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Efficient gene knockout and genetic
interaction screening using the in4mer
CRISPR/Cas12amultiplex knockout platform

Nazanin Esmaeili Anvar 1,2,6, Chenchu Lin1,6, Xingdi Ma1,2,6, Lori L. Wilson1,
Ryan Steger3, Annabel K. Sangree3, Medina Colic1, Sidney H. Wang4,
John G. Doench 3 & Traver Hart 1,5

Genetic interactionsmediate the emergence of phenotype fromgenotype, but
technologies for combinatorial genetic perturbation in mammalian cells are
challenging to scale. Here, we identify background-independent paralog syn-
thetic lethals from previous CRISPR genetic interaction screens, and find that
the Cas12a platform provides superior sensitivity and assay replicability. We
develop the in4mer Cas12a platform that uses arrays of four independent
guide RNAs targeting the same or different genes. We construct a genome-
scale library, Inzolia, that is ~30% smaller than a typical CRISPR/Cas9 library
while also targeting ~4000 paralog pairs. Screens in cancer cells demonstrate
discrimination of core and context-dependent essential genes similar to that
of CRISPR/Cas9 libraries, as well as detection of synthetic lethal and masking/
buffering genetic interactions between paralogs of various family sizes.
Importantly, the in4mer platform offers a fivefold reduction in library size
compared to other genetic interaction methods, substantially reducing the
cost and effort required for these assays.

Pooled library CRISPR screens have revolutionized mammalian func-
tional genomics. DepMap teamshave screenedover a thousand cancer
cell lines with CRISPR knockout libraries to identify background-
specific genetic vulnerabilities1–3, while dozens of genetic modifier
screens with small molecules have explored biomarkers and mechan-
isms of drug sensitivity and resistance4–10. However, initial efforts to
assay genetic interactions (GIs) – that is, the manipulation of multiple
genes in the same cell to identify nonlinear combinatorial phenotypes
– have proven complex and costly11–15. One class of GIs that has
received special attention is the synthetic lethal relationship between
paralogs, gene pairs or families that arise through duplication of a
single ancestral gene. Functional buffering by paralogs, resulting in
phenotypic masking in single gene perturbation experiments, has

been shown extensively inmodel organisms16,17. Paralogs are therefore
attractive targets for genetic interaction studies in human cells, and
they are more easily nominated by computational analyses18,19 com-
pared to genes that work in parallel pathways, such as BRCA1 and
PARP120. Further, because the mechanism of action of drugs often
relies on inhibition of paralog gene products to mediate cell toxicity,
monogenic knockout in CRISPR screens have resulted in false nega-
tives, such as the failure to identifyMEK and ERKproteins as critical for
cancer cell growth.

Recently, paralog synthetic lethals have been assessed with multi-
ple CRISPR-based methods, with some relying on a single Cas endonu-
clease with multiple guides and others using orthogonal Cas proteins in
the same cell19,21–24. However, with the application of different
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experimental and informatic pipelines, comparison across studies has
been challenging. Notably, no widely accepted gold standard set of
paralog synthetic lethals exists against which researchers can calculate
traditional metrics of accuracy such as sensitivity and specificity.

Here, we describe a meta-analysis of paralog genetic interaction
screens in human cells, identifying a set of background-independent
paralog synthetic lethals, and demonstrate that the enhanced version
of Cas12a25 fromAcidaminococcus sp. (enAsCas12a26, hereafter referred
to as Cas12a) provides the best combination of sensitivity and simpli-
city for genetic interaction studies. Building on our prior work19,27,28, we
further extend the capabilities of the Cas12a system. We show that it
can reliably utilize arrays encoding four optimized gRNAs when
delivered by lentivirus in a pooled screening format. We describe the
in4mer platform that uses oligonucleotide synthesis to construct
libraries of four-guide arrays that target specified sets of one to four
genes independently. From the in4mer platform, we develop a
genome-scale human library named Inzolia which, with ~49,000
clones, is ~30% smaller than standard whole-genome libraries and has
the unique added capability of targeting more than 4000 paralog
families of size two, three, and four.

Results
Comparing dual-gene knockout studies and identifying syn-
thetic lethal interactions
With the discovery that paralogs are both systematically under-
represented as hits in pooled library screens and likely offer the
highest density of genetic interactions, several independent studies
have each targeted hundreds of paralog pairs in multiple cell
lines19,21–24. However, evaluating the quality and consistency of these
studies has proven difficult, since each uses a different technology and
custom analytics pipeline for hit calling, and overlap between the
targeted paralog pairs in each study is surprisingly slim (Fig. 1A, B).

We developed a unified genetic interaction calling pipeline, based
on measuring a pairwise gene knockout’s deviation from expected
phenotype (delta log fold change, dLFC) and the standardized effect
size of this deviation (Cohen’s d) (Fig. 1C, D and Supplementary Fig. 1).
After performing background-specific normalization (see “Methods”
section), we classified paralogs as synthetic lethal if they met both
dLFC and Cohen’s d thresholds (“Methods” section). A total of 388
gene pairs were scored as hits across all five multiplex perturbation
platforms (Fig. 1E).

Using this pipeline, we found the large majority of paralog syn-
thetic lethals to be platform-specific. To aid in comparing hits within
and across experiments, we developed a platform quality score that
broadly measures the replicability of these synthetic lethal screening
technologies across different cell lines. We reasoned that, like indivi-
dual essential genes, a large fraction of paralogs should show con-
sistent synthetic lethality across most or all cell lines, which should be
reflected in similarity of synthetic lethality profiles across cell lines. We
therefore calculated the Jaccard coefficient of each pair of cell lines
screened by a particular platform, then took the median of each
platform’s Jaccard coefficients as the platform quality score (“Meth-
ods” section and Fig. 1F).

We then calculated a paralog confidence score for each gene pair
by taking the sum of each hit, weighted by the platform quality score,
and subtracting the sum of each experiment in which the pair was
assayed but not deemed a hit (a “miss”), alsoweighted by quality score
(Fig. 1G). Using this approach, paralog pairs that are hits in multiple
high-quality screens outweigh pairs that are hits in screens with lower
replicability or pairs that are background-specific hits in high-scoring
screens.We further filtered for hits that are detected bymore than one
platform, minimizing the bias toward paralog pairs that are only
assayed in one set of screens or with one perturbation technology. We
identified a total of 26 gene pairs that meet these criteria, and we
classified the top 13 hits (with paralog score > 0.25) as candidate

paralog synthetic lethal gold standards (Fig. 1H–J and Supplementary
Data 1). Measuring the recall of each of the 21 cell line screens against
these gold standards confirmed that the Cas12a platform used in Dede
et al.19, with two Cas12a guide RNAs expressed from the same pro-
moter, yielded the highest within-platform replicability (Supplemen-
tary Fig. 2). Other platforms often showed high sensitivity in one
screen, but highly variable sensitivity across multiple screens (Sup-
plementary Fig. 2).

We note that our approach does not consider the experimental
designs used in each of the five paralog synthetic lethality studies.
Differences in the set of chosen paralogs, library coverage, experi-
mental timepoint, and sequencing depth, for example, might be
sources of variance among each of the studies. We assumed that
research teams applied best practices to their studies, but it is also
possible that experimental design, rather than intrinsic platform
robustness, dominates the within-study variation that we observed.

Optimizing the Cas12a system for multiplex perturbations
Based on the consistency of the Cas12a results in the paralog screens
and its potential applications to higher-order multiplexing, we
explored whether crRNA arrays longer than two guides could be uti-
lized at scale. TheCas12a systemhaspreviously been shown tomediate
multiplexing beyond two targets23,29,30 with varying levels of efficiency.
Guide RNA design is a critical factor in all CRISPR applications31, and
empirical data on Cas12a guide efficacy is relatively sparse compared
to >1000 whole-genome screens in cancer cell lines performed with
Cas9 libraries. We testedmore than 1000 crRNA from the CRISPick27,32

design tool in a pooled library targeting coding exons of known
essential genes and found very strong concordance between the
CRISPick on-target score and the fold change induced by the gRNA
(Supplementary Fig. 3). We therefore considered CRISPick designs for
all subsequent work.

We have previously shown that arrays encoding two crRNAs show
minimal position effects19,27,28, but information about longer arrays is
sparse23,29,30. We constructed arrays of up to 7 gRNAs to evaluate the
maximum length that would yield gene knockout efficiency sufficient
for pooled library negative selection screening. A set of seven essential
and non-essential genes were selected and each assigned to one
position (1–7) on the array. A single-guide RNA was selected for each
gene, and arrays were constructed such that all combinations of
essential and non-essential gRNA were represented, for a total library
diversity of 128 array sequences (Fig. 2A). The process was repeated
two more times, using different gRNA targeting the same genes,
creating three pools each of 128 unique sequences, each targeting the
same seven essential and non-essential genes in all combina-
tions (Fig. 2B).

We cloned the 7mer pools into the pRDA_550 vector, a one-
component lentiviral vector expressing the Cas12a CRISPR endonu-
clease and the pac puromycin resistance gene from an EF-1α promoter
and the array of Cas12a guides from a human U6 promoter (see
Methods). We used the library to screen K-562 cells, a BCR-ABL chronic
myeloid leukemia cell line commonly used for functional genomics,
and collecting samples at 7, 14, and 21 days (Fig. 2C). After normal-
ization (seeMethods), arrayswith no essential gRNA showedno sign of
negative selection compared to arrays with any number of essential
gRNA. Arrays with multiple essential guides showed increasing loss of
fitness, reaching maximal phenotype at 4 to 5 essential guides per
array (Fig. 2D; Supplementary Fig. 4; Supplementary Data 2; and Sup-
plementary Data 3).

To evaluate position-level effects, we considered arrays encoding
a single essential gRNA at any of the seven positions. Across the three
replicates, we consistently observed greater fold change at the first
four positions compared to the last three positions on the array
(Fig. 2E). We further tested whether this efficiency drop at the end of
the array was a position-dependent effect or the result of unfortunate
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guide or gene selection. We constructed a second array with the same
gRNA targeting the same genes in reverse order (one essential gRNA
per array) and re-screened the same cells. When comparing the fold
change of the forward array with the reverse array, observed fold
changes on the diagonal indicate gene- and guide-level effects inde-
pendent of position, while deviations from the diagonal indicate
position-specific effects. Our data confirm that the first four to five
gRNAs show no position-specific effects, but positions six and seven
show marked deviation from the diagonal (Fig. 2F). Based on these
observations, we conservatively conclude that theCas12a systemusing
the pRDA_550 vector can effectively express and utilize arrays of
four gRNAs.

We also evaluated whether the 7mer array could be used to
identify combinatorial phenotypes. We trained a linear regression

model using a binary encoding of guide arrays as a predictor (where
non-essential = 0 and essential = 1) and log fold change as a response
variable (see Methods). The regression model provides excellent pre-
diction of fold change for arrays encoding two essentials
(R2 = 0.78–0.91 for the three pools) from the sum of calculated single-
guide position-level regression coefficients (Fig. 2G). These observa-
tions are consistent with the multiplicative model of genetic interac-
tions, which predicts that the result of independent loss of fitness
perturbations is the sum (in log space) of the fold changes of the
individual fitness perturbations. It further supports the utility of the
Cas12a platform for multiplex perturbation and detection of genetic
interactions, which are simply deviations from the expected pheno-
type according to this model, because the null model accurately fits
the data for independent combinatorial perturbations.
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The in4mer platform for single and combinatorial perturbation
With confidence that the Cas12a platform supports independent uti-
lization of four guides expressed from a single array, we designed a
prototypegenome-scale library that targets bothprotein-coding genes
and paralog families in the samepool. Each array encodes four distinct
gRNA, each with a different DR sequence selected from the top per-
formers in DeWeirdt et al.27 (Fig. 3A). The prototype library targets
each of 19,687 protein-coding genes with one four-guide array
encoding 20mer crRNA sequences from the top four guides nomi-
nated by the CRISPick algorithm, and a second four-guide array using
the same guides in a different order. This initial library also targets
2082paralogpairswith a single array encoding twogRNAper gene and
a second array encoding the same gRNA in a different order (see
Methods and Supplementary Fig. 5 for paralog selection strategy,

Supplementary Data 4 for gRNA arrays sequence). Additionally, 167
paralog triples and 48 paralog quads are targeted by two arrays, with
each array encoding a single-guide targeting each gene. Arrays tar-
geting triples are padded with a fourth guide targeting a randomly
selected non-essential gene. For triples and quads, the two arrays
per set encode different gRNA sequences (Fig. 3A). Total prototype
library size is 43,972 4mer CRISPR arrays, including 4 arrays with 4
guides each targeting EGFP. Since the leading direct repeat sequence is
already on the pRDA_550 backbone, the library can be synthesized as a
212mer oligo pool, including 5′ and 3′ amplification and cloning
sequences (see “Methods” section).

We conducted screens in K-562, a BCR-ABL chronic myeloid leu-
kemia cell line and in A549, a KRAS-mutant lung cancer cell line with
wildtype TP53, using standard CRISPR screening protocols (500x
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library coverage, 8–10 doublings). Array amplicons were sequenced
using single-end 150-base Illumina sequencing. Quality control metrics
met expectations (Fig. 3B–E): the library was well-sampled in each
replicate (Fig. 3B), and the abundance distributions of endpoint
replicates were highly correlated (Fig. 3C). Fold changes showed
increasing correlation when comparing clones targeting the same
individual gene or paralog family within one replicate (n = 22k targets,
r =0.78); all clones between two technical replicates derived from the
same transduction (n = 44k arrays, r =0.86); and the mean of clones
targeting the same gene across technical replicates (n = 22k targets,
r =0.92; Supplementary Fig. 6).

Building on the success of the prototype library, we designed a
second human genome library with several modifications. The upda-
ted library targets roughly twice as many paralogs (4435 pairs, 376
triples, and 100 quads; Fig. 3A, Supplementary Fig. 5, and Supple-
mentary Data 5), includes non-targeting arrays to facilitate the esti-
mation of fitness effects arising frommultiplex locus-nonspecific DNA
double strand breaks, and otherminor technical changes such as using
non-targeting sequences to extend 3mer paralog constructs into 4mer
guide arrays, instead of random selection of non-essential guides as
used in the prototype. This library, which we call Inzolia, contains ~49k
unique arrays (Fig. 3A), and was cloned into both the pRDA_550 one-
component vector and pRDA_052 guide-only expression vector for
two-component CRISPR/Cas12a systems.

We screened the Inzolia library in MELJUSO melanoma cells with
the two-component (split-vector) library and A375 melanoma cells
with both the one- and two-component systems. Both cell lines
effectively identified essential and non-essential genes (Fig. 3D,E) and
the screens showed results consistent with previous Cas12a screens
using the Humagne library and comparable to other CRISPR/Cas9
whole genome screens (Supplementary Fig. 7). Further, the one-
component (pRDA_550) and two-component (pRDA_174 + pRDA_052)
libraries yielded equivalent results (Supplementary Fig. 7).

Our prototype and Inzolia whole-genome libraries target small
paralog families as well as single genes. To evaluate paralog genetic
interactions, we used the multiplicative model to calculate the
expected fitness of pairwise knockouts by summing the log fold
change of the single gene knockouts (Fig. 1C). We then compared the
observed mean fold change of guide arrays targeting gene pairs with
the expected fold change under the multiplicative null model to cal-
culate a dLFC that represents themagnitude of the genetic interaction
(Fig. 4A). Genepairswith strongly negative dLFCarehighly concordant
with the gold standard paralog synthetic lethals described above. The
Inzolia library targets 24 of the 26 gene pairs that are hits in >1 of the
previously published screens, and 12 of the 13 candidate gold standard
paralog synthetic lethals with paralog scores ≥0.25.Of those 12, 9 have
dLFC < −1 in MELJUSO cells, for an estimated sensitivity of 75%
(Fig. 4B). Moreover, all 12 pairs (100%) with high paralog score are
essential, regardless of synthetic lethality, as are 10 of 12 pairs (83%)
with lower paralog scores (Fig. 4C), consistent with either synthetic
lethality or one paralog being essential. Many other paralogs show
genetic interactions as strong as these positive controls (see Fig. 4D for
selected examples), with sequence similarity between paralogs being a
strong predictor of GI (Fig. 4E), in keeping with prior observation18.

The ability to recapitulate known biology is an important control
for new technologies, with the MAP kinase pathway a frequently used
case study in paralog buffering22,24. In K-562 cells, the BCR-ABL fusion
oncogene activates the STAT and MAP kinase pathways, and we clas-
sify ABL1, STAT5B, and the GRB2/SOS1/GAB2/SHC signal transduction
module as essential genes (Fig. 4F). None of the three RAS genes are
individually essential, but theKRAS-NRASpair shows a strong synthetic
lethality. Neither KRAS-HRAS nor HRAS-NRAS paralogs show genetic
interaction, but the three-way HRAS-KRAS-NRAS clones also show
strong essentiality, almost certainly due to the KRAS-NRAS interaction.

In an arrayed validation screen, increased cell death after joint KRAS-
NRAS knockout confirms this observation (Fig. 4G).

Beyond the RAS genes, the rest of the MAP kinase pathway also
shows the expected gene essentiality profile in K-562 cells (Fig. 4H).
RAF1 is strongly essential, and while BRAF is slightly below our hit
threshold, the BRAF-RAF1 pairwise knockout is consistent with inde-
pendent additive phenotype. The third member of the paralog family,
ARAF, is non-essential singly or in combination with the other RAF
paralogs and has not been shown to operate in this pathway. TheMEK
kinases,MAP2K1/MAP2K2, show greater fold change frompairwise loss
than from either individually, though below our strict threshold for
synthetic lethality. The ERK kinases, MAPK1/MAPK3, show strong pre-
ferential reliance on MAPK1, also consistent with DepMap data for
K-562 cells.

Likewise, the other three cell lines we screened also show
oncogene-driven essentiality and GI in the MAPK pathway (Fig. 4H).
KRAS and BRAF essentiality in A549 and A375 cells, respectively, are
consistent with driver mutations in those genes, though NRAS is not
detected in NRAS-driven MELJUSO cells. A375 melanoma cells show
isoform dependency on MAPK1/MAP2K1, also observed in DepMap
screens in BRAF-driven melanoma cells. MELJUSO cells show interac-
tion between MEK genes and both MELJUSO and A549 show GI
between ERK genes. Data for all screens can be found in Supplemen-
tary Data 6 (read counts) and Supplementary Data 7 (log fold change).

Inzolia screens offer suggestions of polygenic (>2 gene) interac-
tions as well. The library targets 476 paralog triples and quads, and
several of these show indications of higher order synthetic lethality
(Supplementary Fig. 8). We observe an intriguing interaction between
HSPA4 family of Hsp70-related chaperones, where HSPA4 shows
moderate phenotype when knocked out singly or in a pair with either
familymember, and severephenotypewhen all three are targeted. This
phenotype is highly variable across the four cell lines. Other candidate
background-specific trigenic interactions include the VDAC1/2/3
voltage-gated anion channel family and the ME1/2/3 malic enzyme
family, two of which were previously shown to be synthetic lethal in
pancreatic cancer under nutrient limiting conditions33. Overall, how-
ever, distinguishing three-way synthetic lethal interactions from their
composite pairs remains challenging. Even 80% single knockout effi-
ciency can translate into (0.8)3 = ~ 50% triple knockout efficiency,
where cells with incomplete editing can mask severe triple knockout
phenotypes.

Likewise, interactions between essential genes are also a challenge
to interpret. Both the core proteasome and the Chaperonin-
Containing TCP1 (CCT) complex are composed of several weakly
related proteins, which we target with three four-way constructs and
numerous two-way constructs. Since both the proteasome and the
CCT complex are universally essential to proliferating cells, knock-
down of single subunits induces a severe fitness phenotype. Knockout
of these genes in pairs or quads yields no additional phenotype,
resulting in what could be seen as masking/positive genetic interac-
tions in all four cell lines (Supplementary Fig. 8). However, when the
expected double knockout fitness exceeds the dynamic range of the
assay – e.g. when the sum of two single knockout log fold changes is
more severe than any observed fold change in the screen – a more
conservative approach is to consider these pairs to be untestable
rather than positive interactions.

Discovering geneticmodifiersof drug activity is a commongoal of
genetic screens. To demonstrate the performance of in4mer con-
structs in discovering chemogenetic interactions, we screened MEL-
JUSO cells in the presence of low-dose MEK inhibitor selumetinib.
DrugZ analysis9 of single gene targets (Fig. 5A and Supplementary
Data 8) shows that genetic perturbation of the MAP kinase pathway
sensitizes cells to the drug (Fig. 5A, B). While gene set enrichment
analysis34,35 identifies subunits of the mitochondrial ribosome,
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components of the peroxisome, and elements of the Hippo pathway
(Fig. 5B and Supplementary Data 9) as suppressor genes, only two
Hippo pathway genes achieved high Z-scores (Fig. 5A). DrugZ analysis
of pairwise paralog knockouts yielded hits generally consistent with
single gene knockout; that is, most paralog knockouts give DrugZ
scores consistent with the most extreme single gene knockout
(Fig. 5C). In some cases, however, combinatorial perturbation of

paralogs gave rise to synergistic effects, indicating genetic buffering of
chemogenetic interaction. Notably, of the five paralog combinatorial
knockouts with Z-scores > 5 and significantly greater effect than their
singletons, three encode redundant elements of the Hippo pathway,
including STK3/STK4, LATS1/LATS2, and MOB1A/MOB1B (Fig. 5C, D).

In total, the Inzolia library includes ~50k unique guide arrays, with
~40k targeting single genes and 9822 arrays targeting paralog doubles,
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triples, and quads. Inzolia is therefore on par with latest-generation
genome-scale CRISPR/Cas knockout libraries27,36–39 (Fig. 6), and is
unique among such libraries in including thousands of reagents tar-
geting paralogs. Moreover, the efficiency gain realized by having two
guides targeting eachof twogenes in a paralog pairmakes detectionof
genetic interactions tractable with only six reagents per gene pair, a
fivefold improvement over the prior state of the art (Fig. 6).

Discussion
The rapid ascendancy of CRISPR-mediated genetic perturbation
technologies over RNA interference methods was driven by major
advances in assay sensitivity and specificity, with the absence of
established gold standards arguably contributing to the shortcomings
of RNAi-based studies of mammalian gene function40. We and others

have created widely used reference sets of essential and non-essential
genes for use in quality control of monogenic loss of fitness
screens2,39,41. As CRISPR perturbation technology has advanced into
genetic interactions, it has become clear that a similar gold standard
for synthetic lethals is needed31. Our meta-analysis of published
screens for paralog synthetic lethals in human cells shows wide
divergence in the paralogs assayed by each study and in the repeat-
ability of each screen, as measured by the Jaccard coefficient of hits in
different cell lines. We reasoned that paralogs that showed synthetic
lethality within and across screening platforms are likely to be globally
synthetic lethal, analogous to core essential genes, and the fact that 12
of our 13 candidate reference paralogs show more than 70% identity
(and all are constitutively expressed) is consistent with this
interpretation.

Fig. 4 | Paralog synthetic lethalitywith Inzolia.A Fold change vs. dLFC for >4000
paralog families in MELJUSO cells. B dLFC vs. Paralog Score from meta-analysis of
published paralog screens. Red, Paralog Score > 0.25. Blue, Paralog Score <0.25. Of
12 paralogs with score > 0.25, 9 show dLFC< −1 inMELJUSO cells. C Fold change vs.
paralog score in MELJUSO cells, color as in B. Most scored paralogs are essential,
regardless of synthetic lethality. D Selected synthetic lethals in MELJUSO cells
showing single and double knockout fitness phenotype. Bar chart, mean fold
change. Points indicate fold change of single array of gRNA (mean of 2 replicates).
E Fraction of synthetic lethal paralogs by amino acid sequence similarity in MEL-
JUSO cells. F Pathway activation by BCR-ABL1 fusion in K-562 cells. Red, essential
gene in in4mer screen; blue, non-essential; orange, synthetic lethal paralog pair.

G Fraction of dead cells, normalized to controls, for single, double, and triple
knockouts of RAS genes in K-562. Two clones were used for each gene/gene
combination, and three technical replicates were maintained for each clone, n = 6
for each condition/group.KRAS-NRASdouble andKRAS-NRAS-HRAS triple knockout
show significantly increased cell death compared to negative control (**P <0.01,
one-way ANOVA). Data represented as mean ± SEM. ARCN1, control essential gene.
ADH7, control non-essential gene.H Single, double, and triple knockout phenotype
of RTK/MAP kinase pathway genes in all four cell lines. White, target not in library.
Green outline, known oncogenic mutation. Source data are provided as a Source
Data file.
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Fig. 5 | Synthetic chemogenetic interactions.MELJUSO cells were cultured in the
presence ofMEK inhibitor selumetinib and screened for chemogenetic interactions
(A) DrugZ scores of single gene knockouts. Selected genes in the MAPK and Hippo
pathways highlighted. Red, synergistic; blue, suppressor. B Selected GSEA results
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tional buffering in the Hippopathway,masking phenotype inmonogenic knockout
screens.
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Notably, the engineered Cas12a endonuclease, developed in
Kleinstiver et al.26 and deployed in combinatorial screens in DeWeirdt
et al.27 and paralog screens in Dede et al.19 performed markedly better
in terms of replicability. Based on this and our prior work with the
CRISPR/Cas12a screens27,28, we tested the limits of the Cas12a system
expressing guide arrays from the Pol III U6 promoter in a custom one-
component lentiviral vector, pRDA_550. For longer arrays of seven
independent gRNA, we observed that position-specific loss of knock-
out efficiency did not arise until after the fourth or fifth gRNA in the
array. Fromthiswedeveloped the in4merplatform for arrays encoding
four independent gRNA, eachwith anoptimized spacer sequence from
the CRISPick algorithm and with diverse but proven DR sequences to
minimize the chance of recombination. By targeting single genes with
four independent gRNA, we lower the odds that any single guide fails
to induce the desired phenotype, extending the development of the
Humagne library in work from DeWeirdt et al.27. As with the Humagne
library, having multiple independent gRNA on each array reduces the
total number of reagents required to induce reliable gene
perturbation.

While Cas12 exhibits advantages in multiplexing, its success relies
on selecting a suitable biological model and ensuring optimal gRNA
efficiency. Similar to Cas9, a potential challenge in screening with
Cas12 is the induced double-strand breaks, triggering a DNA damage
response and subsequent cell cycle arrest. Previous studies have
highlighted that the number of loci targeted by CRISPR, particularly
those spanning chromosomes, can result in gene-independent fitness
loss, potentially leading to a higher rate of false-positive identification
of undesired cell-essential genes42. Although Berg et al.43 has revealed
the limited differences between one cut and four cuts resulting in
H2AX changes, and most cancer cell lines exhibit tolerance to some
extent of DNA damage response, the potential for high copy numbers
and off-target effects induced additional breaks may compromise
accuracy.

To construct our Inzolia genome-scale human library, we began
with reagents targeting single protein-coding genes and added arrays
targeting more than four thousand paralog pairs, triples, and quads,
with the in4mer arrays encoding two guides targeting each of the two
genes in a pair or one guide per gene in a triple or quad family. Inzolia
screens show high (at least 75%) sensitivity to detect synthetic lethals
with just two reagents targeting each single knockout and two
reagents targeting the double knockout, and offer the potential for
novel biology arising from three- and four-way paralog synthetic
lethals. The Inzolia library is thus a smaller and more efficient whole-

genome library that addresses one of the major gaps of monogenic
perturbation libraries: functional buffering by paralogs.

Beyond the paralogs in the Inzolia library, the in4mer system is a
highly customizable platform offering a significant advance in the
study of genetic interactions. Compared to the five paralog synthetic
lethal studies, with each using at least thirty constructs per gene pair
tested, in4mer requiresfivefold fewer reagents for the same assay. This
improvement has major implications for the cost effectiveness in
genetic interaction assays in mammalian cells, where the number of
gene pairs and the diversity of cell/tumor lineages and genotypes
combine to yield a vast search space. A fivefold reduction in experi-
mental footprint could offer a correspondingly larger search space for
the same effort, or the same search space across more backgrounds
(e.g. cell lines) or environments (e.g. chemogenetic interactions) at
nearly the same cost as a single screen with an equivalent combina-
torial Cas9 system, with the Cas12a system yielding greater sensitivity
and robustness. Moreover, custom library construction leverages the
other key advantage of the Cas12a system: each library is constructed
from a single ~200mer oligo pool and both cloning and amplicon
sequencing are performed using essentially the same protocols as
single-guide Cas9 screening, albeit with longer sequencing reads. With
the in4mer system, a wider swath of the research community will be
able to add targeted genetic interaction surveys to their experimental
toolkits.

Methods
Paralog meta-analysis
To reanalyze the data from the 5 paralog screens, raw read countswere
downloaded, and the same pipeline was applied to all of them. A
pseudocount of 5 reads was added to each construct in each replicate,
and total read counts were normalized to 500 reads per construct.
Log2 fold change (LFC) for each guide at late time point was calculated
relative to the plasmid sequence counts.

The data from each study (except Thompson) were divided into
three groups; the constructs that target single genes paired with non-
essential/non-targeting gRNAs (N) in the first position (gene_N), in the
second position (N_gene) and constructs that target gene pairs (A_B).
LFC values of each group were scaled individually so that the mode of
each group was set to zero. Next, all three groups weremerged in one
table. Before dividing Ito’s dataset into three groups, LFC values were
scaled such that the mode of negative controls (non-essential_AAVS1)
would be zero and also TRIM family was removed from this dataset to
avoid false paralog pair discovery13. Since in Thompson’s study there
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was just one position for singleton constructs, LFC values were scaled
so that the mode of negative controls (non-essential_Fluc) was set to
zero. In the next step, LFC of each construct was calculated by the
mean of LFC across different replicates.

To calculate genetic interaction, single genemutant fitness (SMF)
was calculated as the mean construct log fold change of gene-control
constructs for eachgene. The controlwaseither non-essential genes or
non-targeting gRNAs. For each gene pair, the expected doublemutant
fitness (DMF) of genes 1 and 2was calculated as the sumof SMFof gene
1 and SMF of gene 2. The difference between expected and observed
DMF, the mean LFC of all constructs targeting genes 1 and 2, was
called dLFC.

Next stepwas calculating amodifiedCohen’s D between observed
and expected distribution of LFC of gRNAs targeting genes. Expected
distribution of gRNAs targeting a gene pair, was calculated using
expected mean and expected standard deviation (std).

expected mean=μ1 +μ2 ð1Þ

expected stand deviat =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðstd1Þ2 + ðstd2Þ2
q

ð2Þ

Spooled =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðexpected stdÞ2 + ðobserved stdÞ2
q

2
ð3Þ

Cohen0sD=
expected mean� observedmean

Spooled
ð4Þ

Where μ1 = mean LFC of gene1 constructs, μ2 = mean LFC of gene2
constructs, std1 = standard deviation of LFC of gene1 constructs, and
std2 = standard deviation of LFC of gene2 constructs.

In each cell line, the paralog pairs with dLFC < −1 and Cohen’s
D > 0.8were selected as hits. Cohen’s D > 0.8 indicates large effect size
between two groups, meaning that our expected and observed dis-
tribution of gRNAs are meaningfully separated. In total 388 paralog
pairs were identified as hits across all the studies.

To identify the most consistent method in terms of hit identifi-
cation, the Jaccard similarity coefficient of every pair of cell lines in
each study was calculated by taking the ratio of intersection of hits
over union of hits. For the studies that screened more than two cell
lines, the final platform weight was the median of the calculated Jac-
card coefficients of all pairs of cell lines.

J A,Bð Þ= A \ Bj j
A∪Bj j =

A \ Bj j
Aj+ Bj j � jA \ Bj j ð5Þ

To score paralog pairs, each hit was scored based on the cell lines
in which it was identified as a hit; cell lines wereweighted based on the
platform weight described above. We defined the “paralog score” as
the sum of platform weights of cell lines in which the paralog pair was
identified as a hit minus the sum of platform weights of cell lines in
which the paralog pair was assayed but not identified as a hit (a “miss”).
The distribution of scores is shown in Fig. 1. Gene pairs with paralog
score > 0.25 and were identified as a hit in two or more studies were
listed as candidate gold standard paralog synthetic lethals.

One-component CRISPR/enCas12a vector
To construct an all-in-one vector for expression of both Cas12a and a
guide array, we first swapped in puromycin resistance in place of
blasticidin resistance from pRDA_174 (Addgene #136476). We then
tested four locations for the insertion of a U6-guide expression cas-
sette; notably this cassette needs to be oriented in the opposite
direction of the primary lentiviral transcript to prevent Cas12a-
mediated processing during viral packaging in 293 T cells. The

constructwith thebest-performing location, between the cPPT and the
EF-1α promoter, was designed pRDA_550 (Addgene #203398). Synth-
esis of DNA and custom cloning was performed by Genscript.

7mer library production
An oligonucleotide pool consisting of 7 Essential and 7 Non-Essential
gene crRNAs with their nearby DR, BsmBI recognition as well as
overhang sequence was synthesized by Integrated DNA Technologies.
The pool was amplified by asymmetric PCR followed by being assem-
bled into PRDA_550 vector to acquire the designed library through
NEBridge® Golden Gate Assembly Kit (BsmBI-v2) (New England Bio-
labs). The assembled product was transformed into NEB® Stable
Competent E. coli (High Efficiency) cells and the plasmid DNA was
purified using the PureLink™ Plasmid Purification Kit (Invitrogen).
Three oligonucleotide pools were cloned separately and pooled
together to acquire the final 7mer library. The librarywas sequenced to
confirm uniform and complete library representation.

Paralog selection for In4mer/Inzolia
Human paralogs and percent identity data were imported from Bio-
Mart, which reports bothAB andBApercent identity (these candiffer if
the two genes encode proteins of different lengths) Mean percent
identity ((AB + BA)/2)and delta percent identity (|AB−BA|) between
paralogs were then calculated, and for the prototype library, paralogs
with mean percent identity between 30% and 99% and delta percent
identity <10% were selected (Supplementary Fig. 5). Next, CCLE
expression data was downloaded, and the mean and standard devia-
tion of expression across all CCLE samples was calculated for each
gene. Paralogs where both genes had mean expression > 2 and
stdev < 1.5 were selected (i.e. constitutively expressed genes).

Finally, to identify and include paralog families of size > 2, we
applied a “difference from top paralog” filter. For each gene A in the
pool,we identified its topparalogBbymaxsequence identity. Then for
each other candidate paralog C, we calculated the drop in sequence
identity, AB–AC (see distribution of drop % in Supplementary Fig. 5).
For the prototype library, we defined A,B,C as being in the same family
if AB−AC< 10%.

For the final Inzolia library, we relaxed several of these filters. The
delta percent identity filter and the expression variance filter were
removed entirely, and the difference from top paralog filter was
expanded to 20%. Themeanexpressionfilterwas retained. These three
filtering steps resulted in a total of 4435 paralog pairs included in the
Inzolia pool library.

In4mer prototype library production
Oligonucleotide pools consisting of designed four-plex guide arrays
were synthesized by Twist Bioscience. The prototype pool consists of
43,972 arrays targeting 19,687 single genes, 2082 paralog pairs, 167
paralog triples, and 48 paralog quads.

5’-AATGATACGGCGACCACCGAcgtctcgA-
GATnnnnnnnnnnnnnnnnnnnnTAATTTCTACTATTGTA-
GATnnnnnnnnnnnnnnnnnnnnAAATTTCTACTCTAGTA-
GATnnnnnnnnnnnnnnnnnnnnTAATTTCTACTGTCGTA-
GATnnnnnnnnnnnnnnnnnnnnTTTTTTGAATgga-
gacgATCTCGTATGCCGTCTTCTGCTTG-3’.

Italic: primer sequence Bold: BsmBI restriction sequence. Over-
hang in CAPS. nnnnn: guide sequence Underlined: DR sequence.

The pool of guide arrays was PCR amplified using KAPA HiFi 2X
HotStart ReadyMix (Roche) using 20 ng of starting template per 25μL
reaction (primers are listed in Supplementary Data 10) and the fol-
lowing conditions: denaturation at 95 °C for 3min, followed by 12
cycles of 20 s at 98 °C, 30 s at 60 °C, and 30 s at 72 °C, followed by a
final extension of 1min at 72 °C. The resulting ampliconwas purifiedby
the Monarch PCR & DNA Cleanup Kit (New England Biolabs) and
cloned into the pRDA-550 vector by NEBridge® Golden Gate Assembly
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Kit (BsmBI-v2) The product from assembly reaction was purified and
electroporated into Endura Electrocompetent cells (Lucigen). Trans-
formed bacteria were diluted 1:100 in 2xYT medium containing
100μg/mL carbenicillin (Sigma) and grown at 30 °C for 16 h. The
plasmid DNA was extracted by PureLink™ Plasmid Purification Kit
(Invitrogen). The library was sequenced to confirm uniform and
complete library representation. The library was prepared in MD
Anderson Cancer Center.

Inzolia library production
The final Inzolia pool consists of arrays targeting 19,687 single genes,
4435 paralog pairs, 376 paralog triples, and 100 paralog quads, plus 20
arrays targeting EGFP, 500 targeting intergenic loci, and 50 encoding
non-targeting guides. Each array in the oligonucleotide pools is con-
structed as follows:

5’-AGGCACTTGCTCGTACGACGcgtctcgA-
GATnnnnnnnnnnnnnnnnnnnnTAATTTCTACTATTGTA-
GATnnnnnnnnnnnnnnnnnnnnAAATTTCTACTCTAGTA-
GATnnnnnnnnnnnnnnnnnnnnTAATTTCTACTGTCGTA-
GATnnnnnnnnnnnnnnnnnnnnTTTTTTGAATgga-
gacgTTAAGGTGCCGGGCCCACAT-3’.

Italic: primer sequence Bold: BsmBI restriction sequence. Over-
hang in CAPS. nnnnn: guide sequence Underlined: DR sequence.

The pool of guide arrays was PCR amplified using NEBNext® High-
Fidelity 2X PCRMasterMix (NEB) using 196 ng of starting template per
50μL reaction (primers are listed in Supplementary Data 10) and the
following conditions: denaturation at 98 °C for 1min, followed by 7
cycles of 30 s at 98 °C, 30 s at 53 °C, and 30 s at 72 °C, followed by a
final extensionof 5minat 72 °C. The resulting ampliconwaspurifiedby
the Qiaquick PCR Purification Kit (Qiagen) and cloned into the pRDA-
550 and pRDA-052 via Golden Gate cloning with Esp3I (Fisher Scien-
tific) and T7 ligase (Epizyme). The assembly product was purified by
isopropanol precipitation, electroporated into Stbl4 electro-
competent cells (Life Technologies) and grown at 37 °C for 16 h on
agar with 100 ug/mL carbenicillin. Colonies were scraped and plasmid
DNA (pDNA) was extracted via HiSpeed Plasmid Maxi (Qiagen). The
library was sequenced to confirm uniform and complete library
representation. The library was prepared in Broad institute.

Cell culture
K-562 and A549 cells were a gift from Tim Heffernan. A375 and MEL-
JUSO were obtained from the Cancer Cell Line Encyclopedia. Cell line
identities were confirmed by STR fingerprinting by M.D. Anderson
Cancer Center’s Cytogenetic andCell AuthenticationCore. All cell lines
were routinely tested for mycoplasma contamination using cells cul-
tured in non-antibiotic medium (PlasmoTest Mycoplasma Detection
Assay, InvivoGen).

All cell lines were grown at 37 °C in humidified incubators at 5.0%
CO2 and passaged to maintain exponential growth. For each cell line,
the followingmediumandconcentration of polybrene (EMDMillipore)
and puromycin (Gibco) were used:

K-562: RPMI + 10% FBS, 8μg/mL, 2μg/mL
A549: DMEM+ 10%FBS, 8μg/mL, 2μg/mL
A375: RPMI + 10% FBS, 1μg/mL, 1μg/mL
MELJUSO: RPMI + 10% FBS, 4μg/mL, 1μg/mL.

Cas12a screens
Lentivirus was produced by the University of Michigan Vector Core
(prototype) or the Broad GPP (Inzolia). Virus stocks were not titered in
advance. Transduction of the cells was performed at 1X concentration
of virus with corresponding polybrene. Non-transduced cells were
eliminated via selection puromycin dihydrochloride. The selectionwas
maintained until all non-transduced control cells reached 0% viability.
Once selection with puromycin was complete, surviving cells were
pooled and 500x coverage cells were harvested for a T0 sample. After

T0, cells were harvested at 500X coverage on corresponding days. The
prototype In4mer screens were performed in MD Anderson Cancer
Center. The Inzolia screens were performed in Broad Institute.

Prototype In4mer library genomic DNA preparation and
sequencing
Genomic DNA (gDNA) was extracted using the Mag-Bind® Blood &
Tissue DNA HDQ 96 Kit (Omega Bio-tek) and quantified by the Qubit™
dsDNA Quantification Assay Kits (ThermoFisher). Illumina-compatible
guide array amplicons were generated by amplification of the gDNA in
a one-step PCR. Indexed PCR primers were synthesized by Integrated
DNA Technologies using the standard 8nt indexes from Illumina
(D501-D508 and D701-D712) (Supplementary Data 10).

At least ~200X coverage gDNA per replicate across multiple
reactions were amplified. Each gDNA sample was first divided into
multiple 50μL reactions with most 2.5ug gDNA per reaction. Each
reaction contained 1ul eachprimer (10μM), 1μL 50XdNTPs, 5%DMSO,
5μL 10X Titanium Taq Buffer, and 1μL 10X Titanium Taq DNA Poly-
merase (Takara). The PCR conditions were: denaturation at 95 °C for
60 s, followed by 25 cycles of 30 s at 95 °C and 1min at 68 °C, followed
by a final extension at 68 °C for 3min. After the PCR, all reactions from
the same sample were pooled and then purified by E-Gel™ SizeSelect™
II AgaroseGels, 2% (ThermoFisher). Purified ampliconswere quantified
by Qubit™ dsDNA Quantification Assay Kits (ThermoFisher) and vali-
dated by D1000 ScreenTape Assay for TapeStation Systems (Agilent)
(360 bp for in4mer, 501 bp for 7Mer). Purified amplicons were then
pooled (with 30% customized random library to increase the diversity)
and sequencing was performed by NextSeq 500 sequencing platform
(Illumina) with custom primers (Integrated DNA Technologies) (Sup-
plementaryData 10). The In4mer librarywas sequencedby read format
of 151-8-8, single-end and the 7Mer library was sequenced by read
format of 151-8-8-151, paired-end.

Inzolia genomic DNA preparation and sequencing
Genomic DNA (gDNA) was extracted using the Mag-Bind® Blood &
Tissue DNA HDQ 96 Kit (Omega Bio-tek) and quantified by the Qubit™
dsDNA Quantification Assay Kits (ThermoFisher). Illumina-compatible
guide array amplicons were generated by amplification of the gDNA in
a one-step PCR. Indexed PCR primers were synthesized by Integrated
DNA Technologies using the standard 8nt indexes from Illumina
(D501-D508 and D701-D712). The sequences for the primer sets were
listed in Supplementary Data 10.

At least ~200X coverage gDNA per replicate across multiple
reactions were amplified. Each gDNA sample was first divided into
multiple 100μL reactions with most 10μg gDNA per reaction. Each
reaction contained 0.5μL forward primer (100μM), 10uL reverse pri-
mer (5 uM) 8μL dNTPs, 5μL DMSO, 10μL 10X Titanium Taq Buffer,
and 1.5μL TitaniumTaqDNAPolymerase (Takara). The PCR conditions
were: An initial denaturation at 95 °C for 60 s, followed by 28 cycles of
30 s at 94 °C, 30 s at 52 °C, and 30 s at 72 °C followed by a final
extension at 72 °C for 10min. After the PCR, all reactions from the
same sample were pooled and purified with Agencourt AMPure XP
SPRI beads according to the manufacturer protocol (Beckman Coul-
ter). Purified amplicons were quantified by Qubit™ dsDNA Quantifi-
cation Assay Kits (ThermoFisher) and sequenced on a HiSeq2500 with
a Rapid Run (200 cycle) kit (Illumina).

7mer screen data analysis
Reads for each reagent were counted using only exact matches to the
entire 281 nucleotide 7mer sequence, excluding the leading DR (7
23mer spacer sequences + 6 20mer DR sequences). Fold changes were
calculated relative to themeanof the T0 samples, and averaged across
replicates. For each sample (T7/14/21), fold changes were normalized
by subtracting themean fold change of arrays with 7 nonessentials; i.e.
setting no-essentials guides to zero.
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Weexpected that the selected essential geneswould not showany
pairwise or higher order interactions, and thus should be governed by
themultiplicativemodel of genetic interaction. To evaluate thismodel,
we fit a regression model:

y ∼Aβ ð6Þ

where A is a binary matrix of 7mer guide arrays (rows, k = 384) by
positions (columns, n = 7), with Ai,j = 1 if guide array i targets an
essential gene at position j and 0 if not. y is the vector of normalized
observed fold changes, and the n-length vector β coefficients
represent the single gene knockout phenotype learned from the
model. We filtered this construct for reagents that encoded two or
fewer essential genes (k = 87 rows). After linear fit, we compared the
predicted zero, one, and two gene knockout fitness profiles (by
summing the β coefficients for each gene) to the mean observed
knockout fitness. R2 values for each pool ranged from0.78 to 0.91, and
theoverall quality of the linearfit supports themultiplicativemodel for
non-interacting genes as assayed by combinatorial CRISPR knockouts
of up to twogenes.An accurate nullmodel for noninteraction is critical
for detecting and classifying deviations from this model that reflect
positive or negative genetic interactions.

In4mer/Inzolia screen data analysis
In4mer library sequencing readsweremapped to the library using only
perfect matches. BAGEL2 was used to normalize sample level read
counts and to calculate fold changes relative to the T0 reference using
the BAGEL2.py fc option with default parameters44. Essential and non-
essential genes were defined using the Hart reference sets from
refs. 39,41. Since the library targets both individual genes and specific
gene sets (paralogs), we calculated the average gene/gene set (here-
after ‘gene’) log foldchange as themeanof the clone-level foldchanges
across two replicates. All fold changes are calculated in log2 space.
Cohen’s D statistics were calculated in Python as described in Paralog
meta-analysis above. Data for recall-precision curves were calculated
using BAGEL2. We set an arbitrary threshold of fc < −1 for
essential genes.

For genetic interaction analysis, the expected fold change was
calculated as the sumof the gene-level fold changes for each individual
gene in the gene set. Expected fc was subtracted from observed fc to
calculate delta log fold change, dLFC, where negative dLFC indicates
synthetic/synergistic interactions with more severe negative pheno-
type, and positive dLFC indicates positive/suppressor/masking inter-
actions with less severe negative or more positive phenotype than
expected. We set an arbitrary threshold of dLFC < −1 for synthetic
lethality, and >+1 for masking/suppressor interactions.

RAS synthetic lethal validation
An arrayed knockout apoptosis assay approach was adopted to vali-
date RAS synthetic lethality in K-562. Two guides were selected for
each of the three RAS genes, and two clones were designed for each
target/gene combination. Guide RNAswere selected through CRISPick
and gblocks (same construct as Inzolia library) were synthesized by
IntegratedDNATechnologies. The arrayswere individually cloned into
the pRDA_550 backbone and plasmids were validated by Sanger
sequencing. The plasmids were then individually transfected to K-562
cells via the Neon Transfection System (Invitrogen). Each group was
transfected with 2μg of DNA per 2 × 106 cells, using the recommended
setting for K-562 electroporationwith one pulse at 1000 v, 50ms. Non-
transfected cells were eliminated through puromycin selection, which
was maintained until non-transfected control cells reached 0% viabi-
lity. Triplicatewells weremaintained after selection until the endof the
experiment. Cell viability, total cell numbers, live cell size and dead cell
size data were collected through reading Trypan Blue (Gibco) stained

cells via Countess II FL (Thermo Fisher) at each passage until 9 days
after puromycin selection, in line with Inzolia screen end point of
8 days in K-562 cells. Percent dead cells were normalized to negative
control and one-way ANOVA was conducted to compare experimental
groups against the negative control for statistical significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Inzolia library is available on Addgene as catalog #209551 and
#209552. All data generated in this study have been deposited in
Figshare [https://doi.org/10.6084/m9.figshare.24243832.v1]45. Source
data are provided with this paper.

Code availability
Meta-analysis of 5 dual-knockout CRISPR studies, Inzolia library
design, In4mer data analysis were conducted in Python 3.8.10, using
the packages Pandas 2.1.4, SciPy 1.11.4, NumPy 1.26.2, glob and statis-
tics. Seaborn 0.13.0 and Matplotlib 2.8.2 were used to generate plots
and upsetplot 0.9.0 package was used for upset plot generation. All
code for this study is available at Figshare [https://doi.org/10.6084/
m9.figshare.24243832.v1]45.

References
1. Meyers, R.M. et al. Computational correctionof copynumber effect

improves specificity of CRISPR-Cas9 essentiality screens in cancer
cells. Nat. Genet. 49, 1779–1784 (2017).

2. Behan, F. M. et al. Prioritization of cancer therapeutic targets using
CRISPR-Cas9 screens. Nature 568, 511–516 (2019).

3. Tsherniak, A. et al. Defining a Cancer Dependency Map. Cell 170,
564–576.e16 (2017).

4. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening
in human cells. Science 343, 84–87 (2014).

5. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in
human cells using the CRISPR-Cas9 system. Science 343,
80–84 (2014).

6. Krall, E. B. et al. KEAP1 loss modulates sensitivity to kinase targeted
therapy in lung cancer. Elife 6, e18970 (2017).

7. Hou, P. et al. A genome-wideCRISPR screen identifies genes critical
for resistance to FLT3 inhibitor AC220. Cancer Res. 77,
4402–4413 (2017).

8. Zimmermann, M. et al. CRISPR screens identify genomic ribonu-
cleotides as a source of PARP-trapping lesions. Nature 559,
285–289 (2018).

9. Colic, M. et al. Identifying chemogenetic interactions from CRISPR
screens with drugZ. Genome Med. 11, 52 (2019).

10. Tiedt, R. et al. Integrated CRISPR screening and drug profiling
identifies combination opportunities for EGFR, ALK, and BRAF/MEK
inhibitors. Cell Rep. 42, 112297 (2023).

11. Du, D. et al. Genetic interaction mapping in mammalian cells using
CRISPR interference. Nat. Methods 14, 577–580 (2017).

12. Han, K. et al. Synergistic drug combinations for cancer identified in
a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol.
35, 463–474 (2017).

13. Najm, F. J. et al. Orthologous CRISPR-Cas9 enzymes for combina-
torial genetic screens. Nat. Biotechnol. 36, 179–189 (2018).

14. Shen, J. P. et al. Combinatorial CRISPR-Cas9 screens for de novo
mapping of genetic interactions. Nat. Methods 14, 573–576 (2017).

15. Horlbeck, M. A. et al. Mapping the genetic landscape of human
cells. Cell 174, 953–967.e22 (2018).

16. Gu, Z. et al. Role of duplicate genes in genetic robustness against
null mutations. Nature 421, 63–66 (2003).

Article https://doi.org/10.1038/s41467-024-47795-3

Nature Communications |         (2024) 15:3577 12

https://doi.org/10.6084/m9.figshare.24243832.v1
https://doi.org/10.6084/m9.figshare.24243832.v1
https://doi.org/10.6084/m9.figshare.24243832.v1


17. Ewen-Campen, B., Mohr, S. E., Hu, Y. & Perrimon, N. Accessing the
phenotype gap: enabling systematic investigation of paralog
functional complexity with CRISPR. Dev. Cell 43, 6–9 (2017).

18. De Kegel, B., Quinn, N., Thompson, N. A., Adams, D. J. & Ryan, C. J.
Comprehensive prediction of robust synthetic lethality between
paralog pairs in cancer cell lines. Cell Syst. 12, 1144–1159.e6 (2021).

19. Dede, M., McLaughlin, M., Kim, E. & Hart, T. Multiplex enCas12a
screens detect functional buffering among paralogs otherwise
masked in monogenic Cas9 knockout screens. Genome Biol. 21,
262 (2020).

20. Lord, C. J., Tutt, A. N. J. & Ashworth, A. Synthetic lethality and
cancer therapy: lessons learned from the development of PARP
inhibitors. Annu. Rev. Med. 66, 455–470 (2015).

21. Thompson, N. A. et al. Combinatorial CRISPR screen identifies fit-
ness effects of gene paralogues. Nat. Commun. 12, 1302 (2021).

22. Parrish, P. C. R. et al. Discovery of synthetic lethal and tumor sup-
pressor paralog pairs in the human genome. Cell Rep. 36,
109597 (2021).

23. Gonatopoulos-Pournatzis, T. et al. Genetic interactionmapping and
exon-resolution functional genomics with a hybrid Cas9-Cas12a
platform. Nat. Biotechnol. 38, 638–648 (2020).

24. Ito, T. et al. Paralog knockout profiling identifies DUSP4 and DUSP6
as a digenic dependence in MAPK pathway-driven cancers. Nat.
Genet. 53, 1664–1672 (2021).

25. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a
class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

26. Kleinstiver, B. P. et al. Engineered CRISPR–Cas12a variants with
increased activities and improved targeting ranges for gene, epi-
genetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).

27. DeWeirdt, P. C. et al. Optimization of AsCas12a for combinatorial
genetic screens in human cells. Nat. Biotechnol. 39, 94–104 (2021).

28. Lenoir, W. F. et al. Discovery of putative tumor suppressors from
CRISPR screens reveals rewired lipid metabolism in acute myeloid
leukemia cells. Nat. Commun. 12, 6506 (2021).

29. Zetsche, B. et al. Multiplex gene editing by CRISPR-Cpf1 using a
single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

30. Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D. & Platt,
R. J. Multiplexed genome engineering by Cas12a andCRISPR arrays
encoded on single transcripts. Nat. Methods 16, 887–893 (2019).

31. Li, R. et al. Comparative optimization of combinatorial CRISPR
screens. Nat. Commun. 13, 2469 (2022).

32. Kim, H. K. et al. Deep learning improves prediction of CRISPR–Cpf1
guide RNA activity. Nat. Biotechnol. 36, 239–241 (2018).

33. Dey, P. et al. Genomic deletion ofmalic enzyme 2 confers collateral
lethality in pancreatic cancer. Nature 542, 119–123 (2017).

34. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles.
Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

35. Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxi-
dative phosphorylation are coordinately downregulated in human
diabetes. Nat. Genet. 34, 267–273 (2003).

36. Doench, J. G. et al. Optimized sgRNA design to maximize activity
and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol.
34, 184–191 (2016).

37. Gonçalves, E. et al. Minimal genome-wide human CRISPR-Cas9
library. Genome Biol. 22, 40 (2021).

38. Behan, F. M. et al. Prioritization of cancer therapeutic targets using
CRISPR–Cas9 screens. Nature 568, 511–516 (2019).

39. Hart, T. et al. Evaluation and design of genome-wide CRISPR/
SpCas9 knockout screens. G3 (Bethesda) 7, 2719–2727 (2017).

40. Kaelin, W. G. Molecular biology. Use and abuse of RNAi to study
mammalian gene function. Science 337, 421–422 (2012).

41. Hart, T., Brown, K. R., Sircoulomb, F., Rottapel, R. & Moffat, J. Mea-
suring error rates in genomic perturbation screens: gold standards
for human functional genomics. Mol. Syst. Biol. 10, 733 (2014).

42. Aguirre, A. J. et al. Genomic copy number dictates a gene-
independent cell response to CRISPR/Cas9 targeting. Cancer Dis-
cov. 6, 914–929 (2016).

43. van den Berg, J. et al. A limited number of double-strand DNA
breaks is sufficient to delay cell cycle progression. Nucleic Acids
Res. 46, 10132–10144 (2018).

44. Kim, E. & Hart, T. Improved analysis of CRISPR fitness screens and
reduced off-target effects with the BAGEL2 gene essentiality clas-
sifier. Genome Med. 13, 2 (2021).

45. Hart, T., Lin, C. & Esmaeili Anvar, N. Efficient Gene Knockout And
Genetic Interaction Screening Using The in4mer CRISPR/Cas12a
Multiplex Knockout Platform. https://doi.org/10.6084/m9.figshare.
24243832.v1 (2024).

Acknowledgements
N.E.A., L.L.W., X.M., M.C. and T.H. were supported by NIGMS grant
R35GM130119, NCI grant U01CA275886, andCPRIT grants RP210173 and
RP210073. N.E.A. and S.H.W. are supported by National Institutes of
Health grant R01GM139980. T.H. is a CPRIT Scholar in Cancer Research
and an Andrew Sabin Family Fellow. C.L. is an Odyssey Fellow and is
supported by the Odyssey Program andOdyssey Expansion Fund at MD
Anderson. This work was additionally supported by the NCI Cancer
Center Support Grant P30CA16672 (TH) and NCI Cancer Moonshot
Initiative U01CA250565 (J.G.D.).

Author contributions
N.E.A performed paralog meta-analysis. N.E.A., A.K.S., S.H.W. and
J.G.D. designed, performed, and analyzed guide efficiency profiling
experiments. C.L. performed 7mer screens and bioinformatic analy-
sis. A.K.S. and J.G.D. designed the pRDA_550 plasmid. C.L, L.L.W. and
X.M. performed in4mer prototype screens; and R.S. and A.K.S. per-
formed in4mer Inzolia screens. N.E.A., C.L., M.C., R.S. and X.M. per-
formed in4mer bioinformatic analysis. X.M. performed RAS synthetic
lethal validation. S.H.W., J.G.D. and T.H. supervised the research.
N.E.A., C.L., X.M. and T.H. drafted the manuscript and all authors
edited it.

Competing interests
J.G.D. consults for Microsoft Research, Abata Therapeutics, Servier,
Maze Therapeutics, BioNTech, Sangamo, and Pfizer. J.G.D. consults for
and has equity in Tango Therapeutics. J.G.D. serves as a paid scientific
advisor to the Laboratory for Genomics Research, funded in part by
GlaxoSmithKline. J.G.D. receives funding support from the Functional
Genomics Consortium: Abbvie, Bristol Myers Squibb, Janssen, Merck,
and Vir Biotechnology. J.G.D.’s interests were reviewed and are mana-
ged by the Broad Institute in accordance with its conflict of interest
policies. Other authors don’t claim competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-47795-3.

Correspondence and requests for materials should be addressed to
Traver Hart.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-024-47795-3

Nature Communications |         (2024) 15:3577 13

https://doi.org/10.6084/m9.figshare.24243832.v1
https://doi.org/10.6084/m9.figshare.24243832.v1
https://doi.org/10.1038/s41467-024-47795-3
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-47795-3

Nature Communications |         (2024) 15:3577 14

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Efficient gene knockout and genetic interaction screening using the in4mer CRISPR/Cas12a multiplex knockout platform
	Results
	Comparing dual-gene knockout studies and identifying synthetic lethal interactions
	Optimizing the Cas12a system for multiplex perturbations
	The in4mer platform for single and combinatorial perturbation

	Discussion
	Methods
	Paralog meta-analysis
	One-component CRISPR/enCas12a�vector
	7mer library production
	Paralog selection for In4mer/Inzolia
	In4mer prototype library production
	Inzolia library production
	Cell culture
	Cas12a screens
	Prototype In4mer library genomic DNA preparation and sequencing
	Inzolia genomic DNA preparation and sequencing
	7mer screen data analysis
	In4mer/Inzolia screen data analysis
	RAS synthetic lethal validation
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




