC estimated using the phase lag index (PLI)52. g Example
empirical and simulated PLI-FC for the alpha band (10Hz). Source data are pro-
vided as a Source Data file.
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If twomeasurements are fully correlated andhave the samemagnitude
the CCC is 1, if they are fully anti-correlated and have the same mag-
nitude it is −1, and if they are not correlated and of differentmagnitude
it is 0.We found parameter regions where empirical and simulated EFs
fit best (Fig. 9b).

Alpha EF fit peaked with a CCC of 0.2 at a conduction speed of
9m/s and medium coupling scaling. This model’s alpha EF gradient
strongly correlated with the instrength gradient (r = −0.73; Fig. 7a) but
frontal EF was lower than occipital EF (Supplementary Fig. 8a).
Instrength-directed alpha traveling waves emerged across all time-
points and simulations (Fig. 6 and Supplementary Fig. 8a).

Beta EF fit peaked with a CCC of 0.38 at 2m/s and medium cou-
pling scaling (Fig. 9b) and the emerging EF gradient increased from
posterior to anterior sites (instrength – EF correlation = −0.39; Supple-
mentary Fig. 8a).We detected beta travelingwaves in 38%of timepoints

but only 6% were instrength-directed (Fig. 6). The wave flow potential
suggested frontal and temporal sources along with sinks in parietal
areas and the temporal poles (Supplementary Fig. 8a) but beta traveling
waves were not noticeable in corresponding Supplementary Movies.

Next, we studied the combined PLI-FC and EF fits and found
similar best fit parameters to the ones obtained by EF fit only (alpha
fit = 0.66 at 9m/s and slightly lower coupling scaling; beta fit = 0.57 at
2m/s and same coupling scaling; Fig. 9c) resulting in similar EF pat-
terns and wave potentials for both models. In sum, while the cortical
network model partially explains the empirical EF gradients, our
results were ambiguous for emerging beta traveling waves.

We next explored if SC subnetworks could better explain
experimentally observed opposing alpha and beta EF gradients and
traveling waves31,56. Such putative subnetworks could be cortical layer-
or frequency-specific57,58.

Fig. 9 | Alpha- and beta-subnetworks match resting-state MEG effective fre-
quency gradients and functional connectivity. a Average alpha and beta effec-
tive frequency gradients measured across HCP resting-state MEG of 80 subjects.
b Parameter exploration of cortical network model using the full network (struc-
tural connectivity shown in Fig. 4) and the concordance correlation coefficient
(CCC) between empirical (see a) and simulated effective frequency. c Parameter
exploration of the full network with the combined PLI-FC and effective frequency
fit. d Cross-validation of root mean squared error between training and test data-
points estimated by nonnegative matrix factorizations (NMF) with different num-
bers of subnetworks (bluedots andbars represent themean and standarddeviation
across 100 randomly initialized NMF runs). The inset shows a zoom-in of the root
mean squared error of rank-2 to -5 NMFs. e Instrength patterns of the rank-5 NMF
subnetworks projected onto the cortical surface with highlighted alpha- and beta-
subnetworks used for simulations. f Pairwise correlation matrix between

subnetwork components across rank-2 to -5 NMFs (total of 14 components; see
inset in d) ordered in hierarchical clusters (dendrogram in black). The two high-
level clusters show subnetwork instrength patterns decreasing and increasing
along the anterior-posterior axis corresponding to putative alpha- and beta-
subnetworks. g Empirical – simulated effective frequency CCC for parameter
exploration of alpha- and beta-subnetworks (compare with b). h, i show the
average effective frequency and flow potentials estimated from alpha- and beta-
subnetwork simulations at the best effective frequency CCC fit (across 10 ran-
domly initialized simulations). j Empirical – simulated PLI-FC + effective fre-
quency CCC fit for parameter exploration of alpha- and beta-subnetworks
(compare with c). k, l show the simulated average effective frequency at the best
fit for the beta-subnetwork in (j). The best fit for the alpha-subnetwork coincided
with the one obtained for the effective frequency CCC fit in (g). Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-47860-x

Nature Communications |         (2024) 15:3570 10



To identify SC subnetworks, we used nonnegative matrix factor-
ization (NMF) an unsupervised algorithm that decomposes non-
negative high-dimensional data into nonnegative low-dimensional
components and associated loadings (see Methods)59. Because of the
nonnegativity constraint, we can interpret NMF components as addi-
tive parts of a whole, for example subnetworks of the full SC network.

We constructed a large matrix where each column was asso-
ciated with the flattened SC of individual HCP subjects (see
Methods). Given the subjects’ SCs, NMF finds subnetworks that are
common across SCs. Determining the optimal number of com-
ponents — in our case subnetworks — remains challenging. If the
number of components is too small, they might miss important
detail and if it is too large, they capture noise. We determined the
number of subnetworks using rank-2 to -10 NMF cross-validation
that randomly zeroed and imputed datapoints for training and
testing, respectively60,61 (Fig. 9c). Five subnetworks minimized the
error between held-out original values and imputed datapoints.
Some of these subnetworks’ instrength gradients matched our
expectations for alpha- and beta-specific SCs (Fig. 9d).

To validate subnetwork stability, we compared their similarity
across rank-2 to -5 NMFs (14 subnetworks in total) – the ranks with low
reconstruction error (Fig. 9c). Hierarchical clustering identified two
groups of subnetworks whose instrength patterns decreased or
increased along the anterior-posterior axis as would be expected for
alpha- and beta-subnetworks (Fig. 9e). In sum, NMFs found consistent
alpha- and beta-subnetworks across ranks that explained up to 63% of
SC variance.

We built two rank-5 NMF subnetwork models to test if they
generated EF gradients and traveling wave directions consistent with
empirical observations. We chose the putative alpha- and beta-
subnetworks with the strongest positive and negative correlation
between instrength and posterior-anterior position (Fig. 9d). Com-
bining the alpha- and beta-subnetworks explained 36% of SC variance;
this network’s instrength strongly correlated with the total SC’s
instrength (r=0.96, p <0.01). The alpha- and beta-subnetwork models
improved the EF fit drastically compared to the original cortical net-
work model (compare Fig. 9b, f). The alpha band CCC was 0.69 at
10m/s and medium coupling scaling, while the beta band CCC was
0.50 at 2m/s and medium coupling scaling. Empirical and simulated
EFs in the alpha and beta bands at peak CCC were similar with
opposing anterior-posterior gradients (compare Fig. 9a, g). While the
alpha wave potential suggested posterior to anterior propagation
(Fig. 9i top), beta wave potentials were more complex (Fig. 9i bottom).
Example Supplementary Movies of beta waves did not show notice-
able waves. We replicated these findings using the rank-2 NMF sub-
networks – with fewer parameters and similar reconstruction error
(Fig. 9d inset and Supplementary Fig. 8c−f).

Using the combined FC and EF fit, we found parameters for the
rank-5 alpha- and beta-subnetworks that improved the fit by 62% and
47% compared to the original cortical model (Fig. 9j). The parameters
for the alpha network coincided with the ones found with the EF CCC
and this model’s empirical – simulated PLI-FC correlation peaked at
0.38 (Fig. 9g). This network generated traveling waves 88.7% of time
across 100 simulations and the alpha-subnetwork’s instrength gradient
directed all emerging waves (see Supplementary Fig. 4a and Supple-
mentary Movie 12). The subnetwork’s instrength gradient correlated
significantly with the average wave flow potential (r = −0.75, p <0.01)
and effective frequency pattern (r = −0.77, p < 0.01). The beta network
model fit best at an increased conduction speed of 9m/s with an
almost unchanged EF CCC of 0.49, while the PLI-FC fit increased from
0.31 to 0.40. This beta-subnetwork model showed a less pronounced
anterior-posterior EF decrease compared to the best EF CCC fit
(Fig. 9k). The wave potential suggested beta waves travel from frontal
and temporal to posterior but also anterior sites (Fig. 9l). Traveling
waves emerged 87.8% of time and all of themwere instrength-directed

(see Supplementary Fig. 4a and Supplementary Movie 13). The beta-
subnetwork’s instrength gradient correlated significantly with the
average wave flow potential (r = −0.78, p <0.01) and effective fre-
quency pattern (r = −0.84, p <0.01). We achieved comparable results
using the 2-rank NMF subnetworks (Supplementary Fig. 8g−i).

We showed that the full SC network can be decomposed into
additive subnetworks whose instrength gradients generated alpha-
and beta-band EF gradients and traveling wave directions matching
empirical data while maintaining high PLI-FC.

Discussion
We hypothesized that SC instrength gradients of the human con-
nectome affect cortical traveling wave direction and EF gradients. To
test this, we studied a 2D network of weakly-coupled oscillators that
allowed travelingwave emergence.Whenwe synthesized an instrength
gradient, waves traveled from lower to higher instrength oscillators
while EF gradients emerged. We showed that this mechanism can co-
exist and interact with the previously studied IF gradient mechanism
(Fig. 1b)15. Analytical expressions derived in earlier studies suggest that
higher instrength nodes phase-lag, while lower instrength nodes
phase-lead in coupled oscillator models62–64. When combined with
spatial instrength gradients, this analytical framework could be a the-
oretical foundation for the instrength gradient mechanism.

After demonstrating that instrength gradients direct traveling
waves in a 2D network model, we explored if gradients exist in the
human connectome and found that instrength increased from tem-
poral and parietal towards frontal and occipital regions. In contrast to
previous studies65–67, we quantified instrength patterns statistically
with spectrospatial mode analysis and found similar gradients across
different cohorts and parcellations. We only studied SCs with similar-
sized parcels, high spatial resolution (≥400 regions), and across many
subjects (≥70 subjects) to ensure high quality estimates. While our
instrength patterns were relatively consistent compared to other
studies65–67, differing processing pipelines could explain variations
between SCs. For example, normalizing the streamline count between
brain regions using either brain region size or fiber lengths can impact
instrength patterns65. Additional processing such as thresholding
individual or group averaged SCs can further affect instrength
patterns44. Gajwani and colleagues67 extensively studied how 1760
distinct processing pipelines for diffusion-weighted MRI affected
instrengthpatterns. They found that different tractography algorithms
andparcellations had the largest influenceon instrength topographies.
Developing methods and processing pipelines that reliably estimate
connection strengths will help understanding how instrength gra-
dients direct traveling waves and shape EF gradients.

We showed that instrength gradients existing in the human con-
nectome affect traveling wave direction in a cortical network model.
Emerging traveling waves propagated along instrength gradients from
temporal and parietal (low instrength) to frontal and occipital areas
(high instrength). Shuffling the connection strengths and thereby
corrupting their distance-dependence abolished traveling waves. This
finding corroborates that distance-dependent connection strengths
are crucial for waves to emerge (Fig. 1a)27. Removing time delays
between network regions resulted in varied traveling wave directions.
Thus, neglecting finite time delays in cortical network models has
drastic consequences for the spatiotemporal dynamics of simulated
activity. Interestingly, we found that instrength-directed traveling
waves still emerged in a cortical network model with uniform average
time delays suggesting that large-scale traveling wave directions could
be robust to specific changes of conduction delays, for example in
response to myelin plasticity68. Pang and colleagues69 showed that a
neuralfieldmodel encoding the cortical geometry generatedwave-like
activity and explained fMRI functional connectivity. They further
found that geometric eigenmodes explained fMRI variability better
compared to connectome eigenmodes. This difference nearly
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vanished when they used a stochastic exponential distance rule to
synthesize a connectome. Intriguingly, an instrength gradient
increasing from frontal and temporal to parietal areas emerged in our
control model with deterministic exponential distance rule. We found
that this instrength gradient reliably directed traveling waves as pre-
dicted by our hypothesis. Future research could address how the
cortical geometry constrains instrength patterns, traveling wave
direction, and EF gradients.

While Roberts and colleagues27 focused on metastability of cor-
tical waves, they also analyzed if sink and source locations were
associated with instrength in a cortical model with empirical SC. They
found that instrength correlated weakly with source occurrences
(r =0.09) but not with sinks. Their results might be due to eliminating
instrength patterns by instrength-normalizing their SC. Intriguingly,
they also found that rotating waves frequently emerged in their
cortical network model. Supplementary Movies of our instrength-
normalized cortical network model showed prominent rotating
waves too. This was also the case in the 2D control network with
instrength-normalized connectivity and when interacting IF and
instrength gradients were balanced. We hypothesize that mechan-
isms underlying rotating waves take over whenever IF or instrength
gradients are either weak or balanced. Our experiment on interacting
IF and instrength gradients suggests that the brain could dynamically
switch between different wave types by modulating IF gradients.

Exploring our cortical network model’s parameters showed that
traveling waves emerge across a range of global coupling scalings and
conduction speeds (or time delays) within four common frequency
bands. Additionally, we found that traveling waves followed the
instrength gradient whenever they emerged. We speculate that
instrength gradients affect traveling wave direction in concert with IF
gradients across brain states.

Do empirical cortical traveling waves follow this trajectory in
humans? Halgren and colleagues9 found that large-scale alpha ECoG
waves traveled from parietal and temporal to posterior and anterior
sites during resting-state. Zhang and colleagues3 also found alpha and
theta ECoG waves traveled from parietal and temporal to frontal and
occipital regions during a memory task. Stolk and colleagues56 found
that ECoG alpha and beta waves traveled from posterior to anterior
and anterior to posterior sensorimotor cortex during amotor imagery
task. Their observations align with the simulated instrength-directed
traveling waves identified in our work. While we hypothesize that
instrength-directed waves are most pronounced during resting-state,
their impact may persist during tasks because white matter remains
relatively stable over time48,49. In contrast, studies focusing on resting-
state EEG and MEG found alpha waves traveling along the anterior-
posterior axis with varying direction70–74. Differing traveling wave
directions in ECoG compared toM/EEGmight arise from signalmixing
or low spatial resolution74. Recent studies found that large-scale fMRI
infra slow waves in humans and gamma band-limited power waves in
macaque10,75 followed the principal functional connectivity gradient20,
which differs from the instrength gradient found in our study. Thus,
empirical traveling waves could be directed by instrength gradients in
certain frequency bands (e.g., alpha and theta) but not others (e.g.,
infra slow waves and gamma). Differences in traveling wave propaga-
tion direction between empirical and simulated traveling waves could
also arise from differing MRI processing pipelines as outlined
previously44,67.

We further showed that instrength gradients not only direct
emerging traveling waves but also generate EF patterns in cortical
network models. Evidence is accumulating that smooth frequency
gradients across the cortex are prevalent3,29,31. While investigating
alpha and theta traveling waves during a memory task, Zhang and
colleagues3 found an EF gradient with higher frequencies in parietal
and temporal regions and lower frequencies in anterior and posterior
regions resembling the EF gradient that emerged in our cortical

networkmodel both in structure andmagnitude (compare Fig. 8c here
with Fig. 2A in ref. 3). Mahjoory and colleagues31 found a resting-state
alpha EF gradient increasing from anterior to posterior sites con-
trasting our simulated EF gradient increasing from frontal and occi-
pital to temporal and parietal areas. Differences between those studies
could have arisen from different recordingmodalities (ECoG vs.MEG),
processing pipelines (MEG source reconstruction and cortical parcel-
lation), or brain states (rest vs. task).

Furthermore, Mahjoory and colleagues31 found that EF gradients
differed noticeably between theta, alpha and beta bands. We corro-
borated opposing alpha and beta EF gradients during resting-state
MEG of HCP subjects. In contrast, our cortical network models gen-
erated similar EF gradients across frequency bands. These differences
might be explained by cortical layer-specific frequency and con-
nectivity profiles31,66,76,77. While the origin of alpha oscillations is still
debated (infragranular77 vs. supragranular9 vs. network
interactions71,78), a putative alpha-subnetwork with an instrength gra-
dient decreasing from anterior to posterior sites and a parallel beta-
subnetwork with instrength gradient increasing from anterior to pos-
terior regions could explain EF gradients observed by Mahjoory and
colleagues31. We showed that an unsupervised algorithm finds such
putative alpha- and beta-subnetworks within the full SC network.
Simulating cortical networkmodels with these subnetworks improved
the empirical and simulated EF fit markedly. We assumed that putative
alpha- andbeta-subnetworks act independently in our cortical network
model but whether frequency-specific subnetworks interact or oper-
ate largely independently remains debated58,79. In a networkwith cross-
frequency interactions, alpha oscillations could dynamically hijack the
full network explaining the distinct traveling wave directions and EF
gradients observed in ECoG vs. M/EEG. Our findings suggest that
frequency-specific structural subnetworks could exist, but the spatial
resolution of MRI currently limits more direct evidence. Advances in
neuroimaging are needed to conclusively identify cortical-layer and
frequency-specific subnetworks.

Previous studies proposed that traveling waves could coordinate
FC networks10,50,75. We fit our cortical network model to resting-state
MEG PLV-FC and found that the best fitting models produced
instrength-directed waves corroborating that they could coordinate
FC. Additionally, these cortical network models generated smooth EF
gradients resembling observations from ECoG recordings during a
memory task3. We did not model volume conduction in our cortical
networks and thus, high PLV between empirical and simulated source
activity could reflect true zero-lag interactions, which are physiologi-
cally meaningful64,80. To fully outrule volume conduction effects, we
investigated non-zero-lag interactionswith PLI-FC,whichwas largest in
the alpha band and less pronounced in beta and gamma bands sug-
gesting that instrength-directed alpha traveling waves could coordi-
nate non-zero-lag FC. Simulated activity fromputative alpha- and beta-
subnetworks maintained a similar PLI-FC fit while also generating EF
gradients consistent with resting-state MEG31.

We used the tractography-derived number of streamlines as a
proxy for coupling strength between brain regions. Cortical traveling
wave direction and EF patterns are likely subject to additional factors
such as cortical gradients of neuron density, synaptic spine count,
receptor distributions, myelin content, cortical thickness, and
excitation-inhibition ratio24,81–87. While some cortical gradients may
vary on faster timescales large-scale SC gradients remain relatively
stable over longer time periods such asmany days, weeks or years48,49.
Thus, SC gradients could contribute to traveling wave direction across
brain states, e.g., similar traveling wave directions have been observed
in the alpha band during rest and memory-tasks3,9. Other studies have
shown that traveling wave direction changes rapidly in response to
tasks70,71,88. We hypothesize that external or self-generated stimuli
dynamically affect traveling waves by modulating IF89. For example, a
stimulus arriving in the visual cortex could accelerate local
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oscillations90 that interact with large-scale stable coupling and IF gra-
dients to achieve cortex-wide processing through traveling waves.
Alternatively, stimuli could induce large-scale IF gradients to direct
cortical traveling waves, this could be achieved through thalamocor-
tical loops preparing the cortex for incoming stimuli.We explored this
latter mechanism in our 2D network model and found that stable
instrength and dynamic IF gradients could cooperatively direct tra-
veling waves. Alternatively, inter-regional coupling strength could be
dynamically controlled – for instance by modulating the long-range
excitation-inhibition ratio86. To explain behavior, deeply under-
standing stable and dynamic coupling and IF gradients will be
necessary.

Cortical traveling waves are ubiquitous and relate to EF gra-
dients. We showed that a shared mechanism — namely instrength
gradients — could account for both phenomena. We found that
instrength gradients exist in the human connectome and affect
traveling wave direction and EF gradients in cortical network
models. Simulated instrength-directed traveling waves coordinated
FC to fit resting-state MEG and matched experimentally observed
traveling wave directions3,9,56. Simulated EF gradients aligned with
resting-state MEG EF gradients; particularly in alpha- and beta-
subnetworks found within the human connectome. While we
investigated the instrength gradient mechanism on macroscale
cortical networks, our findings could generalize to microscale
coupling strength gradients that could direct waves emerging in
spiking neural networks28. We proposed many hypotheses
throughout our work with the potential to advance research on
cortical gradients, traveling waves, and neural oscillations. In sum,
our findings suggest that SC instrength gradients affect cortical
traveling wave direction and shape EF gradients.

Methods
Experimental data
We used the publicly available data of 785 subjects that participated in
the Human Connectome Project (HCP; S900 release)42 and had com-
plete MRI data including structural MRI (T1w and T2w), diffusion-
weighted MRI and all four sessions of resting-state fMRI86. All partici-
pants provided informed consent as part of the HCP and the study
protocol was approved by the WU-Minn HCP Consortium’s institu-
tional review boards. The processing of these data was approved by
the medical ethical committee of the Charité Medical Center in Berlin.
Nine subjects were excluded because of missing files that were
necessary for our processing pipeline. We used the data of the
remaining 776 healthy subjects (number of subjects/age range: 160/
22−25, 339/26−30, 271/31−35, 6/36 + ; 432 female and 344 male; self-
reported) to construct the average structural connectivity (see Esti-
mation of structural connectivity).

We further investigated the instrength distributions in different
cohorts and parcellations. We analyzed publicly available data from
70 young healthy subjects (age: 28.8 ± 9.1 years, 27 female; https://
zenodo.org/record/2872624) to compute the instrengths for each
region of the Lausanne atlas65. The Schaefer parcellation with 400
regions was estimated from 369 healthy subjects (age: 42.7 ± 17.9
years, 243 female) from the Enhanced Nathan Klein Institute Rock-
land Sample (http://rocklandsample.org/). The dataset is publicly
available from EBRAINs (https://search.kg.ebrains.eu/instances/
3f179784-194d-4795-9d8d-301b524ca00a). The random parcellation
with 500 equally sized regions was estimated by Arnatkeviciute et al.
91 from 972 healthy participants of the HCP S1200 release (age:
28.7 ± 3.7, 522 female; self-reported) and is publicly available from
Zenodo (https://zenodo.org/record/4733297).

Furthermore, we studied if cortical network models that produce
traveling waves and frequency gradients are consistent with empirical
data. For this analysis, we used magnetoencephalographic (MEG)
resting-state data of 89 subjects that participated in the Human

Connectome Project (see MEG resting-state preprocessing and source
reconstruction)42,92.

Estimation of structural connectivity
The pipeline for structural connectivity (SC) estimation was based on
MRtrix (https://www.mrtrix.org/) and FreeSurfer (https://surfer.nmr.
mgh.harvard.edu/). We segmented the HCP subjects’ structural MRI
images based on tissue type (gray matter, white matter, and cere-
brospinal fluid) and used the resulting segmentation for multi-shell
multi-tissue constrained spherical deconvolution to estimate fiber
density distributions from subjects’ diffusion-weighted MRI images86.
Next, we generated anatomically-constrained tractograms using the
probabilistic iFOD2 algorithmwith 25million streamline seeds, an FOD
amplitude cut-off of 0.06, and restricted fiber lengths to 250mm.
Then, we resampled the Schaefer atlas defined on fsaverage (retrieved
from: https://github.com/ThomasYeoLab/CBIG/tree/master/stable_
projects/brain_parcellation/Schaefer2018_LocalGlobal) to each sub-
ject’s individual space and mapped this surface-based atlas to the
volumetric image using FreeSurfer. Subsequently, we computed the
SC weights between all regions from the SIFT2 filtered tractograms
using MRtrix. Additionally, we computed the SIFT2 filtered mean
streamline lengths between each Schaefer brain region. Finally, we
formed the average SC across subjects using consistency-based
thresholding44. This method preserves connections that are con-
sistent across subjectswhile removing spuriousones and it reproduces
the exponentially decaying distance – connection strength relation-
ship that is frequently observed across species45. We specified to retain
15% of consistent connections for the group average SC. Additionally,
we averaged the fiber lengths across subjects for the retained con-
nections. Notably, we could reproduce all our findings with a group
average SC thresholded at a connection density of 30%.

We further investigated the instrength distributions in different
cohorts and parcellations to make sure that the finding of instrength
gradients is robust. We used the publicly available SC of 70 young
healthy subjects (age: 28.8 ±9.1 years, 27 females) estimated with
deterministic tractography (https://zenodo.org/record/2872624#.Y-
JarOzMKDU) to compute the instrength for each region of the Lau-
sanne atlas65. Hagmann and colleagues65 detailed the MRI processing
and tractography (https://zenodo.org/record/2872624#.Y-JarOzMKDU).
The Schaefer parcellation with 400 regions was estimated from
369 subjects (age: 42.7 ± 17.9 years, 243 females) from the Enhanced
NathanKlein Institute Rockland Sample (eNKI)with themean streamline
count as connection strengths. Processing details and the dataset are
publicly available from EBRAINs (https://search.kg.ebrains.eu/instances/
3f179784-194d-4795-9d8d-301b524ca00a). The random parcellation
with 500 equally sized regions was estimated by ref. 91 from 972 par-
ticipants of the HCP S1200 release (age: 28.7 ± 3.7, 522 females) and is
available from Zenodo (https://zenodo.org/record/4733297#.Y6w_
lOzMJb8). Processing details can be found in ref. 91.

Identification of instrength gradients in the human connectome
We calculated the instrength for each brain region by summing the
incoming connection weights of the SC matrix. We identified
instrength gradients across the cortex with modal spectrospatial
analysis, which extends Fourier analysis to meshes with arbitrary
topology47. First, we decomposed the Laplace-Beltrami operator to get
a hundred eigenmodes and eigenvalues of a mesh that characterizes
the topology between brain parcels (see Constructing a mesh for dis-
crete operators). Next, we calculated the power spectrum by project-
ing the spatial instrength pattern onto the eigenmodes and
normalizing by the total power. Spatial frequencies corresponding to
each eigenmode were approximated by

ffiffiffi
λ

p
=2π, where λ are the

eigenvalues47. We detected instrength gradients with permutation
tests by randomly shuffling the instrength pattern 10,000 times and
computing the corresponding spectra. For each mode, the fraction of
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spectral powers that exceeded the original power corresponds to the
p-value. We identified significant modes by comparing the Bonferroni-
corrected p-values to a significance level of α=0:01. We applied this
analysis to group- and subject-level instrength patterns of the left
hemisphere of the Schaefer parcellation and all control connectomes
(eNKI cohort had average connectomeonly; see Supplementary Fig. 3).

2D Kuramoto network model
Westudied if travelingwaves emerge and followan instrength gradient
in a 30 x 30 network model of Kuramoto oscillators assuming a side
length of 140mm and unconstrained boundaries. The standard Kur-
amoto model36 was modified to include distance-dependent con-
nectivity and conduction delays:

dθi

dt
=ωi +

K
N

XN
j = 1

aij sinðθjðt � τijÞ � θiðtÞÞ ð1Þ

Where θi is the phase of oscillator i, t is time, ω is the intrinsic oscil-
lation frequency (IF), K the global coupling scaling, N the number of
oscillators, aij the connection strength between oscillators i and j, and
τij is the delay between oscillators i and j. We used exponentially
decaying connection strengths

aij =
1
2σ

e�
dij
σ ð2Þ

Where σ = 10mm is the length scale and dij is the euclidean distance
from oscillator i to j. Additionally, we created a distance-dependent
connection probability by connecting two oscillators if their
euclidean distance was smaller than a random sample drawn from
an exponential distribution.We parameterized its probability density
function to achieve a network connectivity of approximately 10%
(scale parameter = 17mm). Next, we removed self-connections and
normalized all connections to have uniform instrength across the
network. We imposed an instrength gradient by weighting the
connection strengths with 2D-gaussians placed in the upper right
and lower left of the network, respectively. Each gaussian was
defined by

fj xi

� �
=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þ2 det Σð Þ

q exp � 1
2

xi �μj

� �T
Σ�1 xi �μj

� �� �
ð3Þ

Wherexi 2 R2 are the coordinates for oscillator i,μj 2 R2 is the center
of the j th gaussian, and Σ 2 R2 × 2 is the covariance matrix. We chose

μ1 =
40

40

	 

,μ2 =

100

100

	 

,Σ =

300 0

0 300

	 

ð4Þ

Resulting in appropriate positioning and width of the gaussians
for the network size. By min-max normalizing the difference f1 xi

� ��
f2 xi

� �
to range between -1 and 1 we got a gradient template gðxiÞ that

we used for all 2D network models. The final connection strengths cij
that sum up to the desired instrength were calculated as

cij =aijðαgðxiÞ+ βÞ ð5Þ

where α =2 is a scaling factor and β=4 is an offset that we chose
heuristically to ensure that waves emerge and follow the instrength
gradient reliably and that all cij ≥0. This instrength gradient resulted in
a sink at μ1 and a source at μ2. We calculated the delays between
oscillators i and j as

τij =
dij

v
ð6Þ

Where v is the conduction speed and dij the euclidean distance
between i and j. We chose a biologically realistic conduction speed of
3m/s39–41.

The control model was created in the same way except that the
connection strengths were scaled with the average instrength of the
gradient model, thereby creating a uniform instrength distribution
that allows the emergence of traveling waves without directional bias.
However, the oscillators settled in a synchronized state and thus, we
reduced the global coupling scaling (Kgradient = 10 andKunif orm =0:3) to
achieve a similar synchronization to the gradient model making the
network activity comparable.

We set all oscillators to an IF of 10Hz, initialized the phases uni-
form randomly and simulated the model 100 times for 11 s with a 4th
order Runge-Kutta algorithm with an integration time step of 1ms in
The Virtual Brain93. We removed the first second of all simulations
taking into account the transition time from random initial conditions
to traveling waves.

2D Kuramoto network model with instrength and intrinsic
frequency gradients
We investigated if instrength and IF gradients interact to direct tra-
veling waves. To do so, we built on the 2D instrength gradient model
introduced earlier. We added an IF gradient generated from the same
gradient template gðxiÞ that we used to construct the instrength gra-
dient (see Fig. 3a). We chose to scale the IF gradient from 0 to 1.5 (IF
ranges from 8.5 to 11.5 Hz at maximum scaling) in steps of 0.05 (IF
range increment of 0.1 Hz) superimposed on a fixed instrength gra-
dient and simulated 100 randomly initialized models per scaling fac-
tor. We investigated gradient template – flow potential Spearman
correlation for all scaling factors. In this model, a negative correlation
indicates instrength-directed waves, while a positive correlation indi-
cates IF-directed waves. We also investigated the gradient template –

EF Spearman correlation, where a negative correlation indicates that
EF patterns are shaped by the instrength gradient, while a positive
correlation means that they are shaped by the IF gradient.

Cortical network model
We built a cortical network model with 1000 Schaefer atlas regions43.
Each brain regionwas represented by the Kuramotomodel introduced
earlier and connected by setting aij to the tractography-estimated
connection strengths (see Estimation of structural connectivity). We
used an IF ωi of 10Hz, a conduction speed v of 3m/s, and a coupling
scaling K of 0.01. We calculated the time delays between cortical
regions by dividing the empirically estimated fiber lengths by the
conduction speed v. This also results in distance-dependent conduc-
tion delays because fiber length and euclidean distance are strongly
correlated (r = 0.8, p < 0.01; see Fig. 4b, c and Supplementary Fig. 5).
The model was simulated 100 times with random uniform initial pha-
ses for 11 s using the 4th order Runge-Kutta algorithm with an inte-
gration time step of 1ms in The Virtual Brain93. We removed one
second of transient activity at the beginning of all simulations.

Control model with randomly shuffled connection strengths
We randomly shuffled the empirically estimated connection strengths
within existing connections. This model preserved the network
topology and conduction delays while destroying the fiber length –

connection strength relationship as well as the instrength gradient.
Notably, random shuffling of the connection strengths also destroys
the euclidean distance – connection strength relationship. We verified
this by fitting the euclidean distance – shuffled connection strength
relationship with a linear, exponential, and power law model (coeffi-
cients of determination: r2linear<0:001, r

2
exp<0:001, r

2
power<0:001; see

next section for further details). At the original coupling scaling of 0.01
all cortical regions synchronized fully, so we adjusted the global
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coupling scaling (K =0:003) to achieve a synchronization similar to
the original model.

Control model with preserved distance - connection strength
relationship
We first computed the position of the 1000 Schaefer regions43 using the
centers of mass of the FreeSurfer fsaverage5 inflated cortical surface
(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/
brain_parcellation/schaefer2018_LocalGlobal). Next, we calculated the
euclidean distance basedon these positions for connections that existed
in the SC (left hemisphere only). Visualizing the euclidean distance –

connection strength relationship suggested that connection strength
drops off with distance following an exponential or power law (see
Supplementary Fig. 5b).

Accordingly, we fit an exponential and a power law model to the
euclidean distance– connection strength relationship using non-linear
least squares. We found the exponential model to be a better fit
(r2exp =0:37 vs. r2power =0:34):

caij =αe
�λδij ð7Þ

Where âij is the estimated connection strength, δij is the euclidean
distance between brain regions i and j, α is a scaling constant, and λ is
the decay rate. The free parameters were estimated to be α =839:11
and λ=0:08 mm�1. Subsequently, we used this exponential model to
synthesize a surrogate SC for the left and right hemispheres (inter-
hemispheric connections were retained from the original SC) that
preserves the distance– connection strength relationship but destroys
the instrength gradients.We computed the corresponding conduction
delays by dividing the euclidean distance with a conduction speed
of 3m/s.

Control model with zero conduction delays
For this control model, we set the conduction delays to zero to
investigate their role in the emergence and guidance of traveling
waves. This control model preserves the tractography-derived SC
including connection topology and strengths, as well as the instrength
gradients. We adjusted the global coupling scaling (K =0:0001) to
achieve a similar synchronization to the original cortical network
model and prevent full synchronization.

Control model with instrength-normalized structural
connectivity
We tested if hub-structure could explain the traveling wave direction
observed in our cortical network model by instrength-normalizing the
SC. To do so, we divided the SC matrix row-wise by the region’s
instrength and multiplied it by the mean instrength of the original SC.
Everything else remained equal to the original cortical networkmodel.

Control model with Jansen-Rit neural masses
We tested if the SC allows the emergence of traveling waves in a more
realistic cortical networkmodel consisting of Jansen-Rit neuralmasses.
We further investigated if traveling wave direction and oscillation
frequency are modulated by the instrength gradients.

In this model, each region consisted of populations of excitatory
pyramidal neurons as well as inhibitory and excitatory interneurons.
The pyramidal neuron population excites the interneuron populations
and receives inhibitory and excitatory feedback in turn.We interpreted
the postsynaptic activity at the pyramidal population as the local field
potential of the region. This local field potential is the difference of
postsynaptic potentials induced by the excitatory and inhibitory
interneuron populations.

We set the parameters of the model such that ∼ 10 Hz oscilla-
tions emerged in the connected cortical network (all parameters are
shown in Supplementary Table 1). We simulated the model 100

times for 12 s with a 4th order Runge-Kutta algorithm with an inte-
gration time step of 1ms in The Virtual Brain93. For further analyses,
we bandpass filtered the local field potentials between 5 and 15Hz
(8th-order forward-backward Butterworth filter using cascaded
second-order sections). We removed the first and last seconds of all
simulations to remove simulation transients and filtering edge
effects.

Parameter exploration of cortical network model
For the parameter exploration of the cortical network model, we
used intrinsic oscillation frequencies ωi 2 f1,10,20,40g Hz, conduc-
tion speeds v from 1 to 10m/s in increments of 1m/s, and global
coupling scalings K from 10�5 to 10 spaced logarithmically with
39 steps. We ran 10 simulations for each parameter combination with
random uniform initial phases for 11 s using the 4th order Runge-
Kutta algorithm with an integration time step of 1ms in The Virtual
Brain93. We removed one second of transient activity at the beginning
of all simulations.

MEG resting-state preprocessing and source reconstruction
Our preprocessing steps roughly followed the Human Connectome
Project MEG processing pipeline92. We used the MNE-Python soft-
ware for processing these data94. We used the first resting-state
session of 89 HCP MEG subjects for our analyses. First, we regressed
out the MEG reference channels followed by removing bad channels
and segments (provided with the HCP data). Then, we bandpass fil-
tered the MEG signals between 1.3 and 150Hz (8th-order forward-
backward Butterworth infinite impulse response filter) and removed
line noise with a zero-phase notch filter at 60 and 120Hz (zero-phase
finite impulse response filter; Hamming window with 0.0194 pass-
band ripple and 53 dB stopband attenuation; lower transition band-
width: 0.50Hz; upper transition bandwidth: 0.50Hz). Next, we used
the ICA components provided with the HCP data to remove EOG,
ECG, and other artifacts. Finally, we extracted the longest continuous
artifact-free segment of resting-state activity per subject with a
minimum duration of 80 s to ensure uninterrupted data streams.
After excluding nine subjects that did not have more than 80 s of
continuous artifact-free recordings, we were left with a total of
80 subjects (number of subjects/age range: 15/22−25, 33/26−30, 32/
31−35; 40 females and 40 males). We removed five seconds at the
beginning and end of these segments to avoid filter edge effects. We
applied the same processing to the empty room recordings but
used the full length of the data. To reduce the computational burden,
we resampled the recordings to a frequency of 100Hz after which
we removed another five seconds at each end to avoid filter edge
effects.

To prepare for source reconstruction, we extracted the head
model and the MRI-MEG coregistration transformation matrix from
the anatomical data of the subjects using the HCP MNE toolbox
(https://mne.tools/mne-hcp). Next, we set up a source model by dec-
imating the FreeSurfer fsaverage gray-white matter surface using
recursively subdivided octahedrons, resulting in 8196 freely oriented
sources. The sources were then morphed into the subject’s native
space. Subsequently, we constructed a single layer inner skull BEM
model with a conductivity of 0.3 S/m followed by computing the for-
ward model. Furthermore, we estimated the data and noise covar-
iances from the respective recordings.We used the previous results to
compute the linearly constrained minimum variance spatial filters for
the dipole orientation that maximizes power (regularization constant
of 0.05 and unit-noise gain normalization). Then, we aggregated the
activities by averaging all source time series within each parcel of the
Schaefer atlas. Lastly, we bandpass filtered the resulting source activ-
itieswithin the respective frequencybands (alpha: 5−15Hz, beta: 15−25,
gamma: 35−45; 4th-order forward-backward Butterworth filter using
cascaded second-order sections).
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Fitting cortical network models to resting-state functional
connectivity
We studied if cortical network models expressing instrength-directed
traveling waves and EF gradients are consistent with MEG-derived
resting-state FC.

We estimated the FC from the resulting source activities for each
frequency band separately.We chose the phase locking value (PLV)51 as
ameasure for FCbecause it is frequently used andour cortical network
model simulates instantaneousphases. The PLVbetween regions k and
l is defined as

PLVkl =
1
N

XN
n=0

ej θk nð Þ�θl nð Þð Þ
�����

����� ð8Þ

WhereN is the number of timepoints, θk nð Þ is the instantaneous phase
of region k at time point n, and �j j the magnitude operator. Thus, the
PLV captures consistent phase differences between pairs of regions
across time. The PLV is 1 if the regions show consistent phase differ-
ences and 0 if their activity is completely incoherent.

We further used the phase lag index (PLI)52, which is insensitive to
zero-phase lag interactions and thus also to possible volume conduc-
tion. PLI quantifies the asymmetry of the phase difference distribution
between signals. It is 1 if the two regions have consistent non-zero
phase differences and 0 if they have zeroor randomphase differences.
The PLI between regions k and l is defined as

PLIkl =
1
N

XN
n=0

sign Im ej θk nð Þ�θl nð Þð Þ� �h i�����
����� ð9Þ

Where sign �½ � is the sign-function and Im �ð Þ is the imaginary part.
To construct the resting-state FC, we estimated the PLV and PLI

for all pairs of regions. We used the same method to estimate the
simulated FC for all cortical network models of the parameter
exploration (see Parameter exploration of cortical network model) in
the alpha, beta, and gamma frequency bands. We set the diagonal
elements of the FC matrix to zero. Finally, we used the Pearson cor-
relation coefficient to assess the fit between simulated and empirical
FC for each parameter combination.

Fitting cortical network models to resting-state MEG effective
frequency
We fit cortical network models to resting-state MEG EF. To do so, we
computed the empirical EFs within each frequency band extracted
from the MEG source reconstruction and averaged them across sub-
jects (see Effective frequency estimation). We further computed the
average EF maps across simulations for various parameter combina-
tions.We explored the agreement between simulated and empirical EF
using the concordance correlation coefficient (CCC)

ρc =
2ρσsimσemp

σ2
sim + σ2

emp + μsim � μemp

� �2 ð10Þ

where ρ is the Pearson correlation coefficient between the simulated
and empirical EF, σ� is the simulated or empirical EF standard devia-
tion, and μ� is the simulated or empirical EF mean. CCC is a metric of
agreement between two measurements and is 1 if the measures agree
perfectly, -1 if they disagree perfectly, and 0 if they do not agree
beyond chance. We chose CCC because it not only assesses if simu-
lated and empirical EFs are correlated but also if they are of similar
magnitude.

Decomposing the structural connectivity into subnetworks
Tractography is indifferent to subnetworks underlying the total SC.
Nonnegative matrix factorization59 (NMF) – an unsupervised

decomposition algorithm – allowed us to identify common subnet-
works across the HCP subjects total SCs. NMF decomposes a non-
negative matrix V into two low-rank nonnegative matrices W and H

V≈WH ð11Þ

V is a n×mmatrix, where n is the number of features andm is the
number of samples.W andH are n× r and r ×mmatrices, where r is the
number of components. The components of W are feature patterns
common across the samples, while the coefficients in H express how
much each feature pattern contributes to each sample.

We built a data matrix V where each sample was the upper tri-
angular matrix of an individual subject’s SC flattened into a column
vector. Then, we removed all connections across subjects that did not
survive consistency-thresholding for the average SC (see Estimation of
structural connectivity), which resulted in a 75000× 776 nonnegative
data matrix V. Notably, using the full upper triangular matrices of all
subjects’ SCs (V with dimensions 499500×776) resulted in similar
subnetworks (see Supplementary Fig. 8b). We used the reduced data
matrix in our simulations and analyses to speed up computations. We
determined the number of components using a cross-validation
method that first randomly sets 5% of the datapoints to zero, then
computes the NMF, which is eventually used to impute the missing
data60. The mean squared error between the imputed datapoints and
the original held-out values was computed for NMFs with 2 to 10
components. We repeated this procedure 100 times because the NMF
low-rank matrices require random initialization resulting in different
outcomes across runs. We found that 5 components minimized the
average mean squared error across all 100 runs. Finally, we used the
5-rank NMF with the lowest mean squared error across 100 random
initializations. We calculated the average subnetwork SCs by recon-
structing V from each component, followed by averaging across sub-
jects.We used theRcppMLpackage for theNMFand cross-validation61.

We identified putative alpha- and beta-subnetworks by finding the
subnetworks whose instrengths correlated most strongly with the
anterior-posterior position. The subnetwork with instrength decreas-
ing along the anterior-posterior axis was chosen to be the putative
alpha-subnetwork, and the one with increasing instrength the putative
beta-subnetwork. These networks were used in the parameter
exploration presented in the main text. The cross-validation revealed
that NMFs with fewer than 5 subnetworks had similar reconstruction
errors compared to the best model. Thus, we wondered if these NMFs
also identified similar subnetworks. To test this, we first computed the
pairwise Pearson correlation between all feature patterns of the rank-2
to 5 NMFs (total of 14 subnetworks). Hierarchical clustering of the
resulting correlation matrix using the Ward algorithm, revealed two
high-level clusters. The instrength patterns of subnetworks belonging
to one of the two clusters showed that the NMFs consistently found
alpha- and beta-subnetworks.

Detecting traveling waves
We assumed that traveling waves propagate from sources to sinks27

and wave detection is equivalent to identifying these sources and
sinks. To do this, we started with the instantaneous phases from our
network models (we estimated the instantaneous phases using the
complex argument of the analytic signal obtained through the Hilbert
transform for the Jansen-Ritmodel) and quantified how phase changes
across space by computing the spatial phase gradient on a mesh
derived from the positions of the 2D network or from the 1000
Schaefer brain regions (see Computing spatial phase gradients). Then,
we defined a 3-ring neighborhood around a region and calculated its
idealized and normalized gradient based on the region’s geodesic
distance. This local idealized gradient describes a wave expanding
from a source. We calculated the average angular similarity between
this idealized gradient and the empirically derived normalized
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negative phase gradient (wave propagationdirection) tomeasure their
alignment within a region’s neighborhood:

angular similarity = 1� 2α=π ð12Þ

where α is the angle between the idealized and empirical phase gra-
dients. An angular similarity of 1 indicates full alignment, 0 ortho-
gonality, and -1 full alignment with opposite directions. Notably, the
negative phase gradient points into the direction of wave propagation.
Thus, if the average angular similarity in the neighborhood around a
region is negative, the phase gradients are consistent with a wave sink
and if it is positive, they are consistent with a wave source.

Finally, we used permutation testing to assess the statistical sig-
nificance of sources and sinks. Here, we randomly shuffled the data
1000 times across space (instantaneous phases for Kuramoto models
and local field potentials for Jansen-Rit model), repeated the proces-
sing above, and computed a null distribution of global maxima found
from the absolute values of the angular similarities of all regions. Then,
we determined the p-value by finding the proportion of shuffled
angular similaritymaxima that were at least as extreme as the absolute
value of the original angular similarity of each region. Using the global
maximum of our statistic accounts for the multiple testing problem.
Lastly, we identified significant sources and sinks if p<α, with a sig-
nificance level of α = 0.01 for the 2D network model and the cortical
network model. To keep the computational load manageable for the
parameter exploration, we reduced the number of random permuta-
tions across space to 100 and adjusted the significance level to α =
0.05. Additionally, we downsampled all simulated time series by a
factor of five before applying this method.

Computing the wave flow potential
We visualized how waves propagated across our network models and
quantified their relationship with instrength gradients with the wave
flowpotential, a scalar field defined onour networkmodels that can be
interpreted as a landscape inwhichwaves flow frompeaks (sources) to
valleys (sinks). To compute the wave flow potential, we decomposed
the spatial phase gradient (see Computation of spatial phase gradient)
using the Helmholtz-Hodge Decomposition for vector fields defined
on 2D manifolds embedded in 3D95:

ξ =∇D+ J∇R ð13Þ

where ξ is a vector field (spatial phase gradients), ∇ is the gradient
operator,D andR are curl-free and divergence-free potentials, and J is
a rotation Jv= �v2,v1

� �
with v= v1,v2

� �
: In our specific case the curl-

free potential D is the wave flow potential, obtained by solving the
Poisson equation:

ΔD=∇ � ξ ð14Þ

where ξ is the spatial phase gradient, Δ the Laplacian and ∇� the
divergence operator.We solved this equationwith the sparseCholesky
decomposition using the scikit-sparse Python package (https://github.
com/scikit-sparse/scikit-sparse) and the corresponding discrete opera-
tors (see Computing spatial phase gradients). The interpretation of the
resulting wave flow potential D is that waves travel from higher to
lower potentials. We applied this analysis to the left and right
hemispheres separately. Additionally, we downsampled all simulated
time series by a factor of five before applying this method.

Detection of instrength-directed traveling waves
We detected instrength-directed traveling waves by finding time
points where the instrength gradient correlated significantly with the
flow potential (see Computing the wave flow potential). To do so, we
established a null distribution of Spearman correlations using 1000

random spin permutations90 (100 for parameter explorations) of the
original data and repeated the analysis described in the section
Computing the wave flow potential. The p-value is the proportion of
permutations that were at least as extreme as the original correlation.
We detected significant instrength-directed waves by p<0:01
(p<0:05 for parameter exploration). This analysis was conducted
separately for the left and right hemispheres and we downsampled
all simulated time series by a factor of five before applying this
method.

Computing spatial phase gradients
We computed the spatial phase gradients from the instantaneous
phases θi of our network models using libigl’s discrete gradient
operator (https://libigl.github.io/) that works on a triangle mesh (see
Constructing a mesh for discrete operators). We handled phase
unwrapping similar to ref. 27 by applying the discrete gradient
operator to ejθi (j is the imaginary unit) which results in complex gra-
dients defined on the mesh triangles. Then, we multiplied these com-
plex gradients by �je�jϕk where ϕk is the barycentric interpolation of
ejθi to triangle k for all i defining triangle k. Finally, the real part of this
result is the phase gradient defined on mesh triangles. We applied the
discrete gradient operators on the left and right hemispheres
separately.

Constructing a mesh for discrete operators
The discrete operators that we used to estimate the spatial phase
gradient, Laplacian, and divergence, operate on triangle meshes
defined by vertices and faces (triplets of vertices). For the 2D network
model,wedefined theoscillatorpositions asmesh vertices and created
the corresponding triangle faces with Delaunay triangulation. For the
cortical network model, we started with the inflated FreeSurfer
fsaverage mesh (https://surfer.nmr.mgh.harvard.edu/) and defined
mesh vertices as the centers of mass of all vertices belonging to a
Schaefer region. Furthermore, we preserved the neighborhood
topology between regions to define the mesh triangle faces. We cre-
ated these meshes for each cortical hemisphere separately.

Effective frequency estimation
We quantified EF by calculating the instantaneous frequency from the
analytic signal:

f inst = arg sa nð Þ �sa n� 1ð Þ� � ð15Þ

where sa nð Þ 2 C is the analytic signal at the discrete sample n, �sa is the
complex conjugate of the analytic signal, and arg �ð Þ is the complex
argument. We used the exponential form of the analytic signal
sa nð Þ= ejθ nð Þ for the Kuramoto networkmodels. For estimating EF from
resting-state MEG, we computed the analytic signal by Hilbert
transforming the bandpass filtered source signals. We calculated the
EF maps for each simulation by taking the median instantaneous
frequency across time. Average EFmaps were calculated by taking the
mean of themedian instantaneous frequencymaps across simulations
or subjects.

Spin permutation tests
We assessed the spatial relationship between various 2D and cortical
maps (e.g., instrength, EF, flow potential) with Spearman correlation.
We identified statistical differences using permutation tests with
10,000 random rotations of the original data across space
(brainspace.readthedocs.io)96. Spin permutation tests preserve most
of the original data’s features including spatial autocorrelation; Hence,
they are suitable for assessing spatial correspondencebetweenmaps97.
We devised a similar strategy for the 2D network model statistics: we
randomly translate 2D maps along both dimensions followed by ran-
domly rotating them. Missing values were replaced by border
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reflection. The proportion of permutations that resulted in a correla-
tion at least as extreme as the original correlation determines the
p-value. The correlation was deemed significant if p<0:01.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Human Connectome Project data are publicly available at https://db.
humanconnectome.org. The Schaefer atlas parcellation with 1000
regions is publicly available at https://github.com/ThomasYeoLab/
CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_
LocalGlobal. The structural connectivity based on the Lausanne atlas is
publicly available at https://zenodo.org/record/2872624. The struc-
tural connectivity based on the 400 region Schaefer atlas is publicly
available at https://search.kg.ebrains.eu/instances/3f179784-194d-
4795-9d8d-301b524ca00a. The structural connectivity based on a
random parcellation with 500 regions is publicly available at https://
zenodo.org/record/4733297. Source data areprovidedwith this paper.

Code availability
All custom code used in this study is freely available at https://osf.io/
daq54. Custom code was written in Python version 3.8.12 using mul-
tiple packages (The Virtual Brain 2.3, scipy 1.9.0, numpy 1.23.1, mat-
plotlib 3.7.2, pyvista 0.41.1, LibIGL-Python-bindings 2.2.1, MNE-Python
1.0.3, MNE-HCP 0.1.dev12, BrainSpace 0.1.4, scikit-sparse 0.4.6) and R
programming language version4.3.1 usingmultiple packages (RcppML
0.5.5, reticulate 1.34.0). FreeSurfer 7.1.1 and 7.1.0, MRtrix 3.0 and 3.0.2,
and FSL 6.0 were used for MRI processing.
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