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Flower-shaped 2D crystals grown in curved
fluid vesicle membranes

Hao Wan 1, Geunwoong Jeon 2, Weiyue Xin 3, Gregory M. Grason 1 &
Maria M. Santore 1

The morphologies of two-dimensional (2D) crystals, nucleated, grown, and
integratedwithin 2D elastic fluids, for instance in giant vesiclemembranes, are
dictated by an interplay of mechanics, permeability, and thermal contraction.
Mitigation of solid strain drives the formation of crystals with vanishing
Gaussian curvature (i.e., developable domain shapes) and, correspondingly,
enhanced Gaussian curvature in the surrounding 2D fluid. However, upon
cooling to grow the crystals, large vesicles sustain greater inflation and tension
because their small area-to-volume ratio slows water permeation. As a result,
more elaborate shapes, for instance, flowers with bendable but inextensible
petals, formon large vesicles despite theirmore gradual curvature, while small
vesicles harbor compact planar crystals. This size dependence runs counter to
the known cumulative growth of strain energy of 2D colloidal crystals on rigid
spherical templates. This interplay of intra-membrane mechanics and pro-
cessing points to the scalable production of flexible molecular crystals of
controllable complex shape.

The importance of ultrathin and flexible materials motivates a focus
on nanometrically thin bendable crystals whose sheet-like character
and large lateral areas qualify them as 2D solids. Experiments,
simulations, and theory show that a 2D crystal growing on a fixed
spherical template avoids topological defects via a stress-triggered
boundary instability1,2, producing a progression from compact, hex-
agonal domains to highly anisotropic protrusions and stripes which
reduce the energetic cost of Gaussian curvature3–6. The characteristic
domain length scale is controlled by the interplay between in-plane
stresses, line energy, and sphere radius3,4,7,8. Thus on smaller tem-
plateswith greater curvature, the transition fromcompact to striped/
protruding morphology occurs earlier during crystal growth, with
narrower protrusions and stripes emanating from smaller compact
domain cores.

Here we show how the morphologies of 2D crystals growing
within a flexible elastic 2D fluid having a closed topology, for instance,
solid domains integrated into the fluid membrane of a giant uni-
lamellar vesicle shown schematically in Fig. 1a, are controlled by a

fundamentally distinct mechanism. The in-plane solid elasticity of 2D
crystals, i.e., a preference for flatness or cylindrical bending9,10, favors
solid domains with zero Gaussian curvature. Because topology
requires that the total Gaussian curvature of the composite vesicle is
constant, the expulsion of Gaussian curvature from the solid domain
mustbe redistributed to the 2D fluid11. This in turn produces a complex
interplay between the shape and morphology of the crystal and
the system’s global shape and bending energy. We employ fluid Lα
phase phospholipid bilayer membranes12,13 containing integrated solid
membrane domains as a platform to explore how 2D crystals, growing
within a curved 2D elastic fluid, adjust both their morphology and
curvature to minimize the total energy. The size sensitivity of the
resulting morphological instability runs counter to that for crystal-
lization on rigid spherical templates3,4,7. Further, thermal membrane
contractions and water permeation from the vesicle tune membrane
tension and energy to scalably produce a vesicle size dependence
of crystal morphologies. When thermal history and osmotic pre-
conditioning are fixed for the entire suspension, more elaborate
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crystal shapes grow systematically on larger more gradually curved
vesicles, at the same membrane composition. The favorable compar-
ison between experiments with phospholipid vesicles and the con-
tinuum model, which imposes no constraints on the molecular
makeup of fluid and solid domains, argues for the generality of the
mechanism proposed here.

Results
Emergent shapes of crystallized domains
In giant unilamellar vesicle membranes containing two or more
phospholipids, ordered crystalline membrane domains, some with
intricate shapes14, can coexistwithin the fluidmembranephase, called
a Lα phase15–18. In this work the Lα fluid membrane contains a mixture
of l,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l,2-dio-
leoyl-sn -glycero-3-phosphocholine (DOPC), plus a fluorescent tracer
lipid (l,2- dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine

rhodamine B sulfonyl) (ammonium salt), Rh-DOPE) that is excluded
from the nearly pure orderedDPPC solid domains16,19–21, enabling their
visualization in membranes containing both fluid and solid domains.
The Lα fluid membrane can bend and stretch elastically and, because
it can also shear freely22–25, it assumesGaussian curvature at a low cost.
Unlike the fluid membrane, solid phospholipid domains possess
identical crystalline order in both leaflets26–30 and correspondingly
non-zero 2D shearmoduli22, imparting shear rigidity that limits access
to shapes like spheres that have non-zero Gaussian curvature. Solid
shear elasticity underlies the geometrically nonlinear coupling
between Gaussian curvature and in-plane strain of 2D sheets9. While
changes in mean curvature (i.e., bending) incur modest cost due to
the nanometrically thin dimensions22,25,31–34, non-zero Gaussian cur-
vature in the solid leads to prohibitively large shear strains that grow
with the lateral dimensions of the 2D crystal7,35. Notably, the forma-
tion of topological defects that form in some curved 2D crystals36–38

Fig. 1 | Solid crystals in fluid vesicle membranes. a Schematic of a solid crystal
(dark) in a 2-D fluid (yellow) comprising a Lα lipid bilayer. b Phase diagram and
cooling trajectory for giant unilamellar vesicle membranes of lipid mixtures of
DPPC and DOPC and <0.1mol% tracer. Lα phase boundary (red squares) based on
the first appearance of solid domains upon cooling at each composition. Solid
datum (blue circle) approximates solid domains known to be nearly pure in
DPPC54,55. Error bars are standard deviation and include 6 independent measure-
ments for each composition. c Examples of DPPC solid crystal shapes seen on
vesicles of different sizes, all in the same batch and shown with the same 10- μm
scale bar. The solid crystalline domains are dark shapes, while the Lα fluid is bright
due to the fluorescent tracer. Solid area fractions for different shape types (convex

hexagon, ninja starflower, simpleflower) are included and represent averages of 15-
20 vesicles of each shape type, detailed in Suppl. Note 2. The dashed boundaries
indicate the vesicle size, determined by a separate image taken a few moments
apart focusing on the equatorial plane rather than the crystal-containing surface.
Scale bars are 10 μm. d, e Two series of vesicle images, each showing a progression
for a single vesicle and its growing crystal shape during cooling. The first image in
each series was acquired as soon as a crystal could be identified and focused. The
rest of the images continue to room temperature. The two vesicles differ only in
size. The dashed boundaries in each first image indicate the vesicle size, based on a
separate image recorded at a slightly different time, focusing on the equatorial
plane rather than the pattern. Scale bars are 20 μm.
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can only relax a fraction, but not all, of the large thermodynamic costs
of Gaussian curvature39.

Starting with an overall membrane composition of 30/70 DPPC/
DOPC molar ratio in the one phase region of the phase diagram in
Fig. 1b, cooling at an appropriate rate produces solid domains, one
per vesicle, that first appear just below 32 °C and grow progressively
until at room temperature, they occupy area fraction ϕ = 0.12 − 0.14
of the membrane, according to the room temperature tie line
(Fig. 1b). An examplemass balance-based calculation of the solid area
from the tie line can be found in the Suppl. Note 1. A variety of solid
shapes, all with 6-fold symmetry from convex hexagons and highly
non-convex stars to flowers, are found with examples shown in
Fig. 1c. The room temperature solid area fractions measured from
image analysis of 15–20 vesicles of each crystal shape type, sum-
marized within Fig. 1c and detailed in the Suppl. Note 2, is indepen-
dent of domain shape and agrees with themass balance on the room
temperature tie line. Thus, despite the varied morphologies of the
solid domains, all the vesicle membranes adhere to the thermo-
dynamic phase diagram, suggesting mechanisms other than none-
quilibrium thermodynamics to explain the varied domain
morphology. Important to note, that the composition 30/70 DPPC/
DOPC was chosen because it produces only one crystal per vesicle,
and enables the beautiful shapes in Fig. 1 to grow in completely
without interference by other crystals. Greater DPPC content pro-
ducesmultiple nuclei per vesicle40, with growing domains interacting
and covering a greater area fraction and interfering with the
morphologies developed with isolated crystals.

Two unusual features are observed in these systems. First, as
shown in two typical examples in Fig. 1d and e, the initially discernable
solid shape is preserved as domains grow. This observation suggests
crystal growth and shape development by molecular addition at
domain edges as opposed to aggregation of small domains to produce
large ones. There is also a lack of classical dendritic growth instabilities
since the shapes do not branch as they grow. Indeed, the images of
Fig. 1d and e are consistent with single crystal growth. Second, evident
in Fig. 1c, there is a strong correlation between domain shape and
vesicle size. More compact, convex domains are found on smaller
vesicles, and solid domains with more extended protrusions and ela-
borate flower shapes on the larger vesicles. This is particularly
remarkable because all these vesicles have the same composition, and
same solid area fraction at room temperature, and were processed
together to produce nucleation and growth in a single chamber with
the same osmotic handling and thermal program. The particular
vesicles in Fig. 1c were selectively visualized by translating the micro-
scope stage to focus on different vesicles.

Vesicle size selects crystal shape
The solid domain shapes comprise a continuumdefined by the ratio of
the circumradius to inradius, i.e., α = Douter/Dcore. The nominal shape
types, discernable by the eye, in Fig. 2b provide a convenient frame-
work for classifying solid domains and always exhibit the α values in
Fig. 2b. For instance, α varies from 1–1.15 for hexagons and convex
domains that are less sharply faceted, up to >3.5 for serrated flowers.
The categories of hexagons, ninja star flowers, simple flowers, and
serrated flowers enabled us to establish, in Fig. 2c the dependence of
domain shape on vesicle size for over 330 vesicles in three separate
runs, all with the same lipid composition, osmotic conditions and
thermal history. Figure 2c establishes distinct vesicle size rangeswhere
crystals of different shapes are found. The correlation is strong, with
serrated flowers found only on the largest vesicles and for instance,
compacthexagonaldomains never seenonvesicles greater than25μm
in diameter.

Counter to expectations based on the literature3,4,7, the most
compact shapes are found on the small vesicles, i.e., those with the
greatest curvature,while non-convexflowers are seenon larger vesicles,

having smaller curvature. This correlation runs counter to predictions
of Föppl-von Kármán theory3,7, phase-field crystal modeling2,5, and
experiments of colloidal crystallization on fixed spherical templates4

that show the threshold size for the transition from compact to aniso-
tropic (e.g., stripe, branched or non-convex) domain shape increases
with larger sphere radius.

Solid mechanics favors developable crystal shapes
To build towards an understanding of the vesicle size-based selectivity
of crystal morphology, we start by considering the energetics of a
vesicle having total area (A) and enclosed volume (V) where the fluid
membrane contains a solid domain of fixed area fraction (ϕ). While
flexible vesicles need not be spherical, the area-integrated Gaussian
curvature is constant, and the standard (Helfrich model) bending
energy of fluid membranes favors uniformly spherical vesicles12, both
ofwhich are frustrated by the presenceof solid domain. To see this, we
first estimate the energetics of forcing the solid crystal domain to
conform to a uniform spherical radius R =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð4πÞ

p
. This energy is

composed of the elastic strain energy imposed by the Gaussian cur-
vature and the out-of-plane (i.e., mean curvature) bending energy cost.
The former is proportional to E(strain) ~ Y R2, where Y is the 2D Young’s
modulus of the solid, while the latter is proportional to the bending
modulus E(bend)~B35. For simplicity, bending modulus B is taken to
be the same for the fluid and solid phases. Since the modulus ratioffiffiffiffiffiffiffiffiffi

B=Y
p

= t gives a length scale, t, characterizing the elastic thickness9,
and is thus of order of the nanometric lamella thickness, we expect
the ratio E(bend))/E(strain) ~ (t/R)2 ≪ 1. This implies that vesicles are
likely to adopt large, mean-curvature bending deformations without
imposing Gaussian curvature on solid domains. In other words,
elasticity drives solid domains to take the form of zero-Gaussian
developable surfaces9,41 either remaining planar or else bending
cylindrically or in a locally conical geometry, while the Lα fluid phase
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Fig. 2 | Vesicle size dependence of crystal shape. a Schematic illustrating how α

wasmeasured andb the range ofα for different typesof solid shapes. c Summary of
solid domain shapes found on 330 vesicles of different sizes, including hexagon
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More than 100 vesicles were analyzed in each of three separate batches.
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will deform to accommodate all the non-zero Gaussian curvature of
the closed vesicle.

Thesemechanics are borneout in studies focusingon the shapeof
tracer-containing fluid membranes and, to the extent they could be
visualized, the solid domains. Creating a challenge for imaging solid
domain curvature, membrane tracer lipids, established in other works
to integrate into certain solid phospholipid domains14,16,17, were
excluded from the particular crystals in this study. This is shown in
Supplementary Fig. 1 for lissamine rhodamine B-1,2-dipalmitoyl-sn-
glycero-3-phosphoethanolamine, Rh-DPPE, and dioctadecyl tetra-
methylindocarbocyanine perchlorate, C18-DiI. Therefore, phase con-
trast microscopy coupled with epifluorescence was employed to
examine the shapes of equatorial sections when the crystals of solid
domains were appropriately oriented to reveal their curvature or
flatness. Schematics, derived from the surface evolver modeling in the
next section, are included simply to guide the eye in interpreting the
shapes of tilted crystals.

Figure 3 reveals the curvature of the fluorescently labeled Lα fluid
membrane and, in general, suggests primarily flat or cylindrically-
curved solid domains. For instance, in Fig. 3a, the Lα fluid phase curves
throughout while the compact hexagonal inclusion is flat. The star-
shaped domain in Fig. 3b appears to be substantially flat towards its
core but at the viewing angle, a star tip is seen to bend isometrically
around the vesicle. In Fig. 3c, the flatness across the narrow direction
of 3 petals is clear, translating to cylindrical petal curvature in the
wrapping direction, still with zero Gaussian curvature.

The behavior of a planar core and largely cylindrical bending of
the petals, is strikingly similar to so-called “capillary origami” defor-
mations of solid sheets on liquid drops42,43. This suggests that the
formation of highly non-convex and multi-lobed solid domains has a

similar effect in vesicles, to enhance the ability to conform closely to
spherical shapes without in-plane strain. Unlike the capillary origami
scenario, however, the energeticsof theoverall shape andmorphology
dependence are controlled by the overall bending energy of the fluid
and solid phases.

Energetics of inflation versus crystal shape
We model the detailed distribution of elastic energy using Surface
Evolver calculations44 of closed vesicles having a single elastic solid
(crystal) domain of area fraction, ϕ, and a fixed dimensionless volume
�v=

ffiffiffiffiffiffiffiffiffi
36π

p
V=A3=2 ≤ 1. �v is a dimensionless measure of inflation, the

actual volume normalized by the volume enclosed by an equal-area
sphere. We consider nearly inextensible conditions t/R = 8.3 × 10−5,
justified by the nanometric thickness of multi-micron vesicles. For the
solid domain, we consider a range of flower-like shapes (detailed in the
Methods section) which span from α = 1 for circular solid domains to
α > 4 for large petal morphologies. Notably, some measure of 6-fold
symmetry is apparent in nearly all solid domains, whether compact or
non-convex in shape. We understand this 6-fold symmetry to derive
from an anisotropy of the line-energy of the solid, reflecting the long-
range rotational symmetry of the molecular packing, hence giving rise
to at least some measure of 6-fold faceting as derived from standard
considerations of 2D crystals (i.e., Wulff shape). Given this fixed 6-fold
symmetry, the model considers how variable convexity and elabora-
tion of petalled shapes control the elastic energy of the composite
vesicle at fixed solid fraction and inflation. That is, in the present work
we consider a family of fixed, 6-fold symmetry solid domain shapes in
our model and neglect the effect of the anisotropic energy that gives
rise to it in experiments. In the absence of a molecular field that biases
anisotropic line energy, it is likely that the n-fold of a non-convex
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Fig. 3 | Vesicle shape and solid shape. Micrographs showing the relationship
between domain bending (or lack of it) for typical solid domain shapes:
a Hexagonal domain b Ninja-star flower and c Simple flower-shaped domain.
Fluorescence micrographs show different focus planes for top, equatorial, and
bottomviews. Anequatorial view in phase contrast is provided in eachpanel. All the

schemes, generated using Surface Evolver, illustrate the position of the solid on the
rotated vesicle, the equatorial contour for each case (for comparison to the phase
contrast image), and a top view showing the section (red plane) achieved in the
micrographs. The phase contrast images have had noise removed to better reveal
their boundaries and the original images appear in Supplementary Fig. 2.
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domain shape may vary with vesicle inflation and solid domain size, a
possibility to be explored elsewhere. We further note that Surface
Evolver calculations describe only the thermodynamics of solid
domain shape on vesicles of variable inflation, and do not attempt to
capture the complexities of dynamic solid domain growth.

We first show elastic energy ground states in Fig. 4a, for slightly
inflated conditions (i.e., �v above theminimal elastic energy state for the
starred points in Fig. 4b), mapping the distribution of both mean and
Gaussian curvature over vesicle surfaces, resembling those in experi-
ments. In all cases, it is found that the Gaussian curvature is expelled
from the solid domains, confirming that their shapes closely follow
developable surfaces, i.e., surfaces with everywhere zero Gaussian
curvature. Second, we note for compact solid domains on inflated
vesicles, large bending (mean curvature) is heavily concentrated in the
fluid adjacent to the solid, to accommodate the transition from a
mostly sphericalfluidmatrix andplanar solid. Careful inspection of the
pattern of mean-curvature in the solid shows that outer regions of the
solid are folded along straight lines (known as the generators of
developable shape), that do not intersect or end in the solid domain
(see Supplementary Fig. 3), a necessary condition for avoiding Gaus-
sian curvature9,41. For α > 1, we observe that developable folding tends
to concentrate at thebases of thepetals, resulting in aneffective planar
flower core and, overall, a more uniform and energetically favorable

mean-curvature distribution over the entire vesicle. Notably, the
developable foldingof theouter portions of solid domain shapes tends
to focus Gaussian curvature in the fluid domain just outside the solid
domain, at the apparent intersection of cylindrical folding directions
(i.e., generators). The focused Gaussian curvature between the petals
in real vesicles is evident in the phase contrast images in Fig. 3c, where
the perimeter appears to have corners which in fact occur in the fluid
membrane phase. Interestingly, the mean curvature distributions in
Fig. 4a suggest that the optimal patterns of developable “folding” of
the solid domain break the 6-fold symmetry of the solid domain shape.
While it remains to be understood what governs the optimal patterns
of internal folds, it is expected the discretization effects at the edges of
the curved solid domains introduce the largest source of symmetry-
breaking noise in the Surface Evolver. This leads to the selection
among many, presumably degenerate, patterns.

Figure 4b shows the reduced energy of the fluid-solid vesicles as a
function of inflation, �v. In general, all domain shapes show a non-
monotonic trend in energy, with a minimum at a particular inflation,
which we denote as �v0, that becomes deeper over a series of solid
shapes with increasingly larger petals (increasing α). As shown in the
Methods, the membrane tension τ is proportional to the slope of
elastic energy versus �v. Hence the points �v0 correspond to vanishing
tension. The points �v>�v0 correspond to tensed and inflated shapes, the

Fig. 4 | Solid shapes and vesicle energies. a Simulated shapes of composite
vesicles of solid area fraction (ϕ = 14%) with flower shapes of various petal/core
ratios, showing mean (H) and Gaussian (KG) curvature distributions. b Reduced
elastic energy �E (normalizedby thebending energy of perfectly uniformvesicle, see
detailed definition in Methods) of simulated vesicles versus reduced volume �v for
the series of flower shapes in a. The tension-free states are highlighted filled points
on each curve, while the stars show the slightly inflated volumes used for the
examples in a. cComparison of an “effective core”model, in which the effect of the

planar core in the flexible, flower-shaped solid is replaced by a rigid disk whose size
is chosen to producematching of �E in the tension-free states for both models. The
inset shows the energetics vs. reduced volume for the sequence of effective core
values matching variable flower shapes in b. Replotting in terms of the I relative
inflation (compared to maximal volume isoperimetric shapes) of effective core
shapes shows a generic dependenceof relative inflation on tension (here calculated
for R = 10 μm shapes and taking B = 25 kBT).
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regime relevant to solid domain formation, as we describe below. For a
fixed solid area fraction, as is the case in experiments and computa-
tion, the elastic energy decreases with increasing degree of flowering
(α), and �v0 shifts to higher inflation. Overall, this shows that the larger
the petal-to-core ratio the more uniform the overall mean curvature
distribution that can be achieved by a combination of the developable
solid shape in the fluid matrix.

Figure 4c shows that the elastic energy versus inflationbehaviorof
themore elaborately shaped flower domains over the range α≥1 can be
mapped onto a much simpler effective core model. In the effective
core model, the elasticity effect of the solid domain is modeled by a
rigidplanar diskwith an area fractionΦcore, while the remaining solid is
described by bending elasticity (mean curvature) only, as the longer
petals are better able to accommodate more nearly spherical vesicles.
The inset shows that the appropriate choice of effective core size
mimics the predominant trends of the elastic energy dependence of
more elaborate shapes in Fig. 4a, b on reduced volumes. This includes
the non-monotonic formof elastic energy, and the variable energy and
inflation of zero-tension ð�v0Þ states, as shown in Supplementary Fig. 4.
Notably, as shown in Supplementary Fig. 5 the effective core radius
closely follows the variationof inner radii offlowers for the sequenceα
in Fig. 4b. The effective core model provides a simple interpretation
for the divergence of elastic energy at large inflation, with more and
more mean curvature (bending) cost concentrated at the edge of the
planar core with increasing inflation. As the size of the effective core is
reduced, the elastic bending cost imposed by the strain-free solid is
also reduced, consistent with the decrease of reduced energy with
large petal to core ratios in Fig. 4b. A rigid circular core imposes a
maximum inflation �vmax shape, a spherical bulb joined to a planar core
at finite angle leading to diverging mean-curvature at the core edge.
Using this maximal inflation we define I = �v� �v0

� �
= �vmax � �v0
� �

as a
measure of relative inflation, compared to the zero tension state at �v0,
and in Fig. 4c analyze the relationship between relative inflation and
tension, τ, predicted by the effective core model. Notably, for all
effective core sizes and a given R ( = 10 μm in this example), relative
inflation follows the same dependence on τ, switching from low- to
high-relative inflation (where elastic energies become significant) at a
characteristic tension scale of 10−4 mN m−1. As we describe below, the
regulation of inflation by tension is critical to the emergence of non-
convex solid domain morphologies.

While the elastic energy is decreased in vesicles whose solid
domains contain longer petals that enable the solid to conform more
uniformly to curved quasi-spherical shapes (as shown in Fig. 4b),
increasingly elaborate flowers with greater fluid-solid perimeters incur
an increasing cost of line energy. Comparing the line tension, σ, to the
elastic cost of bending introduces a length scaleB/σwhich is estimated
to be in the range of 25 nm based on anticipated values of intra-vesicle
fluid/solid domain boundaries. Figure 5 shows the resulting thermo-
dynamically preferred domain shape as a function of vesicle size and
inflation. As line energy generically favors compact domains and, as
the elastic energy differences for different petal ratios are relatively
small at low inflation, compact domains are favored at low inflation or
smaller �v. In contrast, as inflation increases to values approaching
spherical shapes �v ! 1, the elastic bending costs far exceed the addi-
tional line energies of petals, stabilizing petal formation. Indeed, once
full inflation is approached, the preference for flower shapes with large
petals sets in abruptly and small changes in variables shift the pre-
ference for one shape flower over another. These results suggest that
the predominant factor controlling flower stability and degree of petal
to core area distribution is the degree of vesicle inflation, as captured
by �v. Experimental data are included in Fig. 5 for 2 different cooling
rates, and show good qualitative agreement with modeling, most
notably that the observed degree of flowering is strongly correlated
with apparent increasing inflation, notwithstanding the increasing cost
of line energy for flowers with large petals. Notably, the inset of Fig. 5

highlights that, with the exception of extremely small vesicles, the
choice of the value of line tensionhasminimal impact on non-compact
shapes (i.e., α≥1). More specifically, while estimates of the line tension
might vary considerably45,46 Fig. 5 suggests that the boundary between
convex and non-convex solid domain shapes is weakly-sensitive to the
value of σ, having little impact even when it is varied by an order of
magnitude.

Size-dependent tension in thermally contracting vesicles
While competition between bending and line energy gives a pre-
ference for elaborate flower-shaped crystals on vesicles that are infla-
ted and at elevated tensions, additional considerations explain why
these elaborate solid domains grow selectively on large vesicles while
compact domains grow on smaller vesicles. Figure 4c suggests that
greater inflation and larger membrane tensions must be experienced
by larger vesicles during nucleation and growth of solid domains.
Indeed, larger inflations and tensions on larger vesicles are expected
when thermal contractions and permeability are considered. Vesicles
cooled from the one phase region to nucleate and grow crystal
domains experience thermal contractions, with the coefficient of
thermal expansion, κ � 1

A ∂A=∂T
� �

τ
22, that tends to increase tension

because the aqueous vesicle contents contractmuch less upon cooling
than thepredominantly hydrocarbonmembrane45,47. However, tension
squeezes water from the vesicle, which tends to reduce tension itself.
This transport process, occurringmore slowly for large vesicles having
a smaller surface/volume ratio, is governedbypermeabilityP, defined:
∂V=∂t = � A 2τ=R

� �
P=ρ
� �

, with ρ being the density of water. Note here
that the pressure driving force for water transport is given by the
Laplace term 2τ/R, providing the connection to membrane tension.
Balancing the rate of tension increasedue to thermal contractionswith

Fig. 5 | State space with bending, line energy, and reduced volume. Predicted
state space of solid domain shapes (14% solid content) as a function of vesicle
inflation and size. Petal formation (i.e., α ≥ 1) becomes favorable when the relaxa-
tion of bending energy exceeds the line-energy (σ) cost for increasing the solid
perimeter. The left axis shows predictions as a function of vesicle radius scaled by
B/σ, while the right axis shows the corresponding vesicle radius assuming an esti-
mate B/σ = 25nm. Experimental results, with measured size α and �v superposed on
the model predictions, for two cooling rates: slow 20 °C h−1 (triangles), and fast 70
°C h−1 (squares). Inset is the same map on a log-linear plot. Error bars on the
example data reflect the resolution for 0.4 μm (2-3 pixels) on the calculation of �v,
which is larger for the smaller vesicles that tend to have compact domains.
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the rate of tension relaxation causedbywater permeation reveals, for a
constant rate of cooling, a steady state tension that grows with the
cooling rate and square of vesicle radius,

τss ≈
κρ
4P

� �
dT=dt
�� ��R2 ð1Þ

Worth noting, that with annealing near 50 °C in the one-phase
region, substantial cooling into the two-phase envelope preconditions
tension before nucleation. This explains how the tendency for flower
versus hexagon formation is predetermined before the crystals
are visible, and why domain shape is preserved during growth as
temperature decreases further. Indeed, growth occurs over less than
ten additional degrees of cooling inside the two-phase envelope,
per Fig. 1b.

For values of κ =0.005 °C−1 47 and P = 2.8 × 10−16 s μm−1 48, the
steady-state tension can be as small as 0.5 mNm−1 for 10 μm diameter
vesicles and as large as 18mNm−1 for 60μmdiameter vesicles cooled at
0.3 °C min−1, as done here. The latter exceeds the lysis tension, which
falls in the range of 7–10 mN m−1 48. Also, the flower-shaped domains
may be on vesicles experiencing lower tensions than required for
stripe solid domain formation, a different polymorph16,20. Thus if large
vesicles are not destroyed, they undergo burst-reseal processes that
maintain their membrane tensions near or below lysis conditions49.
Indeed, micropipette aspiration within 20min after cooling and
transferring vesicles to an open chamber (a process allowing some
tension decay) reveals near zero tension in small vesicles for instance
with diameters less than 20 μm, and substantial tension for larger
vesicles, in Fig. 6.

Finally, we note that the growth of steady state tension as |dT/dt|
R2 from the estimate in Eq. (1) suggests that the same morphology
transitions—from compact to non-convex flower domains—can be
achieved at a different size range simply through a change in cooling
rate. Indeed, this shifting of the transition from hexagons to flowers
was seen, in experiments, to occur on smaller vesicles when the
cooling ratewas increased. This behavior, accessing a broader range of
combined vesicle sizes and tensions by using different cooling his-
tories is included in Fig. 5. For example, comparing similarly sized
vesicles (along a horizontal cut). Those vesicles cooled more quickly
and reside to the right, with greater inflations and higher alpha values,
indicative of more elaborate flowers.

Outlook
Thework illustrates how themorphologies of 2Dcrystals growing in an
elastic 2D fluid are controlled by a competition between bending
energy and line tension in a manner that inverts the expected crys-
talline domain morphology dependence on curvature radius under-
stood to control crystallization on spherical templates. Additional
properties of the 2D fluid, its coefficient of thermal expansion and
permeability, allow for tension and therefore bending energy to be
systematically controlled, leading to scalable manipulation of 2D
crystal morphology in vesicles of different sizes. The current study
suggests further scaling that could produce at least thousands of such
2D crystals of controlled morphology in individual batches, amenable
to separation based on vesicle size, or density gradients. Thus, we
demonstrate how 2D membrane fluids such as phospholipids can be
implemented to controllably produce targeted 2D crystalline
morphologies based on their physical properties and select these
morphologies without changing chemical composition.

Notably, this study points out the critical effect of the flexibility of
the “curved template” onwhich solid domains grow. Prior theories2,3,5,7

and experiment4 have considered solid domains forming on rigidly
fixed spherical templates, which makes the incorporation of Gaussian
curvature-induced strains unavoidable. While, according to Gauss’s
theoremaegregium, the averageGaussian curvature of giant vesicles is

constant, the shape flexibility of vesicles allows for low energy bending
modes to expel the topologically necessary Gaussian curvature from
the solid into the fluid, giving rise to a distinct regime of shape-
dependent elasticity energy of composite vesicles, with strain-free and
nearly developable solid shapes.

The significance of these findings lies in their demonstration of
a previously unknown mechanism to control the morphologies of
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Fig. 6 |Membrane tensionassessment.Micrographs of typical aflower-containing
and b hexagon containing vesicles, before and after aspiration into a micropipette.
Study was conducted within 20min of cooling and crystal formation. The focal
plane before aspiration shows the crystal pattern on each vesicle. After aspiration,
the focal plane was adjusted to the equatorial plane of each vesicle to enable
viewing of any membrane projection into the pipette. In a, the suction was rela-
tively strong, 13.45 cm water (1.32 kPa), still not producing a projection and indi-
cating highmembrane tension. Inb, a relatively low suctionof0.26 cmwater (0.025
kPa) drew the membrane into the micropipette, indicating its negligible tension
compared with the vesicle in a. c Tensions weremeasuredwithin 20min of cooling
and domain formation. Samples from 8 different runs totaled sixteen vesicles with
diameters under 20 μm, 11 vesicles with diameters in the range 20–40 μm, and two
vesicles in excess of 40 μm. The latter were difficult to find. Color in each column
represents the majority of crystal shapes present in the corresponding vesicle size
range, including red (hexagon), green (simple flower), and purple (serrated flower).
Error bars show standard error.
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individual 2D crystals growing in elastic fluids. The vesicle-size-
dependent growth and morphology of a rigid 2D solid were shown
to be a result of the interplay between mechanics, membrane perme-
ability, and thermal contraction, making a connection to membrane
tension. Because tension comes about in biological systems through a
variety of routes, there are potential implications for the organization
of biological cell membranes. At the same time, the ability to grow
select shapes of free-standing 2D crystals at scale may enable new
routes for the processing of thin crystals for sensing, optical, and
electronic applications.

Methods
GUV electroformation and phase separation
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 99%), 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine (DPPC, 99%), andfluorescent tracer lipids,
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhoda-
mine B sulfonyl) (ammonium salt) (Rh-DOPE, 99%); and l,2-dipalmitoyl-
sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)
(ammonium salt) (Rh-DPPE, 99%) were purchased from Avanti Polar
Lipids (Alabaster, AL). Dioctadecyl tetramethylindocarbocyanine per-
chlorate C18-DiI was purchased from Thermo Fisher Scientific. Vesicles
having a30/70weight ratio (31/69molar ratio)DPPC/DOPCplus0.1mol
% Rh-DOPE, were electroformed on platinum (Pt) wires as previously
detailed16 but with the sucrose preheated and the electroforming tem-
perature maintained in the range 55-70 °C to ensure vesicles were
formed in the one phase region of the phase diagram, all having the
same membrane composition. As a control, vesicles containing 20wt%
DPPC/80wt% DOPC plus tracer were additionally studied to confirm an
additional composition. Those images can be found in Supplementary
Fig. 6. After electroformation, the stock vesicle suspension was har-
vested in a syringe and allowed to cool to room temperature for later
use, within 2-3 days.

Studies of solid domain formation employed a 10-fold dilution
of the stock vesicle solution in deionized (DI) water, which was
transferred to a 10mm × 10mm closed chamber made from two
coverslips and parafilm spacers. The chamber height varied in
the range 0.1-0.5mm depending on the desired solution volume
(10–50 μL) for a specific experiment. The chamber wasmounted on a
custom-built temperature-control stage, heated to 55 °C for 5min,
cooled at 70 °C h−1 to 42 °C, and then cooled at 20 or 70 °C h−1 to
room temperature, comprising the regular or fast cooling rates,
respectively. A run with a single cooling ramp, at 0.3 °C min−1 from
45 °C to room temperature in the Suppl. Fig. 7, demonstrates con-
sistency with the two-step cooling in the main paper.

Vesicle and crystalline domain shapes were observed using a
Nikon Eclipse TE 300 inverted epifluorescence microscope equipped
with a 40× long working distance air fluorescence objective. Images
were recordedwith a pco.panda 4.2 sCMOSmonochrome camerawith
a resolution of 0.17 μmper pixel at 40×, and analyzed using Nikon NIS
Elements imaging software.

Micropipette aspiration
Micropipette aspiration employed micropipettes pulled from glass
capillaries to produce straight micropipette tips having inner dia-
meters in the range 3-10 μm and flat ends. They were passivated with
adsorbed bovine serum albumin before use. These were attached to a
suction manometer equipped with a Validyne pressure transducer
(model CD223) to control aspiration pressure and record values in the
Nikon Elements Software. Micropipette experiments were conducted
in anopen-sided chamber consisting of two coverslips, passivatedwith
adsorbed albumin, spaced by a microscope slide. After controlled
cooling in the closed chamber to produce one solid crystal per vesicle,
the liquid vesicle suspension was transferred to the open chamber50

where it washeld inplace through capillary forces duringmicropipette
studies which were conducted within 10-20min after the end of the

cooling in the close chamber. The membrane tension was determined
by employing the Laplace equation, as previously detailed22.

Thermodynamic modeling of solid-fluid composite vesicles
Our model considered vesicles of fixed total area A and enclosed
volume V, composed of area fraction ϕ of 2D solid and remaining (1 −
ϕ) fluid membrane. The solid domain is modeled as an elastic plate
with 2D Youngs modulus Y, Poisson ratio ν, and plate bending
modulus B,

Esolid =
Y

2 1 + νð Þ
Z

solid
dA Tr εð Þ2 + ν

1� ν
Tr ε2

h i
+
B
2

Z
solid

dA 2Hð Þ2 ð2Þ

where ε is the 2D strain and H is the mean curvature. We consider the
Helfrich model of the (fixed area) fluid region, with a bending energy
Efluid =

B
2

R
fluidð2HÞ2 wherewe assume the samebendingmodulus as the

solid phase for simplicity. Because the 2D solid expels Gaussian cur-
vature and the vesicle tangent remains continuous at the fluid-solid
boundary, bending terms from the Helfrich energy that couple to
Gaussian curvature in both fluid and solid phases are shape
independent. That is, the area integral of the Gaussian curvature KG

over the closed composite vesicle remains equal to 4π and, since the
contribution from the soliddomain is zero for any developable shapes,
the ∫fluid dA KG = 4π for all configurations. While KG is not strictly
constrained to be zero for the solid domains, Surface Evolver results
shown in Fig. 4a confirm that in-plane solid elasticity leads to near-
perfect expulsion of Gaussian curvature from the solid, which is
consistent with the fact that over the relevant range of inflations, the
solid strain energy is negligible (i.e., orders of magnitude below the
bending as shown in Suppl. Fig. 8). On these grounds, the inclusion or
absence of Gaussian bending modulus into the model has no
discernable effect on the domain shape-dependence of elastic energy.
Following simulation studies of Poisson effects in membranes51, we
chose ν =0.4which falls within the range of predicted values. However,
as thin membranes give rise to developable solid shapes (i.e., zero
Gaussian) with essentially zero strain energy over the relevant range of
experimental conditions (see Suppl. Fig. 8), the value of this parameter
is expected to have little to no impact on results described here. Note
that as a purely elastic (equilibrium) description of the system, the
model energy does not include dissipative effects, such as membrane
or solution viscosity.

We use Surface Evolver to minimize Eq. (2) subject to constraints
of fixed solid and fluid phase area, and enclosed volume, and define
reduced elastic energy �E � Esolid + Efluid

8πB as the ratio of elastic energy of the
composite relative to spherical fluid vesicle of the same bending
stiffness.

We consider 6-fold symmetric solid domain shapes with variable
petal-to-core aspect ratios. The shape of the solid domain is defined in
a planar reference state. We model these shapes by the following
family of radial functions:

r θð Þ= r0 +
1
2
ar0 cos 6θð Þ � 1

10
ar0 cos 12θð Þ ð3Þ

where petal length is controlled through parameter a (i.e., α = r(0)/r(π/
6) = (5 + 2a)/(5 − 3a)) and r0 can be adjusted to fix the solid domain
area. We describe the procedure for initializing closed meshes with
solid domains of these shapes, subsequent energy minimization in
Surface Evolver and characterization in the Suppl. Note 3.

For the effective core simulations, we hold a circular domain on
the vesicle of a fixed area fraction Φcore in a planar configuration. To
determine the effective core for a given α, �Eð�vÞ is computed for the
effective core model and Φcore is adjusted so that minimal energy
occurs for the same inflation �v0 as the 14% solid with that α (see Sup-
plementary Fig. 4).
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The tension τ in themembranecanbe related to the reducedenergy
�Eð�vÞ dependence on inflation through the thermodynamic relation

τ =� ∂E
∂A

� 	
V ,ϕ

= � 8πB
∂�E
∂�v

� 	
ϕ

∂�v
∂A

� 	
V
=
12πB
A

�v
∂�E
∂�v

� 	
ϕ

ð4Þ

To access the thermodynamic stability of flowered shapes, we
consider the total energy

E = Esolid + Efluid + σP ð5Þ

where σ and P are the line energy and perimeter of the boundary edge
between the solid and fluid domains. The state map in Fig. 5 is deter-
mined by finding the value of α that minimizes the total energy in Eq.
(5). When t/R → 0 the elastic energy is strictly strain-free and derives
from (mean-curvature) bending only. As in the case of fluid vesicles,
this isometric limit is independent of vesicle size, depending only on B
and dimensionless ratios, �v, ϕ, and α. The line energy, however, is
proportional to vesicle (and solid domain) size. Hence, as noted
previously, comparing elastic and line energies requires comparing the
vesicle radius to the length scale B/σ45,46,52. For mapping to the state
space in Fig. 5, we employ an estimate for the bending modulus B = 25
kBT (corresponding to thefluid phase stiffness) and an estimate for line
energy σ = 1 kBT nm−1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available via the
ScholarWorks at UMass Amherst53 and from the corresponding author
upon request.

Code availability
The custom codes generated in this study are available via Scholar-
Works at UMass Amherst53 and from the corresponding author upon
request.
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