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Deep learning the cis-regulatory code for
gene expression in selected model plants

Fritz Forbang Peleke 1,7, Simon Maria Zumkeller2,3,7, Mehmet Gültas 4,
Armin Schmitt 5,6 & Jędrzej Szymański 1,2,3

Elucidating the relationship between non-coding regulatory element sequen-
ces and gene expression is crucial for understanding gene regulation and
genetic variation. We explored this link with the training of interpretable deep
learning models predicting gene expression profiles from gene flanking
regions of the plant species Arabidopsis thaliana, Solanum lycopersicum,
Sorghum bicolor, and Zea mays. With over 80% accuracy, our models enabled
predictive feature selection, highlighting e.g. the significant role of UTR
regions in determining gene expression levels. The models demonstrated
remarkable cross-species performance, effectively identifying both conserved
and species-specific regulatory sequence features and their predictive power
for gene expression. We illustrated the application of our approach by
revealing causal links between genetic variation and gene expression changes
across fourteen tomato genomes. Lastly, our models efficiently predicted
genotype-specific expression of key functional gene groups, exemplified by
underscoring known phenotypic and metabolic differences between Solanum
lycopersicum and its wild, drought-resistant relative, Solanum pennellii.

Regulation of gene expression relies on the complex interaction of
proteins and nucleic acids, from DNA to RNA1. One of its key mechan-
isms in gene regulation is the control of transcription by cis-regulatory
elements (CRE), which are short DNA sequencemotifs within the gene’s
proximal genomic region that are recognised by transcription factors
(TF)2. On the transcript level, RNAprocessing determines turnover. This
includes intron-splicing3, stabilisation of RNAs by mRNA-capping4 and
poly(A)-tailing at the RNA 3′ end, to name a few5. Accordingly, the
regulation of gene expression is mediated by a nucleotide sequence
code recognised and bound by protein factors. These interactions are
interdependent and are referred to as the gene regulatory network
(GRN). Current experimental molecular biology techniques can reveal
only a portion of its underlying nucleotide code, as they are reductio-
nistic by default. Consequently, the exploration of the plant gene reg-
ulatory code can benefit from a holistic approach like deep learning.

There are different experimental methods available to study the
interactions of proteins and nucleic acids. These require profound
characterisation of, e.g. TFs. Chromatin immunoprecipitation (ChIP)
sequencing is the method of choice to determine protein-DNA inter-
actions of TFs6. The identification of putativeCREs is restricted inChIP-
sequencing, however, because chromatin structure and
protein–protein interactions may prevent TFs from binding and,
consequently, limit the identification of CREs7–9. Othermethods, like in
vitro microarray binding assays, can determine TF-DNA interactions
more specifically, but their application is technically restricted to well-
characterised model species10. If established for the organism of
interest, such methods are well suited to demonstrate the distinct
interactions of TFs and CREs. Linking these interaction studies to
specific expression patterns of a gene, however, would require further
experimentation.
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With the increasing amount of genomic data, machine-learning
algorithms can be employed to annotate and functionally characterise
CREs11,12. Integrative approaches capable of systematic investigation of
the sequence-to-regulation relationships across multiple plant species
and regulation domains are needed13. Among these, deep learning (DL)
represents the most versatile and increasingly powerful framework
that recently enabled significant breakthroughs in e.g. computer
vision14, natural language processing15 and protein structure
prediction16. Among DL models, convolutional neural networks (CNN)
are particularly effective in the classification, segmentation, and fea-
ture extraction of image data and have been already successfully
implemented on genetic sequence data. For instance, the Enformer
model combined convolutional with multi-head attention layers in a
neural network for improved integrationof the effects of the distal and
proximal regulatory elements in human genomics sequences and
efficient gene expression prediction17. In Zea mays, the expression of
genes was successfully modelled as a binary classification task solely
relying on aCNNarchitecture but pointing out thepotential overfitting
of models to gene family-specific features18.

Despite these methodological advances, the genome-scale iden-
tification and annotation of cis-regulatory sequence features across
multiple plant species is still an uncharted area. Therefore, in this
study, we aim at the systematic identification of gene regulatory
sequences and annotation of their function in terms of their effect on
gene expression. We investigate the conservation of regulatory
sequences and their function across the four model plant species
Arabidopsis thaliana, Solanum lycopersicum, Sorghum bicolor and Zea

mays. We classify gene expression states using a large resource of
short-read transcriptomedatawith convolutional neural networks that
scan raw sequences as automated motif extractors. Finally, we
demonstrate the application of our models for functional annotation
of genetic variation and metabolic pathway activity prediction in
domesticated and wild tomato accessions.

Results
Data resource
In the first step, we generated a data resource serving as an input for
training the model. For that purpose, we used the genome assemblies
and annotations of Arabidopsis thaliana, Solanum lycopersicum,
Sorghum bicolor and Zea mays from the Ensembl Plants database
(v52). For each gene of each species, 500–3000nt upstream and
100–700 nt downstream of the transcription start site (TSS) and
100–700 nt upstream and 500–3000nt downstream of the tran-
scription termination site (TTS) were extracted (Fig. 1a). The selected
geneflanking sequence regionswere supportedbyprevious studies on
plant gene core promoter elements and their conservation and were
also sufficient for expression prediction in Z. mays18–20. The gene
flanking sequenceswereone-hot-encoded to serve as input to theCNN
model. For each species, we generated profiles from short-read tran-
scriptome data obtained for leaf and root tissues from publicly avail-
able transcriptome experiments under equal conditions
(Supplementary Data 1). Estimated gene expression levels per tissue
were then classified as low, medium or high based on the lower and
upper quartiles of the distribution of the log-transformed transcript

Fig. 1 | Gene expression predictionmodels required the extraction of proximal
gene sequence from crop plant reference genomes, estimation and classifica-
tion of transcript levels and nucleotide sequence conversion via one-hot-
encoding to generate training data for themodelling in a convolutional neural
network. a Per gene, two proximal regions with a size of 1.5 kbp each were
extracted at the transcription start sites (TSS) and transcript termination site (TTS),
respectively, fused and separated by a 20nt padding of Ns. The extracted regions
cover 1 kbp of non-transcribed, intergenic region DNA flanking the gene up and
downstream, plus 500 bp of each gene transcribed 5‘ and 3´ end, covering e.g. UTR
regions. DNA regions were extracted 1 kbp upstream and downstream and 0.5 kbp
from the annotated gene start and end of genes, respectively. Extracted sequences
were converted into matrices by one-hot encoding, separated by a 20nt padding.
b Genes were assigned into low (dark orange), medium (blue), and high (red)

expression classes based on the upper and lower quartile of the logMaxTPM dis-
tributions (orange, blue and red) exemplarily shown forA. thaliana. Histograms for
transcript profiles of S. lycopersicum, S. bicolor and Z. mays are shown in Supple-
mentary Fig. 1. The threshold values for leaf transcript profiles of A. thaliana, S.
lycopersicum, S. bicolor and Z.mayswere0.199, 0.000, 0.153 and0.113 for the lower
and 1.621, 1.051, 1.389 and 1.465 for the higher quartile, respectively (Supplemen-
tary Data 1, Source Data). c An end-to-end depiction of model training for one-hot-
encoded sequences that were used as training and testing data for the convolu-
tional neural networks (CNN). The CNN architecture consisted of three convolu-
tional blocks, each containing two convolutional layers followed by a pooling and a
dropout layer. The final convolutional block was followed by two fully connected
layers separated by a dropout layer and a final output layer with sigmoid activation.
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permillionvalues (logMaxTPM) (less than25%percentile, between 25%
and 75% percentile, above 75% percentile, respectively) (Fig. 1b and
Supplementary Fig. 1).

Model architecture and training strategy
Our approach builds on the CNN model architecture proposed pre-
viously for the pseudogene model with small variation18 (Fig. 1c). The
three convolutional blocks used, each composed of two convolutional
layers, have proven to efficiently capture sequence features of differ-
ent scales and complexity within the flanking sequences. As in CNNs
used for image classification, the use of multiple layers in each block
enables parallel capturing of multiple features of the input DNA
sequence by the first convolutional block, and of the output of the
previous convolutional block for the blocks two and three. Finally, the
output of the convolutional layers is being integrated by the fully
connected layer block for expression prediction. In contrast, to the 2D

convolutional and max pooling layers used by Washburn and
colleagues18, we used 1D layers as it has been the choice inmore recent
studies inferring gene expression or protein interaction from DNA
sequence using deep learning, e.g. the Enformer or BPNet
architecture17,21.

To train the CNN model, we focused our analysis on genes below
and above the lower and upper quartiles of the logMaxTPM distribu-
tion, respectively. Accordingly, the CNNs were trained as binary clas-
sifiers to predict genes as either lowly (below the lower quartile) or
highly (above the upper quartile) expressed. Dividing the data into
more classes as well as training a regression model resulted in con-
siderably lower accuracies (Fig. 2a). CNNs were trained using chro-
mosomal level cross-validation, in which for each iteration, genes
located on one of the chromosomes were used as a validation set and
the rest for training. As outlined byWashburn and colleagues (2019)18,
to prevent overestimation of model performance due to overfitting

Fig. 2 | Comparison of predictive performance of deep learning CNN gene
expression prediction models for crop plants under varying combinations of
training data. a The leaf model performances were estimated by calculation of
prediction accuracy. For each crop plant reference species, A. thaliana (A. tha.), S.
lycopersicum (S. lyc.), S. bicolor (S. bic.) and Z. mays (Z. may.), four different gene
expression prediction models were generated based on varying combinations and
variations of the training data. Training consisted of single-species references
(SSR), multi-species references (MSR), species-specific references with homo-
logous sequences (SSRU) and shuffled-sequence controls (SSC) (Supplementary
Data 5). The error bars represent the 95% confidence intervals; the significance of
the two-sided t-test is depicted as asterisk (p value: * ≤0.05, **≤0.01, ***≤0.001); the

number of observations n = 5 (A. thaliana), n = 12 (S. lycopersicum), n = 10 (S. bico-
lor) and n = 10 (Z. mays) (Source Data). b The root model performances were
estimated by calculation of prediction accuracy (see caption for sub-figure a).
c Cross-species performances for leaf models were estimated by predicting
expression profiles of other species using species-specific models. The highest
cross-species accuracy was 80.55%, testing the SSR model of S. bicolor on Z. mays.
The lowest estimated accuracywas66.62% testing the SSRmodel of S. lycopersicum
on S. bicolor. d The highest cross-species accuracy for the models generated with
root transcript profiles was 81.68%, testing the SSR model of S. bicolor on Z. mays.
The lowest estimated accuracywas 54.06%, testing the SSRmodel of S. bicolor on S.
lycopersicum.
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evolutionary relatedness, genes in the validation set with homologues
in the training set were omitted in the validation set. This assures that
the training is not biassed by the sequence homology within gene
families.

The performance of the models trained on different input
sequence sizes remained similar between 500 and 3000nt for the
promoter and terminator sequences (Supplementary Fig. 2). We
observed a species-specific drop in performance only for the UTR
sequences below 300nt. Thus, taking also into account the distribu-
tion of the length of annotated UTR regions across the four species of
interest (Supplementary Fig. 3) and the reduced interpretability of
models working on large inputs, we decided on the uniform range for
the up- and downstream regions for all four species. Accordingly, all
genes were represented with a 1000 nt promoter and 500nt 5′UTR
covering the upstream region and 500 nt 3′UTR and 1000nt termi-
nator for the downstream region as a choice. The combined 3000 nt
sequences provided high performance and a considerable buffer to
capture possible differences in distributions of the core regulatory
elements in genomes of significantly different sizes. The detailed
analysis of the predictive power of general gene model features, such
as UTR length or GC content, in gene expression prediction, is pro-
vided in Supplementary Materials (Supplementary Fig. 4 and Supple-
mentary Note 1).

Predicting plant gene expression from the sequence of gene
flanking regions— model performance
In the first step, we trained the CNN models per species with
n = #chromosomes cross-validation rounds. The use of chromosomes
for splitting the validation set ensured that the set was not overlapping
with any of the training sequences and was similar in terms of chro-
matin accessibility. These single-species reference (SSR) models
achieved average accuracies for Arabidopsis thaliana accleaf = 85.59%,
accroot = 86.93% (auROCleaf = 0.92, auROCroot = 0.94), for Solanum
lycopersicum accleaf = 83.55%, accroot = 84.81% (auROCleaf = 0.89,
auROCroot = 0.90), for Sorghum bicolor accleaf = 79.70%,
accroot = 85.42% (auROCleaf = 0.85, auROCroot = 0.88) and for Zea mays
accleaf = 81.16%, accroot = 83.94% (auROCleaf = 0.87, auROCroot = 0.90)
(Fig. 2a, b, Supplementary Fig. 5, and performance of all models and
controls with F1 scores provided in Supplementary Data 2).

This result showed the extent of flanking sequence-determined
gene expression in leaves and roots that could be learned by a simple
CNN and, thus, likely represents rather an underestimation of the real
value. The varying size of the training sets between SSRmodels did not
directly reflect themodel performance, indicating that it is not amajor
limiting factor. RNA-seq profiles for the same species and condition
can differ due to technical and experimental variations. Accordingly,
we exemplarily trained and cross-evaluated leaf SSR models from
multiple comparable RNA-seq experiments of A. thaliana. These
achieved high test performances supporting our methods' reprodu-
cibility (Supplementary Fig. 6). Next, we trained multi-species refer-
ence (MSR) models using a leave-one-out procedure; each time
training the model on three of the species and evaluating it on the
fourth. TheMSRs showed a similar performance as the species-specific
SSRs, showing that the predictive sequence features are conserved
(Fig. 2a, b). The shuffled-sequence controls (SSC) retaining the
nucleotide composition exhibited close to random classification per-
formance for all species, highlighting the existence and the role of
localised sequence features as gene expression predictors. The
observed model performance for the tissue-specific genes is sig-
nificantly lower than for a comparable random set of labelled genes,
indicating the tissue-specific regulation is orthogonal to the regulatory
signature identified by the model that is trained and generalisable on
all genes (Supplementary Fig. 7).

This stayed in concordance with variation of prediction accuracy
between functional categories (Supplementary Data 3). Biological

processes showing low or no expression in the analysed tissues of
interest exhibited lower accuracy (e.g. bin-13.3 ‘Cell division.meiotic
recombination’; average acc = 0.68) than those highly expressed (e.g.
bin-2.3 ‘Cellular respiration.tricarboxylic acid cycle'; average acc =
0.87). The correlation between the average prediction accuracy and
the average expression of functional categories reached Spearman’s
⍴ = 0.76 and p value <2.2e-16. Finally, we tested the SSR models in
terms of their prediction accuracy in species they were not trained on,
in what we called a cross-species prediction (Fig. 2c, d). The best cross-
species prediction accuracy was observed for the Sorghum bicolor
SSRleaf and SSRroot model, with 80.55% and 81.68%, respectively, using
Zea mays sequences for prediction. The worst performance was
observed for the Solanum lycopersicum SSRleaf and Sorghum bicolor
SSRroot model predictions on Sorghum bicolor and Solanum lycopersi-
cum sequences with 66.62% and 54.06%, respectively (Supplementary
Data 2). The cross-species prediction accuracies indicate that the
model’s performance may depend on the species' evolutionary rela-
tionship, with higher cross-performance for more closely related
species.

The significant drop in cross-species prediction performance in
comparison to the SSR and MSR models indicated that the gene
expression in each species is determined by two classes of sequence
features: (a) species-specific and (b) conserved acrossmultiple species.
While the SSR models learn the combination of them and are hardly
generalisable across species, the MSR models seem to capture the
conserved features and generalise well.

Identification and characterisation of predictive sequence
features
Identification of the location and specific sequence features associated
with gene expression requires interpretation of the trained models.
Here, we used the Deep Learning Important Features (DeepLIFT)
algorithm, which enables the interpretation of convolutional neural
networks trained on genetic sequences by providing nucleotide-
resolution importance scores across input sequences22. The scores are
calculated from the models by backpropagating the importance of
each neuron to each nucleotide of the input sequence. Subsequently,
the importance of eachnucleotide is represented as a score that can be
positive, negative, or zero, corresponding to the prediction of the
training classes (high expression and low expression or irrelevant for
prediction), respectively. Averaging obtained scores across the input
sequences revealed conserved patterns, called salient regions or sal-
iency maps. We observed that for all species, the most salient regions
of the flanking sequences were those proximal to the TSS and TTS
containing the 5′UTR and 3′UTR, respectively (Fig. 3a). The salient
regions received predominantly positive scores indicating the pre-
sence of expression-associated features, rather than those with dele-
terious effects.While the general distribution of DeepLIFT importance
scores was conserved across the species, some differences also
occurred. Solanum lycopersicum exhibited a much higher saliency
region upstream of the TSS than the other species. Zea mays and
Sorghum bicolor, on the other hand, exhibited low saliency of the
sequences downstream of the TTS.

The DeepLIFT importance scores were further used to extract
expression-predictive sequence motifs using the Transcription Fac-
tor Motif Discovery from the importance scores algorithm (TF-
MoDISco)23. Here, partitioned sequences, called seqlets, with similar
sequence and concordant importance scores were aggregated into
contribution weight matrices (CWMs). The CWMs encoding is ana-
logous to the position weight matrix. However, despite representing
a positional nucleotide frequency, CWMs contain the importance
scores of nucleotides associated with the prediction expression
classes. Accordingly, we will refer to CWMs identified with the TF-
MoDISco as expression-predictive motifs (EPM) in the following
sections. The occurrence of each EPM showed a general specificity
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towards the 5′UTRand 3′UTR,with individual EPMs showing EPMs-to-
region specificity that we, from here on, refer to as preferred ranges.
Similarly, to the saliency map (Fig. 3a), the positional distribution of
EPMs exhibited both conserved and species-specific patterns

(Fig. 3b). Varying the sizes of UTR and Promoter/Terminator regions
did not change the resulting saliency map for the chosen genomic
ranges between 500 nt and 3000 nt (Supplementary Fig. 8). How-
ever, shortening the UTR input ranges below 500 nt had an impact

Fig. 3 | Interpretation of the gene expression-predictive models shows
important predictive nucleotides are located mainly in the regions near the
TSS andTTS across different cropplants for the leaf SSRmodels. aAverage per-
base importance scores computed with DeepLIFT22 for A. thaliana, S. lycopersicum,
S. bicolor and Z. mays SSR leaf models. Importance scores were averaged across

validation sequences depicting the average importance of regionswith the 3000nt
long sequences. b Per-base importance scores were used formotif generation with
TF-MoDISco23. The resulting expression-predictive motifs (EPMs) share consensus
sequences following the extended IUPAC nucleotide code (Supplementary Data 4)
and position-specific occurrences around the TSS and TTS region.
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both on the saliency map and model performance for SSR leaf
models of all four reference species.

Expression predictive motifs exhibit sequence and positional
conservation
An EPM has a sum positive or negative importance score associated
with high or low predicted expression classes (Supplementary Data 4).
Accordingly, the EPMs were divided into two metaclusters by TF-
MoDISco depending on their positive or negative importance scores
calculated by DeepLIFT. Consequently, the two metaclusters are
associated with the prediction of either high or low rates of gene
expression and were labelled as ‘p0’ (149 EPMs) and ‘p1’ (111 EPMs) for
leaf data, respectively. Congruently, the sum importance score of one
gene relates to the predicted class. Across all four species and models
the sum of importance scores per gene flanking regions were positive
when it was predicted to be highly expressed and vice versa. For
example, two CT hexamer repeats can be found downstream of the
TSS of Arabidopsis thaliana gene AT1G01650, correctly predicted for
high gene expression with positive importance scores of 3.856
(Fig. 4a). These regions match the SSR leaf model EPM epmArth-S019-
p0m06 with a sum importance score of 0.31 (Fig. 4b). This EPM dis-
plays 99% similarity (p value = 0.0002) to the transcription factor
binding site (TFBS) of A. thaliana BPC5 found by comparison to the
JASPAR2022 plant database (MA1403.1)24 (Fig. 4b, Supplementary
Data 4). BPC5has been characterised tobind theGA/CT-repeat binding
motifs and belongs to the BASIC PENTACYSTEINE (BPC5/BBR/BPC)
transcription factor family25.

In total, we have identified 260 EPMs (520 with reverse comple-
ment versions). This includes 39 EPMs in A. thaliana, 26 EPMs in S.
bicolor, 30 EPMs in S. lycopersicum and 36 EPMs in Z. mays for the SSR
leafmodels and 30, 35, 37 and 27 for theMSR leafmodels, respectively
(Supplementary Data 4). Hierarchical clustering of the 520 leaf EPMs
using the Smith–Waterman algorithm identified 17 multi-species
clusters of similar motifs from the SSR and MSR leaf models (Fig. 4c
and Supplementary Fig. 9). These 17 clusters included 494 of 520
EPMs, while 26 EPMs remain without association by similarity. The
smallest and largest clusters include 8 and 80 different EPMs,
respectively. In line with the analyses of testing model performances
across different tissues, the comparative analysis of EPMs from leaf
and root SSR models exemplarily tested for A. thaliana and Z. mays
show that EPMs from both tissues are highly similar and fall into the
same clusters (Supplementary Fig. 10 a, b).

In the following sections we name these EPM clusters after their
consensus sequence alignment according to the IUPAC nucleotide
code with the minimum number of repetitions as a prefix (Fig. 4b and
Supplementary Data 5). For example, cluster 2CT+ (CTCTCT or AGA-
GAG in reverse complementaryorientation) features EPMswith at least
two or more (+) cytosine-thymine dimers. Of the now 18 different
clusters, we identified 15 clusters that have at least one EPM with sig-
nificant similarities to a TFBS in the JASPAR2020 DB (p value <0.001
and e-value <0.01)24 (Fig. 4c and Supplementary Data 4). Interestingly,
we identified 26 different TFBS in twelve clusters (2CT+, CGNCGT,
WAAMAW, 2GCB+, GSRGV, 2CWY, TNNGCCS, 5W+, YACA, TCTGW,
CTAG and 3SSN) that have a very high similarity of 95%measured with
Pearson correlation coefficient (PCC). Of theseTFBSs, eleven are solely
matching to EPMs from the SSR leaf models, compared to seven from
the MSR, and nine shared ones. This does indicate that the leaf SSR
models perform slightly better on the identification of putative TFBSs.
The remaining EPM not matching characterised TF binding sites
showed similarity to structural gene elements, e.g. within the 5W+
cluster. There are, for example, theU andA-rich regions involved in the
selection of mRNA polyadenylation sites26 (e.g. polyadenylation site
“5′-AAUAAA” and epmArth-S030-p0m14) and hexanucleotide U repe-
titions acting as terminators for the nuclear RNA Polymerase III27.

The EMP cluster 2CWY+ is most similar to the TF binding site of
A. thaliana AGL42
All four leaf MSR models identified EPMs that belong to the 2CWY+
cluster. This cluster uniformity contributed to the prediction of low
gene expression with sum importance scores ranging from −0.2 to
−0.3 in epmZema-S068-p1m015 and epmArth-S057-p1m14, respec-
tively (Supplementary Data 4). In all four analysed species, 2CWY+
EPMs exhibit a strict positional preference for the TSS and TSS-
downstream), and, in some cases, the transcription termination site
TTS and upstream-TTS (Fig. 4d). The high conservation of the
sequence, the positional preferred range and uniform prediction
towards low rates of transcription suggest an evolutionary conserva-
tion and regulatory function of 2CWY+ type EPMs. In total, all fifteen
EPMs of the identified 2CYW+ cluster exhibited conserved position-
dependent predictive performance on gene expression (Supplemen-
tary Fig. 9 and Supplementary Data 6). Congruently to their well con-
servation across species and genomic position, we found EPMs of the
2CWY+ cluster with high similarity to counterparts in exemplarily
investigated A. thaliana and Z. mays root SSR model EPMs, as well
(Supplementary Fig. 10 a, b). These findings underline that EPMs
represent generalised genomic features across species and tissues.
The EPMs of the 2CWY+ clusters, e.g. epmArth-S063-p1m08 or epm-
Soly-S035-p1m02 (CATCAT), significantly matched the TF binding site
(CAYCAT) of AGL42 (also FYF, FOREVERYOUNG FLOWER). AGL42/FYF
is a MADS-box transcription factor of the eukaryotic evolutionary old
MIKC class closely related to the SUPPRESSOR OF OVEREXPRESSION
OC1 (SOC1) which is a gene central to the development of the flower,
particularly mediated by gibberellin signalling28,29. AGL42 (FYF) inter-
acts with SOC1 and is expressed in the shoot apical meristem during
the vegetative phase and during the floral transitionwhere it promotes
flowering at the shoot apical and axillary meristems29. Here, AGL42
(FYF) actively controls floral senescence/abscission by repressing
ethylene responses together with a regulatory network of FYF-like
genes30–32.

The EPM clusters 2GCB+ and 2CT+ are likely TF binding sites
but predict low and high gene expression dependent on their
genomic position
Like cluster 2CWY+, clusters such as 2GCB+, 2CT+ and YACA feature
position-dependent prediction, but contained similar EPMs from dif-
ferent metaclusters (Fig. 4d). For example, eight of fourteen 2GCB+
type EPMs found in A. thaliana, S. bicolor, S. lycopersicum and Z. mays
that are located within the upstream transcript boundaries and con-
sistently associated to high transcript levels with sum importance
scores ranging from 0.31 to 0.46 (Supplementary Fig. 9 and Supple-
mentary Data 4). Conversely, six 2GCB+ type EPMs of S. bicolor and Z.
mays that are prevalent upstream of the TSS and in the 3′UTR region
predict low rates of gene expression with sum importance scores
ranging from −0.19 to −0.26.

The EPMs of 2GCB+ show significant sequence similarity to the
GCC box TF binding sites of the ERF/DREB class of ABA-responsive
WRKY-TFs in Z. mays33. In S. lycopersicum the ERF/DREB TFs binding to
GCC boxes is a key element of fruit development and ripening
signalling34.

Another EPMcluster with a position-dependent prediction are the
2CT+ types, including epmArth-S003-p0m01, epmArth-S013-p0m06,
epmArth-S047-p1m09, and epmSoly-S019-p0m09, identified by root
and leaf SSR model of A. thaliana and S. lycopersicum, exclusively
(Fig. 4 and Supplementary Fig. 10 c). The 2CT+motifs identified in our
study are either localised upstream of the TSS and predict low gene
expression levels or are localised downstream of the TSS and predict
high gene expression levels. This is further supporting that the EPMs
sequenceandposition is crucial for its use aspredictive features across
species and tissues.
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Fig. 4 | Expression predictive motifs (EPMs) identified by DeepLIFT and TF-
MoDISco determined with convolutional neural networks (CNN) trained on
single-species reference (SSR) and multi species reference (MSR) models of A.
thaliana, S. lycopersicum, S. bicolor and Z. mays. a Importance scores (IS) in the
1.5 kbp upstream and downstream selected region of exemplarily chosen gene
AT1G01650 of A. thaliana that is predicted by SSR leaf model with a positive sum IS
of 3.86. The region with the maximum IS of AT1G01650 lies in the upstream region
1097-1155 bp including two cytosine-thymidine-hexamers (6CT). b The 6CT motifs
matched with an expression-predictive motif (EPM) that was inferred with TF-
MoDISco. For clarity, we propose an EPM nomenclature system that assigns
abbreviations to plant species based on their genus and epithet, followed by the
model used to produce the EPMs (SSR or MSR). The physiological conditions of the
plant are indicated by a number (0 for standard conditions). The predictability of
eachmotif is indicatedby a ‘p’ followedby several 1 s and0 s for lowandhigh ratesof
gene expression, respectively. The delimiter is followed by themotif number within
the metacluster and its orientation (forward or reverse). Finally, the number of
seqlets included, the information content, and the consensus sequences are added
at the end of the EPM. For example, epmArth-S019-p0m06 has a sum importance
score of 0.31, amaximum importance score of 0.03 and aminimum score of −0.001
(Supplementary Data 4). It has been found three times in the upstream region of
AT1G01650. In addition, epmArth-S019-p0m06 matched with 99% similarity mea-
sured with Pearson correlation coefficient (PCC) and e-value =0.002 transcription
factor binding site (TFBS) of A. thaliana BPC5 of the BRR/BPC class (Supplementary
Data 4, JASPAR accession MA1403.1). According to the nomenclature, proposed
henceforth, the EPMwas identified inA. thaliana (Arth), by the SSRmodel (S), under
standard conditions in leaf (0), predicting high gene expression rates (p0), inferred
from 443 seqlets with an information score, indicating nucleotide frequency,

specificity, and motif heterogeneity of 19.4, along with its consensus sequence
(CTCTCT). c The EPMs are assigned into 17 clusters based on similarity using the
Smith–Waterman algorithm and manual inspection of the consensus sequences
following the alignment. The clusters are named after conserved DNA motifs and
indicated by the IUPAC nucleotide code, along with the least number of repeats of
motifs (numerals) and potential additions (+). Clusters with EPMs that significantly
match TFBSs from the JASPAR database with e-value <0.05 compared using PCC are
marked with black triangles. The EPMs identified by theMSRmodel are highlighted
by grey boxes in thedendrogram,while prediction for high and lowgene expression
is displayed by red and blue branches, respectively. Underlined clusters, with
selected representative EPMs, are shown exemplarily in panels (c) and (d). The
complete full-scale version of the dendrogram and the consensus sequence align-
ment EPMs can be found in supplementary Fig. 9 and supplementary data 5.d EPMs
of the 2CWY+ cluster uniformly predict low rates of gene expression (blue tips).
EPMs of this cluster are identified by both the SSR andMSR (grey boxes) models. In
contrast to the SSR model, the MSR models identified 2CWY+ motifs for all four
reference species. The inverted web-logos show the EPMs negative importance
scores, ranging from 0 to 0.05 or −0.05 associated with DeepLIFT and TF-MoDISco
metacluster 0 or 1 (p0, p1), respectively. Histograms display the positional pre-
ference inferred from the number of seqlets relative to the transcription start and
transcription termination sites (TSS, TTS) of each EPM. The EPMsof the 2CWY+ type
display significant similarity to the transcription factors binding site of AGL42
(JASPAR accessionMA1201.1) of A. thaliana. e The 2GCB+ and 2CT+ clusters contain
EPMs predicting both low and high gene expression rates, identified by the SSR and
MSRmodels, corresponding to the positional occurrence related to the TSS or TTS.
Both clusters highly resemble previously determined transcription factor binding
motifs for 2GCB+ and 2CT+, with MA1820.1 and MA1403.1, respectively.
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The EPMs of metacluster 0 of A. thaliana SSR and MSR leaf
model are predictors for high levels of gene expression
We tested the predictive performance of the occurrence of EPMs by
mapping those of A. thaliana extracted from the leaf MSR and SSR
models to A. thaliana genes within their respective preferred ranges.
We calculated EPMs individual enrichment within their associated
expression class and the predicted class for A. thaliana leaf SSR and
MSR models following a modified formula to determine feature
enrichment described by Smet and colleagues35 (Supplementary
Data 6). The EPMs of the A. thaliana SSR model associated with the
predictionof high gene expression levels range from 1.186 to 2.931 and
1.529 to 3.803 for enrichment among their expression class, respec-
tively. At the minimum and maximum end lies epmArth-S007-p0m03
(4CNN cluster) and epmArth-S013-p0m06 (2CT+ cluster) that can be
found in 76 and 94% of cases among genes with high gene expression,
respectively. These observations also account for the MSR models,
while these features have generally lower scores for enrichment, ran-
ging from, e.g. 0.93 to 2.714 and 0.807 to 2.662 for the expression and
predicted class, respectively. Notably, the A. thaliana leaf MSRmodels
EPMs associated with high rates of gene expression occur in 68 to 88%
of cases among their respective expression class, with epmArth-M0-
p0m03 (5W+ cluster) at the lower and epmArth-M0-p0m11 (RGAAGR
cluster) at the higher end, as well. For the clusters with similarities to
TF binding sites, as in the case of 2GCB+ and 2CT+, the maximum
enrichment scores lie at 2.262 and 3.76. Accordingly, the occurrenceof
these EPMsofA. thaliana leaf SSR andMSRmodel associatedwith high
rates of gene expression display useful predictors (>80% TPR) for high
rates of gene expression and its prediction.

EPMs associated with low expression levels were not enriched
among their respective classes, with mostly negative enrichment
scores, ranging from −0.573 to −1.202 and 0.409 to −1.160 for the
expressed and predicted class, respectively (Supplementary Data 6).
All EPMs of metacluster 1 appeared in less than half of the cases within
the associated expression class. This shows that EPMs associated with
low gene expression by the models do not exclusively occur among
genes exhibiting low expression levels and can also be found among
ranges of genes of the high gene expression class. Accordingly, the
predictive performance of A. thaliana EPMs associated with low gene
expression might rather relate to specific contextual factors, for
instance, the combination or yet unknown features.

CNN models identify perturbations in gene expression asso-
ciated with structural variance among sub-species and varieties
of tomato
To check if our model predicts differences in expression of gene var-
iants, we used a large collection of genomic structural variants (SVs)
for wild and cultivated Solanum spp36. Due to the application of long-
read nanopore sequencing the dataset contained variation data ran-
ging from single nucleotide polymorphisms to large transposon
insertions across 15 Solanum spp. genotypes.

We used the leaf MSR models trained with Solanum lycopersicum
as the validation set to generate predictions for a subset of genotypes
of Solanumpimpinellifolium (PAS014479, BGV006775), S. lycopersicum
var. cerasiforme (BGV006865, BGV007931 and BGV007989), S. lyco-
persicum processing (M82), S. lycopersicum fresh (EA00371, Fla.8924,
Floradade and LYC1410), S. lycopersicum vintage (PI69588, Brandy-
wine, EA00990 and PI303721) and S. lycopersicum (ITAG3.0) for
reference (Fig. 5a). Neighbour joining-based clustering of the input
regulatory sequences for the 15 genotypes showed difference in
topologywith the hierarchical tree of the predicted expression profiles
and remained largely in agreement with the SV-based phylogeny from
Alonge and colleagues (Fig. 5a). The gene expression is predicted to be
more similar amongst S. pimpinellifolium genotypes and the
BGV007931 genotype of S. lycopersicum var. cerasiforme. Also, clades

of S. lycopersicum vintage and fresh form one joint clade, indicating
that prediction of gene expression does not strictly follow insertion of
SVs across Solanum spp. We further investigated orthologous genes
that were likely to vary in expression across the genotypes according
to predictions of the MSR models and where differential gene
expression was shown by Alonge and colleagues (Supplementary
Data 7). To characterise the change in gene expression, we mapped
motifs from the leaf MSR model of S. lycopersicum to the different
genotype genes using BLAMM37 (Supplementary Data 8).

We identified an intersection of 314 genes featuring SVs and
log-fold changes in gene expression, determined by Alonge and
colleagues, and genes with predicted different expression levels
across the fifteen genotypes, according to our model (Fisher exact
test value <0.0001) (Fig. 5b). In comparison between genes with
predicted homogeneous and differential rates of expression, EPMs
appear less often conserved among the differential expressed genes
(Fig. 5c). This suggests that the occurrence and conservation of
EPMs across different genotypes can be used to further interpret
differences in the prediction of gene expression levels. For in-depth
analyses, we selected six random examples of genes that belong to
the intersection of the 314 genes that all feature mutated (non-
conserved) EPMs (Supplementary Data 9). Here, the absence or
presence of EPMs coincides with changes in the predicted expres-
sion classes.

We chose the genes Solyc02g08170.4 encoding a putative
phosphatidylinositol glycan, class N protein and Solyc02g080300.3
encoding a glycosyl hydrolase β-glucosidase 45-related proteins.
Both genes feature SVs in their TSS and TTS regions accompanied by
differential gene expression. Further, probabilities of the predicted
expression patterns of those genes were independent of their phy-
logenetic relationship between the cultivars (Fig. 5d, g). There were
five and four EPMs, respectively, significantly matching (e-value
<0.0001) the TSS regions of the Solyc02g087170.4 and the
Solyc02g080300.3 (Fig. 5e, h). However, only two and one EPM, for
each gene, respectively, were identified in their preferred ranges
inferred from the CNN.

According to the probability of gene expression, the gene
Solyc02g08170.4 is predicted to exhibit high (on average of 0.6) and
low (on average of 0.35) gene expression in two distinct groups of
Solanum genotypes (Fig. 5d and Supplementary Data 7). On the
sequence level, this difference coincides with a shared 178 bp indel
mutation 38bp downstream of the TSS amongst five of the fifteen
Solanum genotypes, all predicted for high rates of gene expression
(PAS0144795, BGV007989, BGV006865, EA00990 and EA00371)
(Fig. 5e, f). Interestingly, disrupting epmSoly-M006-p0m02 via the SV
entails the creation of epmSoly-M032-p0m15 nowpositionedwithin its
preferred range 226 bp downstream of the TSS within
Solyc02g08170.4 5′UTR (Fig. 5f). This indicates that the CNN predic-
tions dependon the identification of EPMs at their preferred range and
that these are weighted differently.

In the case of Solyc02g080300.3, an SV indel mutation occurred
in the first intron and the 3′UTR of the genotypes PAS014479,
BGV06775 and BGV006865 sharing high probability scores compared
to the other species (Fig. 5g). Twenty nucleotides upstream of the SV
within the first intron two point mutations were found in PAS014479,
BGV06775 and BGV006865, as well, hereby matching epmSoly-M009-
p0m04 (Fig. 5h, i). This EPMpredicts high rates of gene expression and
is located downstream of the TSS. Accordingly, its presence explains
the prediction of high gene expression for Solyc02g080300.3 along
three of the fifteen genotypes. The probability for higher rates of gene
expression is like the one in Solyc02g087170.4, where epmSoly-M009-
p0m04 could also be identified in its reverse complement orientation.

The prediction of the CNN can be interpreted using DeepLIFT,
TF-MoDISco and BLAMM. As a result, we retrieved EPMs that can
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potentially be used for the prediction of rates of gene expression and
characterisation of promoter or terminator regions. The CNN, as
interpreted using the EPMs, is sensitive topoint and indelmutations. In
addition, the EPMpredictive power is likelyweighteddifferently, as the
probabilities differ depending on the identified EPM that is congruent
with different importance scores and their predictive performance.

MSR model highlights known phenotypic and metabolic differ-
ences between S. lycopersicum and S. pennellii
In the next stepwe evaluated if theMSRmodel highlights interpretable
differences between plant species that were not used for training. For
this purpose, we selected the cultivated tomato S. lycopersicum and its
wild relative S. pennellii as examples of highly related species with
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remarkable differences in phenotype and metabolism. The model,
trained on a combined dataset from A. thaliana, Z. mays and S. bicolor
achieved accuracy values of about 78% and 83% for S. lycopersicum and
S. pennellii, respectively (shuffled-sequence control accuracy: S. lyco-
persicum = 51%, S. pennellii = 58%). The model performance was dif-
ferent for the negative and positive labels. For S. lycopersicum a true
positive rate (TPR) of 0.9 and a true negative rate of 0.72 (TNR) indi-
cated higher confidence for the positive predictions. This reflected the
distribution of the expression predictions for genes of the “middle”
second and third quartiles (Fig. 6a; yellowdistributions). The samewas
observed for S. pennellii, with a TPR of 0.86 and a TNR of 0.81 (Fig. 6b).

To estimate if these MSR predictions are indicative of physiolo-
gical and metabolic differences between the two species, we per-
formedMercator4MapManannotationof functional geneontologyon
the S. lycopersicum and S. pennellii proteome38. Then, we expressed
each functional category in terms of the observed (true labels) and
predicted expression (prediction probabilities) of genes classified into
each functional category. In total, 90 MapMan categories exhibited a
significant change in the predicted expression between S. lycopersicum
and S. pennellii (Wilcoxon rank-sum test; FDR <0.05; Fig. 6c and Sup-
plementary Data 10). These included general terms such as 'enzyme'
(3856 transcripts) and 'transcriptional regulation' (1829 transcripts), as
well as specific ones, such as 'ZFP transcription factors' (26 transcripts)
or 'protein translocation in chloroplast' (65 transcripts). The observed
and predicted expression differences between S. lycopersicum and S.
pennellii functional categories showed a moderate, but significant
correlation (Spearman’s ⍴ = 0.12; p value = 2.078e-11). This indicated
that the MSR model successfully captures a differential expression of
functional gene sets in the two tomato species. Almost all the sig-
nificant categories were observed and predicted to be upregulated in
S. pennellii with respect to S. lycopersicum. This concerns phyto-
hormone action, external stimuli response, chromatin structure, lipid
metabolism, aswell as protein andRNAbiosynthesis, and transcription
regulation with their multiple sub-categories. Expression of several
MapMan categories was overestimated by the MSR model, including
e.g. chromatin structure, ubiquitin ligases and some TF families that

indeed are very unlikely to be found in the upper quartile of expressed
genes. Conversely, noMapMan categories were falsely predicted to be
downregulated. The only category significantly downregulated in S.
pennellii was the general term 'not annotated/not assigned'.

Finally, we zoomed in on enzymes of polyamine metabolism, as
suggested by previous observations of strongly differential poly-
amine accumulation in S. pennellii and S. lycopersicum leaves39

(Fig. 6d). Out of 40 genes annotated in S. lycopersicum 19 were
observed as highly expressed (arginine decarboxylase ADC
Solyc01g110440, Solyc10g054440; ornithine decarboxylase ODC
Solyc04g082030, agmatine deiminase AIH Solyc12g038970; N-carba-
moylputrescine amidaseCPA Solyc11g068540; S-adenosylmethionine
decarboxylase SAMDC Solyc01g010050, Solyc02g089610,
Solyc05g010420; spermidine synthase SPDS Solyc04g026030; sper-
midine synthase SPMS Solyc03g007240; diamine N-acelytyltransfer-
ase SSAT Solyc07g006340, Solyc08g006760, Solyc08g006765,
Solyc08g068770, Solyc10g084640 and peroxisomal polyamine oxi-
dase PAO2/3/4 Solyc02g081390, Solyc07g043590, Solyc12g006370
covering each of the 12 reactions with at least one highly expressed
isozyme transcript except the arginase ARG, polyamine oxidase PAO1
and PAO5. Ten of these were predicted correctly to be highly
expressed (AIH Solyc12g038970; SAMDC Solyc01g010050; CPA
Solyc11g068540; SPMS Solyc03g007240; SSAT Solyc07g006340,
Solyc08g006760, Solyc08g006765, Solyc10g008640; PAO2/3/4
Solyc02g081390, Solyc07g043590) and no false positives were
recorded, resulting in a prediction precision of 1 for the high
expression. At the same time, out of three labelled as low expressed,
all three were predicted to be low expressed (SSAT Solyc07g015960,
Solyc09g082260 and Solyc12g096840) with nine false negatives
(precision = 0.6). Summarising, all pathway enzymes in S. lycopersi-
cum were predicted to be highly expressed as at least one isozyme,
except for the ARG, PAO1 and PAO5, which have not been observed as
highly expressed in the corresponding transcriptome data either.
Analogous results were obtained for S. pennellii, with the precision of
high expression prediction of 1 (each positive expression prediction
associated with respectively high or medium expression level; ARG2

Fig. 5 | Comparisonof the predictability of expression-predictivemotifs (EPMs)
in 15 different Solanum genotypes with structural variations (SVs) in the
transcription start site (TSS) and transcription termination site (TTS) identi-
fied and characterised by Alonge and colleagues (2020)36. a The taxonomic
grouping of fifteen Solanum genotypes based on SVs inferred by Alonge and col-
leagues (left) in comparison to hierarchically clustered predictions of gene
expression (right) display differences in topology for the groups of S. lycopersicum
var. cerasiforme (SLC. 23) and vintage (SLL,27.). b There is an intersection of 314
genes between genes with SVs in their upstream or downstream 5 kbp regions,
whichwere detected for log-fold change in gene expression levels across any of the
fifteen Solanum genotypes, and genes with variances exceeding 0.005 in their
predicted probabilities from the Solanum MSR leaf model, indicating differential
expression across the 15 genotypes. Six random examples were selected from the
intersection for detailed examination, as shown in panels (d–i), with further
material provided in supplementary data 9. c Examined EPM variation in 15 Sola-
num genotypes, analysing genes with conserved or mutated EPMs alongside shifts
in gene expression levels. Genes with homogenous gene expression (n = 27,993)
showedhigher ratesof conserved EPMs (blue boxplot),while thosewith differential
gene expression (n = 2053) exhibited higher rates of mutated EPMs (yellow box
plots). Gene expression heterogeneity was determined based on MSR leaf model
probability, using variance thresholds larger than 0.005. Predicted probabilities
below or equal to 0.5, indicated low gene expression rates and vice versa (Sup-
plementary Data 7). EPM occurrence and predicted gene expression levels were
linked using BLAMM37. EPMs were classified as conserved or mutated if present
among all or absent among one genotype per gene, respectively (Supplementary
Data 8). Boxplot depicting samples after bootstrap repetition using the 25th, 50th
(median) and 75th percentiles along with the interquartile range, representing the
central 50% of the data. Whiskers extend from the minimum to maximum values,
showcasing the spread of the dataset. The two-sided F1 and Chi-squared test (p

value <0.0001) support statistical significance (Source Data). d Structural varia-
tions in the flanking regions altered gene expressionmeasured in species indicated
with asterisks for the exemplarily shown genes Solyc02g087170 and
Solyc02g080300 (g). Congruently, high (red) and low (blue) probability scores of
the multi-species reference (MSR) model indicate differential gene expression
across the genotypes. Boxplot depicting sample characteristics using the 25th, 50th
(median) and 75th percentiles along with the interquartile range, representing the
central 50% of the data. Whiskers extend from the minimum to maximum values,
showcasing the spread of the dataset. Outliers are depicted as dots (Source Data).
e Gene maps of upstream regions around the TSS include UTR region (striped
boxes), exons (“ATG” + filled boxes) and introns (white boxes), along with the
location of significant EPM matches (e-value <0.00001) inside (white arrow) and
outside (grey arrow) of their positional preference and the location of SVs (black
arrows). f For closer inspection, only EPMs allocated to their preferred position
were chosen. For sequence comparison, ITAG.3, representing genetic variant A and
PAS104479, representing genetic variant B are displayed. EPMs of S. lycopersicum
MSR model M006 p0m02 and M032 p0m15 lie within the 5’UTR of
Solyc02g087170. An SV indel mutation of 178 bp located only 37 bp behind the TSS
disrupts epmSoly-M006-p0m02 variant B genotype, starting 30bp behind the
expected TSS in genotypes of variant A. Due to the same SV, however, epmSoly-
M032-p0m15 is now localised within its positional preferred range for species of
genetic variant B. g Probability scores of the MSRmodel indicate differential gene
expression for Solyc02g080300 (See caption for sub-figure b). h (see caption for
sub-figure d). gWithin the first intron, 233 bp downstream of the expected TSS of
Solyc02g080300 epmSoly-M009-p0m04 was identified. An SV indel mutation of
10 bp lies 7 bp downstream of epmSoly-M009-p0m04, not disrupting the EPM. In
contrast to the example before, the difference between two point mutations
coincides with low probabilities of high gene expression for genotypes of variant A
within epmSoly-M009-p0m04.
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Sopen01g036910; ADC Sopen01g052570, Sopen10g024370; ODC
Sopen04g035680; SAMDC Sopen01g005600, Sopen02g034330,
Sopen05g006210; CPA Sopen11g027260; SPDS Sopen05g001710;
SPMS Sopen03g003220; SSAT Sopen07g002430, Sopen08g002670,
Sopen08g002710, Sopen08g022440, Sopen10g034080; PAO2/3/4
Sopen02g026020, Sopen07g023160, Sopen12g002320) and preci-
sion for low expression of 0.5 (true negatives obtained for ODC
Sopen03g029030, Sopen03g029060; SSAT Sopen12g032670).
Remarkably, despite the high sequence homology to S. lycopersicum,
the S. pennellii orthologs showed distinct patterns of gene expres-
sion. This is especially visible for ARG, AIH SPDS, PAO5 and the SSAT
enzymes. Additionally, ODC has been both observed and predicted to
be highly expressed in S. pennellii, while AIH showed lower expres-
sion. In summary, the MSR model correctly indicated the polyamine
biosynthetic pathway as highly expressed in both species, identified
with high precision the isozymes that aremost likely highly expressed
for each reaction, and finally highlighted some differences between S.
lycopersicum and S. pennellii in terms of expression of enzymes and
their homologues.

Discussion
In this study, we presented a new simple approach to the challenge of
plant cistrome annotation. In contrast to other approaches e.g.
screening for a very broad range of protein-DNA interactions12,

identifying specific TF-DNA binding events40,41, or extracting motifs
enriched in genes exhibiting a stimulus response42, herewe focused on
a specific aspect of cistrome function. Namely,wedetermined the level
of gene expression, and built a mathematical model for robust and
accurate prediction of it from DNA sequence.

There are notable features differentiating our approach from
those used in most other studies on cistrome annotation. First, our
study represents a genome-wide identification of predictive features
related to the mRNA turnover and not those associated with the reg-
ulation of gene expression in response to any stimulus or tissue spe-
cificity. Second, while we highlighted some key DNA-TF binding
events, a wider range of functional sequence features at the level of
DNA and likely mRNA too (e.g. polyadenylation signals) was captured.
In fact, most of the identified features were near the TSS and TTS sites,
including gene UTRs (Fig. 3a and Supplementary Fig. 2). These regions
are well known to be associated with mRNA turnover43,44 and were
recently targeted by synthetic biology approaches proving their cen-
tral role in gene regulation, e.g. plant biotechnology chimeric 3′
flanking regions strongly enhance gene expression in plants45,46. Fur-
ther analyses will be required to characterise themolecular function of
specific EPMs, e.g. the distinction between DNA–protein interaction
(regulation) and RNA turnover or processing. Finally, due to the cho-
sen training strategy, we avoided capturing sequence features con-
served in all genemodels (e.g. translation start and terminationcodons
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Fig. 6 | Prediction and comparison of gene expression between S. lycopersicum
and S. pennellii by the MSR model. a Distribution of MSR model-predicted
expression probabilities for the low (1st TPM quartile), middle (2nd and 3rd TPM
quartiles) and high (4th TPM quartile) expressed transcripts of S. lycopersicum.
Results of the shuffled-sequence control are plotted in grey for each respective
expression level. b Distribution of MSR model-predicted expression probabilities
for the low (1st TPM quartile), middle (2nd and 3rd TPM quartiles) and high (4th
TPMquartile) expressed transcripts of S. pennellii. Results of the shuffled-sequence
control are plotted in grey for each respective expression level. c Expression of
MapMan functional categories exhibiting significant differential expression

between S. lycopersicum and S. pennellii (Wilcoxon rank-sum test FDR <0.05). The
difference between mean expression for the observed and predicted values pro-
vides the x and y axis coordinates, respectively. Data were scaled so that −1 indi-
cates expression in S. lycopersicum only, 0 indicates equal expression in both
species and 1 signifies unique expression in S. pennellii. Linear regression repre-
sentsfit with a PCCof 0.56 (PCC p value 5.827e-09,R2 0.32).dMapping of predicted
expression probabilities (P; predicted) and observed gene expression (T; true
labels) for enzymes of the polyamine biosynthesis pathway in S. lycopersicum and
S. pennellii. Heatmaps are sorted according to gene orthologs, with the S. lyco-
persicum on the left side and the respective S. pennellii orthologs on the right.
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or classic signals for transcription start47) but recovered only those
predictive for high or low gene expression. While this provides a
wealth of valuable and novel information, it is difficult to define a
ground truth reference for our results; e.g. many structural and reg-
ulatory elements of the gene model are well-characterised and rela-
tively easy to annotate48,49, this is not yet the case for the turnover-
related regulatory features4.

Indeed, themajority of the identified sequence features, including
three of seventeen complete EPM clusters and multiple 'in-cluster'
EPMs, were notmatching with previously described CREs despite their
clear sequence and positional specificity. This has likely three main
reasons. First, the incompleteness of the reference databases; the
cognate TF-binding motifs might be uncharacterised or not included.
Second, due to e.g. model regularisation, highlighted predictive
sequences often represent only partial CREs. For example, important
but redundant sequence features, e.g. palindromic and near-
palindromic repeats, might be only partially captured. Finally, some
EPMs were not TF-binding motifs but likely e.g. intron-, transposon-
and UTR-associated sequence features, which are left out on promi-
nent CRE databases.

The achieved model performance is rather striking, considering
the complexity of plant gene regulation50 and the relatively small
training set, especially for the SSR models. In comparison to more
complex models like the Enformer17, which capture long-range inter-
actions by scanning sequences longer than 100 kb, ourmodels capture
only the information present in the proximal cis-regulatory sequences.
This makes them blind to the gene regulatory events being associated
with very distal CREs, including e.g. regulation of tissue- development-
and stress-specific genes51. Indeed, in our analysis of leaf and root
samples, themodels did not capture the tissue-specific regulation. The
tissue-specific regulation seems to be independent of the genome-
wide regulatory signature, highlighting also that prediction of low (or
high) expression ismore robust against confounding variables (Fig. 2),
and illustrating the interaction between core cis-gene regulatory code
and features rendering conditional gene expression.

This indicates that the core cis-regulatory landscape influencing
the gene expression level in plants is relatively simple and very con-
served. This is largely in agreement with the conservation of TF-
binding sites in Arabidopsis thaliana ecotypes20. While the stimulus-
induced changes in gene expression rarely translate directly to chan-
ges in the accumulation of respective proteins, the mRNA turnover,
and the related amount of mRNA in the cytosol remains a key factor
determining the general amount of respective protein product52–54.
Thus, the determinants of the mRNA level are important elements of
the system homoeostasis and are unlikely to exhibit high genetic
variation55,56. The extent of that conservation is reflected by a com-
parison of the MSR model with the cross-species SSR performance.
Increasing the training set for multiple species enabled the MSR
models to capture that conserved regulation component and gen-
eralise very well to new genomes. It is also important to note that, at
the same time, theMSRmodels remain relatively insensitive to species-
specific features of genemodels, such as varying lengths of regulatory
sequences. In comparison, the random forest classifier trained on
quantitative features of gene regulatory elements showed a good SSR
performance, but not in the MSR scenario (Supplementary Fig. 4 and
Supplementary Data 2).

One advantage of the parallel sequence feature and function
annotation is the identification of the positional specificity of the EPM
occurrence and function. In general, CREs may overlap with genic
features like the UTRs, exons or introns, or are located distantly to the
up- and downstream of the TSS or TTS, respectively51. In Arabidopsis
thaliana, for example, several transcription factors are known to bind
specifically at around 100 bp upstream of the TSS around the
promoter57. Other studies show that certain CREs may preferentially
occur in thefirst intronofA. thalianagenes58.While the ratio ofCREs to

genes correlates, the distances in between likely correlate with the
overall genome sizes due to mobility transposons or accumulation of
repeats59. Previous experiments on reporter genes and comparative
genomics in A. thaliana and Z. mays demonstrated changes in gene
regulation for transcription factors binding sites situated within
introns, where the distance between cognate CRE and the TSS was
changed60.

We demonstrated two EPMs that exhibit consistent positional
preference and retained regulatory function, while also displaying
variable positional preference that correlates with their regulatory
activity across diverse flowering plant model organisms. In all four
analysed species, A. thaliana, S. bicolor, S. lycopersicum and Z. mays,
2CWY+type EPMs exhibit strict positional preference of the tran-
scription start site (TSS and TSS-downstream) and the transcription
termination site (TTS and upstream-TTS). The 2CWY+ cluster is strictly
associatedwith thepredictionof lowgene expression, too. EPMsof the
2GCB+ cluster, however, identified inA. thaliana, S. bicolor and Z.mays
do occur rather up- or downstream of the TSS and TTS region,
respectively or, in contrast, within the transcribed region, with con-
versely regulatory effects (Fig. 4d). These findings indicate that the
linear distance of CREs to their cognate gene plays a defined role in
gene regulation. Interestingly, it has also been demonstrated thatmost
similar to EPMs 2CT+, CT(GA)-binding motifs of paralogous tran-
scription factor BPC6 are localised at the TSS in barley (Hordeum)
genes, as well61. These TFs are responsive to cytokinin stimulus61,
congruent with findings about BPC6 in response to brassinosteroids in
A. thaliana25. Somehow contradictory to our findings, studies of
paralogous transcription factor BPC1 in A. thaliana showed that by
binding its cognate motif (GA-rich region) situated in a 5′-terminal
intron is up-regulating gene expression62. The here identified 2CT+
type epmArth-S0-p1m05 appears localised in the 5’ transcript region
but is associated with low rates of expression (Fig. 4e). In general,
however, the EPMs identified here might not cover all regulatory ele-
ments. EPMs associated with more specific types of expression, e.g.
developmental stages or under stress conditions, together with
already characterised CREs in other organisms, will be identified in the
future.

The predictive performance of EPMs from leaf SSR and MSR of A.
thaliana was determined by measuring EPM occurrence within their
preferred ranges. For genes with low expression levels, it is much less
clear how these genes are correctly predicted from the occurrence of
associated EPMs (Supplementary Data 6). This indicates that the CNN
model may use further criteria for predictions like sequence context
like combination ofmotifs. In contrast, however, EPMs associatedwith
high rates of gene expression are strong predictors for high rates of
gene expression, occurring in over 80% of matches in the correct
expression class. Amongst them are the EPMs of the 2CT+ and RGA-
GAR clusters that were found in root and leaf SSR and MSR models,
respectively, underlining their regulatory relevance and evolutionary
conservation.

Our analyses on the occurrence of EPMs and associated predic-
tion of gene expression throughout different Solanum genotypes
further shows how EPMs could be used for extended annotation and
characterisation of genes (Fig. 5b–g). Our findings indicate that if indel
or point mutations are present within the identified EPM or if the EPM
is located outside of its typical positional preference, the CNN model
disregards them for prediction. In addition, mutations in the EPM
region do, in general, affect the model’s prediction. Future char-
acterisation of EPMs should consider both their sequence and posi-
tional preference and their association with genomic features such as
UTRs, introns, transposons or repeats. The insertion of SVs within the
cis-regulatory sequences has been associated with perturbations in
gene expression, as shown for Solanum cultivars36. Genes that were
predicted for differential gene expression and were found to undergo
SV insertion together with log-fold changes in gene expression also all
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had mutated EPM regions, as well (Fig. 5c). It will be highly interesting
studying insertions of, e.g. transposable elements (TEs) in non-model
plant Brassicaceae species, which were associated with perturbations
in gene expression relevant to the transition from C3 to C4
photosynthesis63. Here, mining and characterisation of EPMs could
improve the identification of the regulatory determinants in such
evolutionary processes.

We have also demonstrated that our approach is able to highlight
some genotype-determined phenotypic and metabolic features of
newly sequenced plants. The MSR model highlighted known differ-
ences between S. lycopersicum and S. pennellii in termsof the increased
biotic and abiotic stress resistance64–66, growth67,68 and cell wall69. This
is striking considering that the compared species are homologous to
each other, in comparison to the A. thaliana, S. bicolor and Z. mays
genomes that were used to train the MSR model. The result suggests
that the observed differential expression of gene functional groups
results from changes in a relatively limited pool of conserved reg-
ulatory sequences. Application of the MSR model to the metabolic
pathway of polyamine biosynthesis, i.e. compounds with highly dif-
ferential accumulation in S. lycopersicum and S. pennellii39, showed that
the approach identifies active pathways (e.g. those with multiple
reactions represented by at least one highly expressed enzyme),
selects the most likely expressed isozymes for a given reaction, and
highlights differences between the expression of orthologous genes in
S. lycopersicum and S. pennellii. While these differences do not have to
be directly associated with the observed differential accumulation of
polyamines, the high precision and accuracy of expression prediction
indicate that the MSR model is an efficient tool for increasing the
confidence in gene candidate selection for molecular validation70.
Namely, enzymes that are observed and predicted to be highly
expressed based on a wealth of data across several species, might be a
safer choice for follow-up characterisation than those that were
observed to be expressed in a single experiment.

In summary, we showed that training a relatively simple deep
learningmodel on publicly available large-scale genomicdata provides
a wealth of new biological information if combined with a proper
model interpretation approach and set in anevolutionary context. This
highlights the great potential of deep learning for high throughput
cistrome annotation in newly sequenced genomes, as exemplified by
our MSR models. Another important application is the prediction of
the effects of genetic variation71. While current genomics approaches
rarely enable functional annotation of the effect of polymorphisms72,73

and rely mostly on statistical association, an increasing availability of
long-read data enables making mechanistic links between observed
variation and the downstream molecular network36. The presented
exampleof gene expression across 14 tomato accessions represents an
important step in this direction and opens perspectives for routine
prediction pipelines for new genomes, tissues, and environmental
scenarios. The ability to predict which genes are likely to be expressed
and which are not might be also crucial for the selection of gene
candidates in GWAS studies74–76, or in the selection of functional
enzyme homologues in reconstructed metabolic pathways70. While
transcriptomic and metabolomic data are often used for that
purpose75,77–79, a purely sequence-based approach will significantly
accelerate the process.

Methods
Reference genomes, proteomes, cDNA, gene models and data
processing
The reference genomes, proteomes, cDNAs and gene models were
downloaded from the Ensembl plants database (v52). Transcriptome
data were downloaded from the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) database using the
fasterq-dump (version 2.11.3). These were trimmedwith sickle (version
1.33), mapped unto reference cDNA using Kallisto (version 0.46.2) and

Kallisto outputs were processed using the tximport package of the R
statistical language to obtain the normalised counts per gene in tran-
scripts per million (TPM) (Supplementary Data 1 and Source Data). To
train the CNN models, the expression of transcript isoforms was
aggregated to produce a single TPM value for gene expression.

Up- and downstream flanking sequences were extracted by
anchoring at the gene start and end coordinates. Taking DNA strand-
edness into consideration, sequences from the negative strand were
reverse complemented. The length of the input sequence data was
estimated empirically in two rounds of model performance test. First,
promoter and terminator sequences of different lengths were tested
(500, 1000, 1500, 2000,2500, 3000 nt) while keeping the 5′ and 3′
UTRs of constant length of 500 nt. Secondly, we fixed the promoter
and terminator lengths to 1000bp and simultaneously varied the
lengths of theUTRs (100, 300, 500, 700nt). Basedon the accuracy and
auROC statistics (Supplementary Fig. 2 and Source Data) and compu-
tational complexity, 1000ntpromoter– 500nt 5′UTR– 500nt 3′UTR−
1000 nt terminator sequences combined a good performance and
interpretability with reasonable model training and interpretation
time; further extension of them did not result in significant improve-
ments in any of the tested species. The range also captures more than
half of the complete annotatedUTRs across all specieswith themedian
UTR length between 135 nt for the A. thaliana 5′UTR to 378 nt for the S.
bicolor 3′UTR (Supplementary Fig. 2). Accordingly, gene flanking
regions were one-hot-encoded and for each gene combined into a
single continuous sequence and separated by a 20 nt zero-padding
between 5′ and 3′ UTR.

Producing non-homologous training and validation sets
We built training and validation sets for the CNNs as binary classifiers
to predict genes as either lowly or highly expressed. We used the
thresholds of the lower and upper quartiles of the distribution of the
log-transformed transcript per million values (<25% percentile,
between 25% and 75% percentile, > 75% percentile, respectively). CNNs
were trained using chromosomal level cross-validation, in which one
chromosome was left out for validation and the rest used for training.
To mitigate imbalance during chromosome-wise cross-validation
during training, we randomly down-sampled the sequences of the
majority class without replacement. Consequently, accuracy is utilised
as the performance measure throughout the manuscript. The respec-
tive F1 scores are provided in Supplementary Data 2, 3 for comparison,
applicable for unbalanced sampling.

To prevent overestimation of model performance through over-
fitting to evolutionary relatedness, we excluded genes on the valida-
tion chromosome that had homologues on the training chromosomes
in SSR models. To produce non-homologous training and validation
sets, we constructed local protein databases using proteomes for
every species. The proteomes were blasted against their respective
databases (Protein–Protein BLAST 2.9.0+). Two sequences were con-
sidered homologous if the blast hit had an e-value <0.001 and a bit
score >50. Genes in the validation chromosome that had homologous
pairs in the training chromosomes were dropped.

Architecture of convolutional neural networks and training
strategy
Convolutional neural networks were built using the sequential API of
tensorflow-keras. All models had three convolutional blocks, each
convolutional block had two convolutional layers followed by a max
pooling and a dropout layer.

The final convolutional block was followed by a fully connected
block with two fully connected layers interspaced by dropout layers.
All dropout layers used a dropout rate of 0.25, all convolutional and
fully connected layers used Rectified Linear unit activation functions.
The output layer contained a single unit and the sigmoid activation
function.Modelswere trainedwith amaximumnumber of 100 epochs.
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To further mitigate overfitting, we used the EarlyStopping callback
(patience = 10), the ModelCheckpoint callback was used to restore the
best-seen model with the lowest validation loss. Finally, the Redu-
ceLROnPlateau callback (patience = 5) was used to decrease the
learning rate to improve model training.

Stochastic gradient descent, as implemented by the Adam opti-
miser (learning rate = 0.001), was used to take gentle steps towards the
lowest achievable binary cross entropy loss.

Model interpretation
We computed hypothetical and actual importance scores for all vali-
dation sets across all chromosomes. These scores areused in twoways:
firstly, importance scores were averaged across all nucleotides
per sequence to obtain single scores per nucleotide and then averaged
across all sequences to obtain a single representation of the most
salient regions. Secondly, the hypothetical and actual importance
scores are used as inputs to TF-MoDISco, which extracts the predictive
regions from the importance scores as seqlets. These seqlets are then
clustered into groups and each group is aggregated into a repre-
sentative motif. Due to memory and runtime constraints, we used the
default value for the maximum number of seqlets per metacluster.

EPM characterisation and comparison
We retrieved expression-predictive motifs (EPMs) using TF-MoDISco
that returns both cluster-weighted models and position weight
matrices (PWMs). PWMswere characterised with R statistical language
and the package JASPAR2022 calculates various properties of PWMs,
suchas information content and consensus sequence24. In addition, we
searched for potential hits between EPMs and already characterised TF
bindingmotifs on the JASPARplants database (SupplementaryData 4).
With the algorithm implemented in the R package motifStack EPMs
could be converted and clustered by homology using the
Smith–Waterman algorithm80 (SupplementaryData 4). EPMsextracted
from the SSRmodel andMSRmodelwith TF-MoDIScoweremapped to
their respective positional preferred range on the A. thaliana gene
flanking region with BLAMM utilising a sensitivity e-value of 0.000137.
In avoidance of overlapping positional ranges lower and upper quar-
tiles from the seqlet extraction and clustering step were used as mar-
gins to reduce outliers. In addition, more than one-tenth of all seqlets
permotif must be foundwithin the up and/or downstream region, else
the region was excluded from mapping for the respective EPM. The
occurrence of each EPM from metacluster 1 or 0 (association to low
and high gene expression) was counted among the measured
expression class of the gene (low, high) and the predicted expression
class of the gene, using the respective model in R. To evaluate the
overall predictive performance of each EPM, we calculated the motif’s
enrichment, using a variant of a formula proposed by Smet and
colleagues35. This formula calculates the log2 fold change in the odds
of an EPM associated with one gene expression class being present in
genes with the same expression class compared to genes of the
opposite expression class. Here, a positive enrichment results in a
positive value and vice versa. In addition, we calculated percentages of
EPM occurrences within respective expression classes and tested for
significance from chi-square tests against normal distribution for the
assumption that EPMs would be distributed to both equally (Supple-
mentary Data 6). Scripts and code written for the extraction, char-
acterisation, and comparison of EPMswere performed in RStudio 4.2.2
and BLAMM are provided in the repository https://github.com/
NAMLab/DeepCRE37,81.

Investigation of flanking gene sequences of S. lycopersicum sub-
variants
Candidate orthologous gene selection followed the identification of
predicted perturbations in gene expression of fourteen wild and cul-
tivated Solanum spp36. We selected 14 diverse genotypes for

prediction: S. pimpinellifolium (PAS014479, BGV006775), S. lycopersi-
cum var. cerasiforme (BGV006865, BGV007931, BGV007989), S. lyco-
persicum processing (M82), S. lycopersicum fresh (EA00371, Fla.8924,
LYC1410) and S. lycopersicumvintage (PI69588, Brandywine, EA00990,
PI303721). Perturbations in gene expression of wild and cultivated
Solanum spp. were predicted using themulti-speciesmodel (MSR) and
expressed as probabilities ranging from0 to 1, predicting low and high
gene expression (Supplementary Data 7).

We tested the occurrence of EPM variation states, conserved or
mutated across the 15 Solanum genotypes, coinciding with predicted
shifts between low and high levels of gene expression. The criteria for
defining gene expression heterogeneity relied on the predicted MSR
leaf models probability, with variance thresholds set above 0.005.
Predicted probabilities below or equal to 0.5, indicated low gene
expression rates and vice versa (Supplementary Data 7). To link EPMs
with gene expressionpatterns,mappingwasperformedbetween EPMs
from the S. lycopersicum MSR model and genes with predicted
homogenous and differential gene expression rates across the fifteen
different genotypes using BLAMM (e-value <0.0001)37. For each gene
EPMs were classified as conserved or mutated if these were present
across all genotypes or differed from S. lycopersicum ITAG 4.1,
respectively (Supplementary Data 8). Addressing the imbalance in the
number of genes with homogenous (n = 27,993) and predicted differ-
ential gene expression (n = 2053), percentages conserved andmutated
genes were calculated by randomly pooling genes to a set size of 100
and bootstrapping 1000 times. Scripts and code written in R 4.2.2
provided in the repository https://github.com/NAMLab/DeepCRE81.

We found 385 genes that were predicted for differential gene
expression, with structural variants (SVs) in their upstream or down-
stream 5 kbp regions, which were also detected for log-fold change in
gene expression levels, according to Alonge and colleagues and con-
tainingmutated EPMs (Fisher exact test statistic value is <0.00001). Six
genes from the fifteen genotypes were randomly selected for in-detail
analyses aligned with MAFFT82 (Supplementary Data 8, 9). EPMs
extracted from the leaf MSRmodel of S. lycopersicumweremapped to
the candidate gene alignments with BLAMM37 (SupplementaryData 8).
Up- and downstream gene regions were investigated manually for the
presence of structural variants and other mutations within regions
matching EPMs in their positional preferred ranges and annotated
(Supplementary Data 9). The two examples, Solyc02g08170.4 and
Solyc02g080300.3 (Fig. 5), were selected to explain the effects of EPM
mutations on gene expression prediction, as both genes contain only
one EPM region within its preferred range that was mutated,
respectively.

Functional annotation and pathway mapping
Functional annotation for comparison of the model accuracies
between functional categories was performed de novo using
Mercator438 on respective proteomes (Supplementary Data 11). Func-
tional annotation of S. lycopersicum and S. pennellii genes to MapMan
functional categories was also performed using Mercator438 on ITAG
4.1 and the latest S. pennellii genome Schmidt and colleagues (2017)83,
as described in Mercator438. The significance of the shift of median
between S. lycopersicum and S. pennellii shown in Fig. 6c was per-
formed by a two-sided Wilcoxon rank-sum test with
Benjamini–Hochberg p value correction (Supplementary Data 10).
Metabolic pathway mapping for polyamine biosynthetic pathway was
done using MapMan 'bin 8' and the super-pathway of polyamine bio-
synthesis POLYAMINSYN3-PWY from the current TomatoCyc annota-
tion v6.0.0. All statistics and visualisation were done using R 4.2.2 and
Bioconductor84.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The reference genomes sequence and annotations (A. thaliana, S.
lycopersicum, S. bicolor and Z. mays) used for extraction of gene
flanking regions and estimation of transcript profiles were downloaded
from Ensembl plants database v52 (plants.ensembl.org)
GCA_000001735.1 [https://plants.ensembl.org/Arabidopsis_thaliana],
GCA_000188115.3 [https://plants.ensembl.org/Solanum_lycopersicum],
GCA_000003195.3 [https://plants.ensembl.org/Sorghum_bicolor], and
GCA_902167145.1 [https://plants.ensembl.org/Zea_mays]. Tran-
scriptomic short-read data was downloaded from the National Center
for Biotechnology Information (NCBI) Sequence Read Archive (SRA)
database for leaf and root data from Bioprojects to determine tran-
script profiles PRJEB32665, SRP010775, PRJNA171684, PRJEB22168,
PRJNA237342, PRJNA640858, PRJNA217523, and PRJNA271595. For the
analyses of the fifteen Solanum genotypes, we used as reference
sequences and annotations the Sol Genomics Network [https://
solgenomics.net/ftp/genomes/]. For Solanum pennellii we used the
accessions from Schmidt and colleagues (2017)83 [http://www.plabipd.
de/portal/solanum-pennellii]. These reference datasets were processed
asdescribed in themethods section togenerate results. Sourcedata are
provided with this paper.

Code availability
Custom code used in this study is available from theGitHub repository
and Zenodo (https://github.com/NAMlab/DeepCRE)81.
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