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Plasma proteome profiling reveals dynamic
of cholesterol marker after dual blocker
therapy

Jiacheng Lyu1,4, Lin Bai 1,4, Yumiao Li2,4, Xiaofang Wang2,4, Zeya Xu1, Tao Ji1,
Hua Yang2, Zizheng Song2, Zhiyu Wang2, Yanhong Shang2, Lili Ren2, Yan Li3,
Aimin Zang2, Youchao Jia 2 & Chen Ding 1

Dual blocker therapy (DBT) has the enhanced antitumor benefits than the
monotherapy. Yet, few effective biomarkers are developed to monitor the
therapy response. Herein, we investigate the DBT longitudinal plasma pro-
teome profiling including 113 longitudinal samples from 22 patients who
received anti-PD1 and anti-CTLA4 DBT therapy. The results show the immune
response and cholesterolmetabolism are upregulated after thefirst DBT cycle.
Notably, the cholesterol metabolism is activated in the disease non-
progressive group (DNP) during the therapy. Correspondingly, the clinical
indicator prealbumin (PA), free triiodothyronine (FT3) and triiodothyronine
(T3) show significantly positive association with the cholesterol metabolism.
Furthermore, by integrating proteome and radiology approach, we observe
the high-density lipoprotein partial remodeling are activated inDNPgroup and
identify a candidate biomarker APOC3 that can reflect DBT response. Above,
we establish a machine learning model to predict the DBT response and the
model performance is validated by an independent cohort with balanced
accuracy is 0.96. Thus, the plasma proteome profiling strategy evaluates the
alteration of cholesterol metabolism and identifies a panel of biomarkers
in DBT.

During the last decade, immune checkpoint inhibitors (ICIs) have
emerged in the clinical oncology therapy1. ICIs target inhibitory
receptors such as the programmed cell death protein 12 (PD-1, the drug
nivolumab andpembrolizumab) or cytotoxic T-lymphocyte associated
protein 43 (CTLA4, the drug ipilimumab) on T cells, thereby boosting
the antitumor immune response. It has been reported that the
monotherapy of PD1 or CTLA4 blockade has prolonged the survival of
patients with various advanced tumors4, including melanoma,

lymphoma, renal cell cancer, head and neck squamous cell cancer,
liver cancer, lung cancer, and breast cancer.

While the progression of ICIs is impressive, it has to be acknowl-
edged that just a subset of patients with advanced tumors can respond
to ICIsmonotherapy,whereasmost patientswouldnot5.Moreover, the
immune-related adverse events (irAEs) such as colitis, diarrhea, der-
matological toxicity, endocrinopathy, hepatotoxicity and pneumonitis
limit the clinical usage of ICIs immunotherapy6. For now, DBT has
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emerged as an improved strategy to encounter the above issues,
manifesting as the increased response rates and the duration of
response5,7,8. The studies indicate that the DBT such as the combina-
tion treatment with anti-PD1 and anti-CTLA4 ICIs have significantly
increased the objective response rates (ORRs) in melanoma (from
43.7% to 57.6%)9 and non-small cell lung cancer (NSCLC) (35.9%)10.
Clearly, the DBTs are a next logical step in immunotherapy to improve
response rates, increase cure rates and the duration of responses.

The QL1706 is a developed dual immune checkpoint blockade
containing amixture of anti-PD1 IgG4 andanti-CLTA4 IgG1 antibodies11.
QL1706 showedpromising anti-tumor activity inmultiple solid tumors.
A published phase I/Ib trail demonstrated the ORR and median dura-
tion of response were 16.9% (79/468) and 11.7 months, respectively11.

However, there are still some issues need to be addressed in DBT.
For instance, the predictive biomarkers have not yet been developed
to identify whether the patient will respond to the DBT5. In mono-
therapy, especially anti-PD1 therapy, it is well-established that some of
biomarkers including PD-L1 status, microsatellite instability12, mis-
match repair deficiency4, and lactate dehydrogenase (LDH)13 showed
the strong predictive power before and during the therapy. Regretta-
bly, the role of these biomarkers in the response to DBT has not been
extensively studied. The exploring of DBT response markers will
greatly promote the clinical immunotherapeutic trails and the further
precise medicine. It is expected that integrating immunohistochem-
istry, clinical indicators and gene expression signatures will improve
the predictive biomarker algorithms. It is easier to translate to the
clinical application by embedding the gene expression signatures into
predictive model owing to its simultaneously quantified ability for a
bunch of genes7.

Many patients treated with ICIs develop some irAEs such as
thyroid problems, manifested by a short period of hyperthyroidism
followed by hypothyroidism14. Thyroid dysfunction during pem-
brolizumab treatment of NSCLC is characterized by early-onset, fre-
quently preceded by hyperthyroidism, and may be associated with
improved outcomes15. The combination CTLA4 and PD1 therapy
showed the highest incidence of thyroid problems (56%), followed by
the anti-PD1 and anti-CTLA4 monotherapies. In addition, the hyper-
thyroidism was associated with longer progression free survival
(HR =0.68) and overall survival (HR = 0.57)16. However, the underlying
mechanisms by which elevated thyroid hormones’ level led to favor-
able outcomes and their potential in response of DBT therapy need
further investigation.

Hypercholesterolemia is associated with better outcomes in ICI-
treated cancer patients17. Meanwhile, it has been reported that
hypercholesterolemia induces the activation and proliferation of
immune cells, including macrophages, neutrophils, and T cells18, and
the intracellular cholesterol homeostasis is an important regulator of
immune cell function19,20. Furthermore, the peripheral blood choles-
terol level could be a biomarker for the efficacy of the
immunotherapy20,21. Hence, exploring from the perspective of
cholesterol-related biological processes is beneficial to elucidate the
intrinsic biological mechanism of immunotherapy and predict the
response.

Proteins in the circulatory system directly reflect the individual’s
physiology. Plasma is the dominant sample used for diagnostic ana-
lysis in the clinical practice. Recent mass-spectrometry (MS) based
proteomics advanced technology enables the in-depth protein iden-
tification and stable quantification forbiomedical and clinical research,
which make it suitable for the study of disease mechanisms, drug
efficacy, and the biomarker exploring22–24. Based on these advances, it
is possible to integrate the proteome clinical, pathology, and radio
imaging of the patients who received the immunotherapy25–27, which
will greatly improve the efficiency of the mechanism illustrating and
biomarker screening. This strategy enabled us to explore the con-
nection between thyroid hormone and cholesterolmetabolism, and its

positive effects in DBT response. In addition, we identified the biolo-
gical meaningful apolipoprotein as the predictive biomarker with
strong clinical relevance. Additionally, by integrating the gold criterion
blood routine indicators and ideal biomarker in plasma, incorporating
themachine learning algorithm, we could build up a robustmodel as a
predictable tool for the DBT response, and validated its performance
in the independent cohort with high accuracy.

Results
Cohort characteristics and research design
We firstlymade upwith a longitudinal DBT cohort inwhich 22 patients
were enrolled for a range from 1st to 29th therapy cycle-long, QL1706-
treated (a DBT with anti-PD1 and anti-CTLA4). Among the 22 patients,
there are 6 patients with LC (lung cancer), 4 patients with CCA (cho-
langiocarcinoma), 3 patients with RCC (renal cell carcinoma), 3
patients with OVCA (ovarian cancer), 2 patients with CRCA (colorectal
cancer), 2 patients with CESC (cervical squamous cell carcinoma), a
patient with BLCA (bladder cancer), and a patient with UCEC (uterine
corpus endometrial carcinoma). Totally, 113 samples were collected in
the DBT cohort. An independent validation cohort were also collected
which consist of 54 longitudinal plasma samples from 27 patients who
received anti-PD1 monotherapy. Additionally, we enrolled 24 healthy
controls to build the baseline of plasmaproteome. In the end, a total of
191 samples were enrolled in this study (Fig. 1A).

For the DBT cohort, all patients were treated according to the
standard treatment schedule with medical treatment. Specifically,
according to the recommended phase 2 dose of QL1706 dose
exploration, 5.0mg/kg was selected as the treatment dosage. Patients
received intravenous infusion every 3 weeks. Radiology imaging was
used to evaluate the therapy response by assessing the tumor sites
after the QL1706 treatment. According to the iRECIST v1.1 standard,
the clinical DBT responsewas classified as immune complete response
(iCR), immune partial response (iPR), immune stable disease (iSD),
immune unconfirmed progressive disease (iUPD), and immune con-
firmed progressive disease (iCPD). Blood samples were collected
before each therapy cycle for hematological evaluation, including
blood routine, blood biochemistry, coagulation function, myocardial
enzyme spectrum, thyroid function, pituitary-adrenal axis, virology
(SupplementaryData 1,Methods). In the end, 22 and 91 plasma samples
were collected from 22 enrolled tumor patients before and during
QL1706 DBT, respectively. Among the 91 samples, 2 samples were
complete response (iCR), 17 samples were partial response (iPR),
17 samples were stable disease (iSD), 4 samples were unconfirmed
progressive disease (iUPD), 7 samples were confirmed progressive
disease (iCPD), and 44 samples were not-evaluated (Fig. 1B). We also
evaluated the demographic and clinicopathological indicators for
patients, including age, gender, BMI, tumor node metastasis (TNM)
stage etc. (Table 1, Methods). The anti-PD1 cohort was used for vali-
dating the ability of the clinical-proteomics biomarker that can dis-
tinguish the response to the immunotherapy.

We recently described a highly sensitive and in-depth proteomics
sample detection pipeline that can perform an unbiased and rapid
“body fluid proteome profiling” following a data-independent acqui-
sition (DIA) based MS strategy22. Based on this, we have developed a
highly efficient workflow for plasma, which allows the robust mea-
surement in less than 1 h. We speculated this advanced technique
should be useful in the analysis of large cohort studies, including the
longitudinalmonitoring of immunotherapy for patients with advanced
tumor. The MaxLFQ algorithm was used for the proteome
quantification28 (Methods).

To investigate the quantitative reproducibility of our pipeline, we
randomly selected 10 samples from the DBT cohort and detected in
consecutive replicates 5 times for each sample (Methods). We calcu-
lated the coefficient of variance (CV) for each of the sample among the
5 repeats. Fig. S1A showed the CVs of proteins in each of samples (blue
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dot indicated the CVs less than 30%). In addition, we calculated the
Pearson correlation among the 5 repeats for eachof samples. As shown
in Fig. S1B, the correlation ranged from 0.94 to 0.98. These results
suggested the robustness of theMS detection. Therefore, we detected
once for each sample in the actual DBT cohort. By applying the
advanced liquid chromatography DIA-MS pipeline, we generated a
large plasma proteome dataset (Fig. 1A, Supplementary Data 1). To
assess the quality of this dataset, we further analyzed the reproduci-
bility of the 15mixed quality samples (Methods). Quantitative accuracy
was high as reflected by the high Pearson correlation coefficients with
median0.97 and themedianCVsof proteinswas 19%, 74%proteins had
CV below 30% (Fig. S1C, D), which demonstrated the consistent sta-
bility of the MS platform during the DBT samples detection.

As for the proteome dataset, the proteins identified less than 70%
of samples were excluded for the downstream analysis (Methods). To

evaluate the distribution of the dataset, we applied dip test at sample
level. As shown in Fig. S2A, the distribution of all samples in DBT
cohortwere unimodal distribution (dip test p <0.05). Furthermore, we
evaluated thebatch effects on the proteomedataset byperforming the
principal component regression analysis (Methods). As shown in
Fig. S2B, only component 39, component 56, component 77 and
component 79 showed significant correlation with batch effects
(p < 0.05), but with lower explained ratio (less than 1%). These results
indicated there were no observable batch effects in this dataset. Fur-
ther Gene Ontology Biological Process (GOBP) terms annotating
revealed statistically significant terms (Fig. S2C). The high abundance
proteins were participated in cholesterol metabolism and inflamma-
tion processes, whereas the response to stress and phagocytosis were
enriched by the low abundance proteins.

Plasma proteome revealed negative linkage between choles-
terol metabolism and oncogenic signaling after DBT
Our initial aim was to investigate the effects of DBT on plasma pro-
teome of patients. Therefore, we compared plasma proteome char-
acteristics among healthy control group, pre DBT group, and 1st DBT
cycle group (Fig. 1B). As shown in Fig. 2A, the results revealed dramatic
alterations in the proteome composition, manifested as 82 sig-
nificantly differently expressed proteins (DEPs) (Kruskal−Wallis test
FDR <0.05). We defined the protein expression state as high (H),
medium (M), and low (L), and then grouped DEPs into four protein
clusters (annotated as HLH, LMH, LHL, and HML) by comparing the
relative z-score value among three sample groups (healthy control, pre
DBT, and 1st DBT cycle group). For example, in the LMH protein
cluster, the healthy control group had low protein levels (L), the pre
DBT group had moderate protein levels (M), and the 1st DBT cycle
group had high protein levels (H).

Over-represented analysis was performed to explore the enriched
biological processes for the four protein clusters (Supplementary
Data 2). Proteins in HLH cluster, implying the recovery of tumor-
inhibited protein expression after the DBT, participated in lipid bind-
ing and antioxidant activity (APOM, CETP, and ALB). LHL protein
cluster was characterized by extracellular space (HRG, HGFAC), indi-
cating the “calm down” of tumor-associated proteins after the DBT.
LMH cluster showed significantly enrichment of immune-related

Table. 1 | Baseline demographic anddisease characteristics of
patients in dual blocker therapy cohort

Characteristic Dual Blocker Therapy cohort (N = 22)

Age -yr.

Median 55

Range 35−71

Gender -no. (%)

Female 7 (32%)

Male 15 (68%)

TNM stage -no. (%)

I 2 (9.1%)

II 1 (4.5%)

III 13 (59.1%)

IV 1 (4.5%)

NA 5 (22.7%)

BMI -no. (%)

<18.5 0

18.5−24.9 17 (77.3%)

>25 5 (22.7%)
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processes, such as lymphocyte mediated immunity and complement
cascade (SAA1, FGA, and CD14) (Fig. 2B, C). These results represented
the strong impacts of DBT on the cholesterol processes, immune
response, and oncogenic signaling.

ICIs can lead to a distinct constellation of organ-specific side
effects29. In this study, we wondered whether the DEPs showed the
enrichment of organ specific protein expression pattern, which indi-
catedwhether theDBTprimarily affected the specific organ. Hence,we
compared the above four protein clusters with the HPA dataset30. As a
result, there were 36 DEPs annotated as liver-specific protein (Chi
square test p <0.05, Figs. 2D, S3A, Supplementary Data 2), followed by
4 DEPs were annotated as blood and immune system-specific. Mean-
while, we evaluated the level of liver-function indicators between pre
DBT group and 1st DBT cycle group samples. The levels of aspartate
transaminase (AST), Alanine aminotransferase (ALT), alkaline phos-
phatase (ALP), and Gamma-glutamyl transferase (GGT), which

reflected the liver function damage31, were elevated in pairwise sam-
ples with 11%, 24%, 13%, and 50% increasement (Fig. S3B). These results
indicated that the liver function damage should be considered in DBT
clinical trials, and the linkage between DBT and liver function should
be further investigated.

Thyroid hormone related clinical indicators are significantly
altered by DBT
In order to deeply illustrate the clinical indicators and proteome
characteristics alteration of DBT, we classified iUPD and iCPD samples
as disease progressive (DP) group; iPR and iSD as disease non-
progressive (DNP) group (Methods). The clinical indicators could
provide a trace of the biological processes alteration for the physio-
logical system,which aid in understanding the interior changes ofDBT.
Therefore, we compared the clinical indicators between DP group and
DNP group (permutation-based t test FDR <0.05). As a result, LDH,
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alkaline phosphatase (ALP), and white blood count (WBC) were sig-
nificantly upregulated in DP group and hemoglobin (HGB), red blood
cell (RBC), FT3, albumin globulin ratio (A/G), prealbumin (PA, also
known as thyroxine-binding prealbumin) level, and Creatine Kinase-
MB (CK-MB) were upregulated in DNP group (Fig. 3A). Moreover, we
found it only for PA and LDH that the majority of DNP sample levels
were within the reference interval, while a part of DP sample levels was
not (Figs. 3B, S4A, Supplementary Data 3). This result suggested the
abnormal level of PA could indicate the DBT response. In order to
confirm the above inference, we tested the significant different clinical
indicators including LDH and PA at pair-wised level by comparing the
pre DBT group and the DP group. As a result, only PA was significant
different in DP samples than matched pre DBT group samples (pair-
wise t test p =0.027, Figs. 3C, S4B).

PA, also known as thyroxine-binding prealbumin or transthyretin,
is a transport protein in the plasma and cerebrospinal fluid that
transports the thyroid hormone thyroxine and retinol to the liver32. In
our cohort, the thyroid hormone FT3 and T3 showed higher level in
DNP than DP samples (Fig. 3D, permutation-based t test p = 1.00E-4
and p = 5.40E-3, respectively). The function of FT3 is similar to thyr-
oxine, but with faster and stronger physiological effects33. Further-
more, we found the significantly positive correlation between FT3 and
PA (Fig. 3E, pearson corr = 0.50, p = 1.24E-3), which indicated attenua-
tion of thyroid hormone synthesis in DP samples. It is well-established
that thyroid hormone participates in lipid and glucose metabolism,
and the neuron development33. To figure out the downstream biolo-
gical processes of thyroid hormone inDBT response, we calculated the
lipid-related, glucose-related, and neuron-related scores by ssGSEA
(Methods) and performed pearson correlation analysis with FT3 (Sup-
plementaryData 3). By comparing the correlation coefficients between
lipid, glucose, and neuron related processes, we found lipid-related
score was most correlated with FT3 (lipid-related vs. glucose-related
and neuron-related permutation-based t test p = 2.00E-4 and 0.032)
(Fig. 3F). In addition, we classified the lipid-related processes as
phospholipid, glycerophospholipid, sphingolipid, cholesterol, fatty
acid, and ketone bodies. The result showed the cholesterol has the
highest correlation with the FT3 (Fig. S4C). This result implied the
important role of cholesterol metabolism in DBT response.

Integrated analysis of proteome and radiology imaging reveals
the potential of APOC3 as a biomarker in the DBT response
Having determined the altered clinical indicators betweenDNP andDP
group, we next investigated the differences of plasma proteome pro-
file between twogroups. By comparing the ssGSEA scores between two
groups (permutation-based t-test FDR <0.05, Supplementary Data 4),
we noticed the lipid-related processes followed by the neuron-related
processes were up-regulated in the DNP group (Fig. 4A). The upregu-
lated lipid-related biological processes in DNP group included trigly-
ceride rich lipoprotein particle remodeling, reverse cholesterol
transport, lipoprotein lipase activity, lipoprotein particle clearance,
and plasma lipoprotein assembly (Fig. 4B). Considering the effect of
BMI on the lipid-metabolism34, we tested the BMI between the two
groups and observed there’s no significant difference (permutation-
based t test p = 0.60) (Fig. S5A). Apolipoprotein family members,
which can bind and transport blood cholesterol to various tissues of
the body for metabolism and utilization, are of central importance in
determining the response of immunotherapy35. In our cohort, the
plasma proteome provided us a comprehensive profile for different
apolipoproteins. In detail, the level of high-density lipoprotein con-
stituents APOC3, APOC2, and APOL1 increased in DNP group than DP
group (permutation-based t test p = 2.00E-4, 1.00E-3, and 7.70E-3)
(Fig. 4C and Supplementary Data 4). These results implied the altera-
tion of apolipoprotein in DBT.

The above analysis revealed the effects of DBT on the levels of
APOC3, APOC2, andAPOL1, which implying the potential roles of these

proteins for monitoring the DBT response. In order to screen out the
valuable proteins, we hypothesized that the ideal biomarker level
should be consistently increased or decreased during theDBT for each
patient. Therefore, we performed the time-series linear regression for
6 patients (P1, P16, P18 with no DPs and P2, P3, P22 with finally DPs)
with more than 3 DBT cycles and set the DBT cycles as the covariable
(Methods). Basedon thehypothesis, weproposed a criterion to explore
biomarkers, as for the patient with no DPs samples, (1) the expression
level of the biomarker was gradually increased along with the therapy
cycle and (2) the p <0.05 in the linear model. As a result, APOC3 and
APOC2 met the criterion (Figs. 4D, S5B). Furthermore, between DNP
and DP group, the expression level of APOC3 showedmore significant
difference than APOC2. Therefore, the APOC3 was selected as the
potential biomarker for indicating the DBT response state.

Based on the time-series linear regression, we observed APOC3
level were increased inpatients withoutDP samples and not in patients
with DP samples (Fig. 4D). To further validate the potential of APOC3
as the biomarker for DBT response, we assessed themedical radiology
imaging for the above patients to comprehensively analyze the rela-
tionship between therapy efficacy and APOC3 protein level. For
patients without DP samples (P1, P18, and P16), as shown in Fig. 4E, the
tumor size of two lung metastases in P16 were gradually decreased,
and all tumors disappeared after the 9th treatment (from 15.34mm
and 14.34mm to disappeared). More importantly, the tumor size of
two metastases showed the negative correlation with the APOC3
protein level during theDBT (Fig. S5C). Similar resultswere shown inP1
and P18 (Fig. S6). In detail, the tumor size of retroperitoneal lymph
nodes (from 17.77mm to 3.76mm) and liver metastasis (from
21.45mm and 17.69mm to 16.74mm and 10.96mm) in P18 and kidney
metastasis (from 10.81mmand 7.5mmtodisappeared) in P1were both
negatively correlated with the respective APOC3 protein levels. These
results suggested the biomarker potential of APOC3 in patients with-
out DP samples. Oppositely, the patients with decreased APOC3 pro-
tein level did not response the DBT (P2 and P3). By evaluating the
radiology imaging of these two patients, we observed not only nega-
tive association between tumor size and APOC3 protein levels in the
patients, but also the appearance some new metastases (Fig. S7). In
detail, for P2, APOC3 protein level showed the negative correlation
between tumor size of retroperitoneal lymphnodes, porta hepatis, and
right pleural metastases. Besides, there are four new metastases
appeared, including abdominal lymph nodes, brain, right axillary
lymph nodes, and mediastinal lymph nodes. P3 showed a similar pat-
tern, indicating no response to DBT treatment. After analyzing the
radiology imaging data, the results further demonstrate the potential
of APOC3 as a biomarker for DBT response.

Integrated proteome-clinical features-based machine learning
model provide an accurate measure for DBT
We have identified clinical (PA, LDH) and proteome (APOC3) features
present in the longitudinal cohort that associated with the response of
DBT. Thismotivated the use of amachine learning framework (Fig. 5A)
to integrate features into a predictive model of DBT response to pre-
dict the disease progression state of patient. Therewere five optionally
different feature combinations based on the clinical and proteome
features, including (1) PA, (2) LDH, (3) APOC3, (4) integrated clinical
features (PA and LDH), (5) integrated all features (PA, LDH, and
APOC3). Before the model construction, the collinearity of features
was evaluated by the spearman analysis (Fig. S8A).

The models were based on multi-step processing pipeline
(Fig. 5A). Inside the pipeline, for each feature combinations, we first
compared different data preprocessing strategy (including the Stan-
dardScaler, MinMaxScaler, RobustScaler, and Normalizer) along with
21 state-of-the-art machine learning models and selected the top N
(such as N = 5) best models. Next, a threefold cross-validation scheme
was used to optimize model hyperparameters and the best model was

Article https://doi.org/10.1038/s41467-024-47835-y

Nature Communications |         (2024) 15:3860 5



A B C

F

E

m
g/

L

p-value = 0.024

pre DBT DP

100

200

300

PA

-16%

D

Response state
LDH
ALP
WBC
HGB
RBC
FT3
A/G
PA
CK-MB

DNP DP

-1

0

1
Z score

DNP DP
Response state

100

200

300

400

500

m
g/

L

ttest p-value = 9.999e-05

PA

Reference Interval

100 200 300

PA

2

3

4

5

6

FT
3

Pearson  corr:  0.50 
P-value: 1.24e-03

DNP DP
Response state

3

4

5

6

7

m
g/

L

ttest p-value = 9.999e-05

FT3

DNP DP
Response state

1.0

1.5

2.0

2.5

3.0

m
g/

L

ttest p-value = 5.399e-03

T3

)

Lipid Glucose Neuron
Annotation

-0.5

0

0.5

1.0

Pe
ar

so
n 

co
rr

ttest p-value = 2.000e-04

ttest p-value = 0.219

ttest p-value = 0.0323
FT3 related gene set

Lipid
Glucose
Neuron
-Log10(p-value
0.4
0.8
1.2
1.6
2.0

Fig. 3 | Thyroid hormone related processes were activated in DBT. A Heatmap
depicting the significant different level of blood routines. FDR were derived from
the adjusted two-sided permutation-based t test p values. Values were transformed
by z-score. B The boxplot describes the level of prealbumin (PA) between disease
non-progressive (DNP) (n = 47) and disease progressive (DP) (n = 15) samples at
blood routine level. The pink rectangle shows the normal reference interval. P value
was derived by two-sided permutation-based t test. The box ranges from the first
(Q1) to the third quartile (Q3) of the distribution and represents the interquartile
range (IQR). A line across the box indicates the median. The whiskers are lines
extending from Q1 and Q3 to end points that defined as the most extreme data
points within Q1 − 1.5 × IQR and Q3+ 1.5 × IQR, respectively. C Pair-wised plot of PA
at blood routine level between pre DBT samples (n = 9) and DP samples (n = 9). P
value was derived by two-sided paired t test. D The boxplot describes the free
triiodothyronine (FT3) and the triiodothyronine (T3) level of between DNP (n = 32
for FT3 and n = 19 for T3) and DP samples (n = 12 for both FT3 and T3) at blood
routine level. The box ranges from the Q1 to the Q3 of the distribution and

represents the IQR. A line across the box indicates the median. The whiskers are
lines extending fromQ1 andQ3 to endpoints that defined as themost extremedata
points within Q1 − 1.5 × IQR and Q3+ 1.5 × IQR, respectively. P value was derived by
two-sided permutation-based t test. E The correlation of FT3 and PA at blood
routine level, the translucent bands around the regression line indicates the 95%
confidence interval. The correlation coefficient was calculated by the pearson
algorithm. P value was derived by the two-sided test. F The boxplots show the
correlation of FT3 and lipid-related (n = 87), glucose-related (n = 12), and neuron-
related (n = 14) biological processes, separately. The scatter size indicates the sig-
nificance. The box ranges from the Q1 to the Q3 of the distribution and represents
the IQR. A line across the box indicates the median. The whiskers are lines
extending from Q1 and Q3 to end points that defined as the most extreme data
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selected as the final model. After determining the best model for each
of the feature combinations, in order to evaluate the model perfor-
mance, we randomly split the cohort for 100 times to re-trained the
model and re-evaluated the performance with more evaluation type
including the area under the ROC curve (AUROC), balanced accuracy,
F1, precision, recall, macro, and weighted evaluation metrics.

We found the two models with the APOC3 as feature and the
integrated all features showed better performance than that in other
models with the clinical indicators (Figs. 5B, S8B). We evaluated the
model performance of the model with integrated all features, the
AUROC, balanced accuracy, F1, recall, and precision were 0.87, 0.85,
0.79, 0.85, and 0.73. Furthermore, we found the LDH had the highest
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importance, followed by the PA and APOC3 during themodel decision
(Fig. 5C and Supplementary Data 5) (Methods).

Encouraged by these results, we wondered whether the usage of
biological biomarker could spread fromDBT to the ICIsmonotherapy,
especially in anti-PD1 monotherapy. We collected the independent
validation cohort of anti-PD1 monotherapy consisted of 54 long-
itudinal samples from 27 patients and implemented the same plasma
proteome profiling pipeline as the DBT cohort (one sample not pass
the quality control during theMaxLFQ quantification and excluded for
the further validation) (Supplementary Data 5). For the five trained
models, we calculated the confusion matrix (Figs. 5D, S8C) and then
evaluated the AUROC, balanced accuracy, and F1 metrics on the
independent validation cohort. These threemetrics were 0.576, 0.672,
and0.421 for themodelwithAPOC3 as feature; 0.681, 0.592, and0.308
for the LDH; 0.983, 0.853, and 0.750 for the PA; 0.932, 0.882, and
0.700 for the integrated clinical features; and 0.961, 0.944, and 0.762
for the integrated all features. As shown in Fig. 5E, the model with
integrated all features showed the better performance, followedby the
model with integrated clinical features. Furthermore, we observed the
APOC3 protein level of a patient with 6 samples points was gradually
increased during the anti-PD1 monotherapy (Fig. S8D). These results
indicated that PA, LDH, and APOC3 also have the potential to be pre-
dictive biomarkers for the response of anti-PD1 monotherapy.

In summary, we optimized plasma proteome profiling pipeline
and provided the proteome dataset for the DBT cohort. By integrating
the clinical and proteome data, we found the linkage of thyroid hor-
mone indicators in clinical level and cholesterol processes inproteome
level. Furthermore, we mined the key biomarker candidates PA, LDH,
and APOC3. The proteome-clinical features-based machine learning
model provides an accurate prediction on the DBT cohort. Notably,
the model predictive ability could also spread to the anti-PD1 therapy
cohort. Meanwhile, these clinical and proteomic biomarkers which
explored by the longitudinal could also indicate the long-term
response to the DBT for patients. In the end, this study extends our
biological understanding of plasma proteins of DBT and generates
hypotheses that may serve as the basis for future clinical trials toward
the response of precision immunotherapy.

Discussion
ICIs therapy changes patients’ biological processes of the immunity
and metabolism, and still much intrinsic biological characteristics
need to be studied. The majority of research has focused on mono-
therapy with clinical, physiological or multi-omics data research36,
while there are few DBTs study. In this work, we aimed to describe
global alteration of the plasma proteome in a systemic view and
explore the potential biomarker of the DBT. We collected the long-
itudinal samples from patients who treated by the QL1706 and per-
formed the advanced sample preparation, in-depth MS detection, MS
data preprocessing and bioinformatic analysis, building a compre-
hensive proteomeworkflow22. This longitudinal study of DBT provides
proteome fluctuations at plasma level, which facilitates biomarker
exploration and biological mechanism speculation. In this study, we
described the linkage of DBT response, thyroid hormone and choles-
terol metabolism. Furthermore, we proposed PA, LDH, and APOC3 as
potential response biomarkers for DBT.

LDH is a well-established biomarker in immunotherapy, especially
in anti-PD1 monotherapy13. An elevated LDH has also been previously
described to correlate negatively with OS in patients treated with ipi-
limumabandpembrolizumab37–39. As shown in Figure S4D, LDH level in
plasma shows significantly positive correlation with neutrophil
degranulation,which is consistentwith theprevious published study40.
Thus, the decreased level of LDH in DNP samples was not surprising.
However, we observed PA, rather than LDH, showed the most sig-
nificant difference between DP samples and DNP samples, even in the
pairwise level analysis in this QL1706 DBT cohort. Although the role of
LDH in immunotherapy, especially themonotherapy is clear, it did not
show the optimal predictive performance in the QL1706 DBT cohort.

The rash, hypothyroidism, pruritus, and hyperthyroidism were
the four most common irAEs in the QL1706 phase I/Ib clinical trial. In
this DBT cohort, the elevated level of PA indicates the activation of
thyroid hormone40 in DNP group of the DBT. Additionally, the thyroid
hormone related clinical indicator FT3 and T3 provided the evidence.
Hyperthyroidism is one of the most common irAEs in the anti-PD1 or
anti-CTLA4 monotherapy, which is significantly associated with the
prolong of overall survival and progression free survival14. The
researchers detected the occurrence of hyperthyroidism might cause
by acute destructive thyroiditis, suggesting the activated immune
system and therefore associated with a better survival outcome15. In
our cohort, the immune-related processes’ scores were significantly
correlated with PA (Supplementary Data 3). Notably, the lipid-related,
especially the cholesterol-related biological processes also showed the
positive associations with the PA. Correspondingly, it has been
reported that the hyperthyroidism exhibits an enhanced excretion of
cholesterol41. In summary, based on the plasmaproteomedata and the
knowledge of thyroid hormone and immune, we illustrated the con-
nections among thyroid hormone, cholesterol processes and DBT
response, which contributes to the understanding of the role of
hyperthyroidism during the DBT, as described in the phase I/Ib
clinical trial.

In this cohort, we observed the enrichment of HDL-related pro-
cesses (APOC2, APOC3, and APOL1) in DNP samples with elevated FT3,
simultaneously, the reverse cholesterol transport process was also
upregulated in DNPs (Fig. 4B). These results implied the increasement
of cholesterol in blood, which is consistent with the published study35.
Notably, it is reported that the inhibition of cholesterol metabolism
and esterification would potentiate the efficiency of CD8 +T cell
mediated antitumor response42,43. Based on the results, if interpreted
the increasement of blood cholesterol as the results of the inefficiency
of its metabolism, may represent the function of thyroid hormone of
DNPs in the immune system activation. Clearly, the specific causal
relationship between thyroid hormone, cholesterol, and immunity in
the DBT needs to be further investigated.

The strengths of this study included a deeply phenotypic cohort
with longitudinal samples, related blood routine, and radiology ima-
ging, which allowed us evaluate the fluctuations of proteins and blood
routines by setting the treatment time as the covariate. Notably, the
radiology imaging provides a directly way to reflect the association
between the clinical and the molecular alteration, hence intuitively
validating the clinical value of biomarkers. In this study, the radiology
imaging data confirmed the predictive potential of APOC3 in the DBT

Fig. 4 | Cholesterol relatedAPOC3 showedpotential asbiomarker inDBT.AThe
dot plot shows the difference of the gene set ssGSEA scores between DNP and DP
samples. The dot size indicates the FDR of the adjusted two-sided permutation-
based t test p values. The top related biological processes including lipid-related
and neuron-related were annotated as red and orange. B Bar plot depicting the
significance of lipid-related biological processes in DNP samples. C The violin plots
describe the level of apolipoproteins includingAPOC3, APOC2, andAPOL1between
DNP and DP samples. P values were derived by two-sided permutation-based t test.

The line represents median, upper and lower quantiles, respectively. D The panel
shows the time series-linear regression of APOC3 in 6 patients (P1, P16, P18 with all
DNP samples, and P2, P3, P22 with DP samples). Dot color represents the evaluated
response state. The translucent bands around the regression line indicates the 95%
confidence interval. P values were derived by the two-sided F test. E The two tumor
metastases radiology imaging of P16 with longitudinal samples. Source data are
provided as a Source Data file.
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response. In addition, it is outperformed that the model with com-
bining clinical and molecular features compared to that with only
clinical features in the DBT response prediction. The high accuracy
obtained in the independent validation cohort indicates that the

models are robust and may enable using the phenotype features to
determine the therapy response in the future clinical trials. More
generally, the multi levels of phenotype features and multiple valida-
tion strategy could be enrolled in the longitudinal cohort to investigate
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Fig. 5 | Predicting response to DBT using a machine learning framework.
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the intrinsic characteristic of DBT and construct the more robust
predictive model.

There are published clinical trialswere proved the clinical benefits
of DBT for the patients with advanced tumor. Exploring predictive
biomarkers for the response state to DBT could benefit the patient in
the clinical practice. Our longitudinal DBT cohort study was limited to
22 patients with 137 samples due to this cohort was collected from the
phase I/Ib clinical trial. In the future, the larger-scale studies, including
bothmore cases andmore cancer types, will increase the power of the
proteome and clinical biomarkers in indicating the response state of
DBT.Hence, these results can serve as a basis for the futureworkwhich
benefit for the clinical practice.

Methods
Patient samples of DBT cohort
The study was compliant with the ethical standards of Helsinki
Declaration II and was approved by the institutional review board of
Research Ethics Committees of the Affiliated Hospital of Hebei Uni-
versity (HDFY-LL-2020-157). Written informed consent was obtained
from each patient before any study-specific investigation was
conducted.

Wehave collected two cohort in this study including thediscovery
cohort (DBT cohort, n = 22) and the independent validation cohort
(anti-PD1 cohort, n = 27). As for the DBT cohort, the samples were
collected from the published phase Ib, open-label clinical trial cohort
of the bifunctional PD1/CTLA4 dual blocker in patients with advanced
solid tumors11. This clinical trial11 is regulated and overseen by the
National Medical Products Administration and the Ministry of Science
and Technology. Compared with healthy donors, the dietary of the
patients enrolled in DBT cohortwas not specially planned. QL1706was
administered at the recommended phase 2 dose intravenously once
every 3weeks in patients11. Blood tests weredone before the treatment
and every three weeks, the radiology imaging was evaluated every six
weeks. The radiology imaging was used for evaluating the tumor size
and the response state.

Among the 22 patients enrolled in this DBT cohort, there are 6
patients with LC (lung cancer), 4 patients with CCA (cholangiocarci-
noma), 3 patients with RCC (renal cell carcinoma), 3 patients with
OVCA (ovarian cancer), 2 patients with CRCA (colorectal cancer), 2
patients with CESC (cervical squamous cell carcinoma), a patient with
BLCA (bladder cancer), and a patient with UCEC (uterine corpus
endometrial carcinoma). Additional clinical information such as gen-
der, age, tumor node metastasis (TNM) stage, and routine blood test
results, were listed in Supplementary Data 1.

Proteomic workflow
Plasma proteome samples preparation. Plasma was separated by
centrifugation at 16,000 g for 10min within 30min to remove inso-
luble solids and stored at −80 °C until proteomic analysis. The protein
concentration of each sample was measured and recorded using the
BCA method on a NanoDrop (Thermo Fisher Scientific) at 562 nm
absorbance (Supplementary Data 1). 2μL of plasma samples were
mixed with 98μL 50mM ABC buffer, and protein inactivated at 95 °C
for 3min. The samples were cooled to room temperature. The plasma
was digested by trypsin at an enzyme to protein mass ratio of 1:25 for
17 h at 37 °C. Then, 5 µL aqueous ammonia was added to each tube,
vortexed to quench the digestion reaction, and the supernatant was
subsequently dried using a 60 °C vacuum drier (SpeedVac, Eppen-
dorf). Then, the peptides were dissolved in 100 µL 0.1% formic acid
(FA), followed by vortexing for 3min, and then sedimentation for
3min (12,000 g). The supernatant was picked into new tube and then
desalinated. Before desalination, the activation of pillars with 2 slides
of 3M C18 disk is required, and the lipid is as follows: 90 µL 100%
acetonitrile (ACN) twice, 90 µL 50% and 80% ACN once in turn, and
then 90 µL 50%ACNonce. After pillar balancewith 90 µL0.1% FA twice,

the supernatant of the tubes was loading into the pillar twice, and
decontamination with 90 µL 0.1% FA twice. Lastly, 90 µL elution buffer
(0.1% FA in 50%ACN)was added into thepillarfir elution twice andonly
the effluent was collected for MS. Finally, the collected peptides were
dried using a 60 °C vacuum drier.

Nano-LC-MS/MS. For the plasma proteome profiling samples, pep-
tides were analyzed on a Q Exactive HF-X Hybrid Quadrupole-Orbitrap
Mass Spectrometer (Thermo Fisher Scientific) coupled with a high-
performance liquid chromatography system (EASY nLC1200, Thermo
Fisher Scientific). Dried peptide samples re-dissolved in 50μL Solvent
A (0.1% formic acid in water). The peptide concentration of each
sample wasmeasured and recorded using a NanoDrop (Thermo Fisher
Scientific) at 280 nm absorbance, and ultimately a standard loading
amount of 200ng peptide were loaded on a 75μm-inner-diameter
column with a length of 9 cm (1.9μm ReproSil-Pur C18-AQ beads, Dr
Maisch GmbH) over a 15min gradient (Solvent A: 0.1% Formic acid in
water; Solvent B: 0.1% Formic acid in 80% ACN) at a constant flow rate
of 600 nL/min (0min, 6% B; 0−6min, 6−30% B; 6−8.20min, 30−50% B;
8.20−9.2min, 50−95% B; 9.2−12.3min, 95% B; 12.3−13.3min, 3% B;
13.3−15min, 3%B). Elutedpeptideswere ionized at 2 kVand introduced
into the mass spectrometer. Mass spectrometry was performed in
data-independent acquisition mode (DIA). For the MS1 Spectra full
scan, ions with m/z ranging from 300 to 1400 were acquired by an
Orbitrap mass analyzer at a high resolution of 30,000. The automatic
gain control (AGC) target value was set to 3E06. The maximal ion
injection timewas 20ms. Then, theDIA segmentswere required at 15 K
resolution with an AGC target of 1e6. The default charge state for the
MS2 was set to 2.

MS database searching. The MS database searching included two
aspects as the hybrid library construction and DIA data analyzing. All
data were processed using Firmiana44.

Hybrid library construction. Owing to the plasma protein were
secreted from the tissue, the tissue proteome was the ideal library for
the DIA plasma proteome. In addition, this DBT cohort was collected
from a phase I/Ib clinical trial and 8 tumor types were enrolled in this
cohort. Hence, we collected a total 327 DDA raw files derived from the
different tumor tissues and performed the recommended library
construction pipeline. We processed all 327 of the newly acquired and
collated proteomic datasets to generate the protein spectral libraries.
The raw MS files underwent conversion to the mzML file format uti-
lizing MSConvert software. For the construction of consolidated
spectral libraries, we engaged the FragPipe computational platform
(version 12.1), equipped with MSFragger (version 2.2)45, Philosopher
(version 2.0.0)46, andPython (version3.6.7). The convertedDDAmzML
files, throughout the spectral library construction, were cohesively
processed.

Peptide identification was executed from MS/MS spectra using
FragPipe integrated with the MSFragger search engine. This was mat-
ched against the UniProt human protein database (reviewed sequen-
ces only; as updated on 2019.12.17, housing 20,406 entries), which also
encompassed reversed protein sequences appended as decoys for
ensuing false discovery rate (FDR) calculations. Technical specifica-
tions included both precursor and initial fragmentmass tolerances set
at 20 ppm, enabling spectrum deisotoping, mass calibration, and
parameter optimization. We established enzyme specificity to ‘trypsin’
and permitted up to 2 missed trypsin cleavages. Configurations for
peptide length ranged between 7 and 25, while peptide mass was set
from 500 to 5000Da. Only precursor ion score charges of +2, +3, and
+4 were considered. Cysteine carbamidomethylation was fixed as a
modification, while variable modifications entailed N-acetylation and
methionine oxidation. Amaximum of three variablemodifications per
peptide was allowed.
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Subsequent to the search, MSFragger search results (in pepXML
format) were processed using the Philosopher toolkit. PeptideProphet
(run with the high–mass accuracy binning and semi-parametric mix-
ture modeling options) was employed to compute the posterior
probability of correct identification for each peptide-to-spectrum
match (PSM). The emergent output files from PeptideProphet were
processed together using ProteinProphet toperformprotein inference
(assemble peptides into proteins) and synthesize a unified protXML
file containing high-confidence protein groups. The combined Pro-
teinProphet file was further processed using the Philosopher Filter
command, which characterized each identified peptide as a unique
peptide to a particular protein (or protein group containing indis-
tinguishable proteins) or assigned it as a razor peptide to a single
protein (protein group) that had the most peptide evidence. Both
unique and razorpeptideswere used for subsequent analysis. The data
were filtered to 1% protein-level FDR using the picked FDR strategy.
The peptide-, PSM-, and ion-level reports were then generated and
filtered using the 2D FDR approach (i.e., 1% protein FDR plus 1% PSM/
ion/peptide-level FDR for each corresponding PSM.tsv, ion.tsv, and
peptide.tsv file). The resulting hybrid spectral library contained
215,529 precursors, representing 15,612 proteins.

DIA data analyzing. DIA data was analyzed using DIANN (v1.7.0)
against the hybrid library47. The DIANN search included the following
settings: Precursor FDR: 1%, Log lev: 1, Mass accuracy: 20 ppm, MS1
accuracy: 10 ppm, Scan window: 30, Implicit protein group: genes,
Quantification strategy: robust LC (high accuracy). Label-free protein
quantifications were determined using an intensity-based, label-free
approach incorporating delayed normalization and maximal peptide
ratio extraction (MaxLFQ) approach28. Peak area values were com-
puted as components of their respective proteins. The ‘iq’R librarywas
used for the MaxLFQ quantification48. There were 137 samples in DBT
cohort and 53 samples in the independent validation cohort were
quantified, finally.

Proteome data preprocess
Mass spectrometry platform QC. As for investigating the quantita-
tive reproducibility of our workflow, we randomly selected 10 sam-
ples from the DBT cohort. Each sample was detected in consecutive
replicates 5 times using the same MS method as for the actual
samples of the DBT cohort. We calculated the coefficient of variance
and the pearson correlation for each of the sample among the 5
repeats.

As for evaluating the quality control of the MS performance dur-
ing the plasma sample detection, wemixed all of samples in this study
into a plasma pool as QC standards. The QC standards were analyzed
using the same method and conditions as the DBT cohort. The coef-
ficient of variance was calculated to evaluate the stability of the mass
spectrometry platform.

Data preprocessing. Considering the balance between the confidence
of protein identification and sample heterogeneity, the analysis in this
study focused on the proteins identified in >70% of samples. The
missing value was served as NaN for the downstream analysis.

Batch effect evaluation. The batch effect was evaluated for plasma
proteome data using principal component regression analysis. Speci-
fically, we set the two evaluatedmetrics to evaluate the batcheffects as
(1) count the number of the significant correlated principal compo-
nents; (2) calculated the batch related information (brinfo) as the fol-
lowing formula:

brinfo =
Xn

i= 1

abs rhoi

� �
× eigenvaluei ð1Þ

For which the rhoi is the spearman correlation between principal
component and the potential batch, n is the count of the principal
components (PC). The brinfo represented the fraction of the pro-
teomic data information that correlated with the specific batch.

Quantification and statistical analysis
Protein clusters. We grouped the DEPs among healthy control group,
pre DBT group and 1st DBT cycle group into four clusters (HLH, LMH,
LHL, HML) by the relative z-score value among three sample groups. In
detail, in the HLH protein cluster, the proteins were upregulated in the
healthy control and 1st DBT group than the pre DBT group. The levels
of proteins in LMH are consistently elevated in the three sample
groups. The levels of proteins in LHL only upregulated in the pre DBT
group. The proteins in HML groupwere consistently decreased among
three sample groups.

Gene set Score for Single Sample. We calculated the normalized
enrichment score of each sample based on four class of gene sets:
GOBP, KEGG, Hallmark, and Reactome gene sets. We utilized R pack-
age GSVA49 with following parameters: min.sz = 3, max.sz = 200 and
other parameters were used default.

Time-series linear regression. Todetermine the corebiomarker in the
longitudinal samples, we used the individuals in the study and tested
the linear regression model with the treatment points as the covari-
able. The type II sum of squares was calculated using the OLS function
of the statsmodel packages in python.

Machine learning models. Machine learning was conducted to
identify the response to DBT. The graphical machine learning model
construction pipeline is illustrated in Fig. 5A and includes seven
parts: feature selection, feature combination, model benchmark,
model selection, hyperparameter tuning, model refitting, and model
evaluation. The machine learning pipeline was built in Python (ver-
sion 3.9.15) using the following libraries: scikit-learn (version 1.2.1),
numpy (version 1.26.3), scipy (version 1.12.0), and pandas (ver-
sion 1.5.3).

Feature selection. The permutation-based t test were used for
determined the significantly different clinical indicators and proteins
as described in Figs. 3 and 4. The features that the correlation coeffi-
cient large than 0.7 were excluded for the downstream model
construction.

Feature combination. We designed the seven different feature com-
binations as (1) PA, (2) LDH, (3) APOC3, (4) integrated clinical features
(PA and LDH), (5) integrated all features (PA, LDH, and APOC3). We
carried out the same machine learning construction pipeline to pro-
vide a comparable benchmarking result.

Model benchmarking and model selection. To choose machine
learning with good performance, we compared 21 different models
and used the average value of the AUROC, balanced accuracy, F1,
precision, and recall to evaluate the model performance. The top 10
models with higher average value were selected for the downstream
hyperparameter tuning.

Hyperparameter tuning. To balance the calculation burden and the
model accuracy, we used the randomized search cross validation
strategy to search the optimal hyperparameter, setting the roc_auc as
the scoring function and 3-fold cross validation.

Model refitting andModel evaluation. In order to evaluate themodel
performance, we randomly re-split cohort and refit the model for 100
times, and evaluate the AUROC, balanced accuracy, F1, precision, and
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recall on the whole discovery cohort. The feature importance was
calculated as the average of the 100 times refitting.

Predictor validation. We used the outer independent validation
cohort. The independent cohort was the collected anti-PD1 ICIs treat-
ment cohort with longitudinal samples. The models were applied on
the validation cohort and the metrics of the confusion matrix was
evaluated.

Statistics and reproducibility. Standard statistical tests were used to
analyze the clinical data, including but not limited to Student’s t test,
Chi square test, Pearson’s correlation test, Spearman’s correlation test,
F test, and Kruskal test. Unless otherwise specified, all statistical tests
were two-sided. P values less than0.05were considered as significantly
different. To account for multiple testing, the P values were adjusted
using the Benjamini-Hochberg FDR correction. All the analyses of
clinical data were performed in R (v4.0.0) and python (v3.9.15). No
statistical method was used to predetermine sample size. One sample
in the independent validation cohort was excluded for the down-
stream analysis due to not pass the quality control during the pro-
teome quantification. For ESI-LC-MS/MS analysis, the longitudinal
samples from different patient and different therapy cycle were
detected with a random order to exclude the bias effects of the mass
spectrometry. As for the machine learning model construction, the
samples were randomly divided into train and test cohort. The inves-
tigators who measured protein expression were blinded to patient
information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The proteome raw datasets have been deposited to the Proteo-
meXchange Consortium (dataset identifier: PXD039260) via the iProX
partner repository50 (https://www.iprox.cn/) under Project ID:
IPX0005695001 (https://www.iprox.cn/page/PDV0141.html). In detail,
the data of the discovery cohort and independent validation cohort
were uploaded, separately: Annotation file: the annotation of sample
information including sample name, therapy cycle, etc.; MS raw data:
the MS raw data; FASTA file: the FASTA file used for the MS data pro-
cessing; DIA-NN output file: the merged DIA-NN standard output file;
Proteome expressionmatrix: the quantificationmatrix data. Themore
detailed description could be found in the README file under the
above link. The remaining data are available within the Article, Sup-
plementary Information. Source data are provided with this paper.

Code availability
All sources of code for computational analyses were derived from
publicly available websites and previous publications, and are cited in
the correspondingMethods sections. The code used for this studywas
deposited at GitHub (https://github.com/Jiacheng-Lyu/DBT-plasma-
proteome). The code was also deposited at Zenodo (https://doi.org/
10.5281/zenodo.10824474).
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