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High clonal diversity and spatial genetic
admixture in early prostate cancer and
surrounding normal tissue

Ning Zhang1,2,14,15, Luuk Harbers 1,2,15, Michele Simonetti 1,2,15,
Constantin Diekmann 1,2, Quentin Verron1,2, Enrico Berrino 3,4,
Sara E. Bellomo3,5, Gabriel M. C. Longo 6, Michael Ratz 7, Niklas Schultz2,8,
Firas Tarish9, Peng Su10, Bo Han10, Wanzhong Wang8, Sofia Onorato1,2,
Dora Grassini4, Roberto Ballarino 1,2, Silvia Giordano 3,5, Qifeng Yang11,
Anna Sapino 3,4, Jonas Frisén 7, Kanar Alkass7,8, Henrik Druid 8,
Vassilis Roukos 6,12, Thomas Helleday 2,8, Caterina Marchiò3,4,
Magda Bienko 1,2,13 & Nicola Crosetto 1,2,13

Somatic copy number alterations (SCNAs) are pervasive in advanced human
cancers, but their prevalence and spatial distribution in early-stage, localized
tumors and their surrounding normal tissues are poorly characterized. Here,
weperformmulti-region, single-cell DNA sequencing to characterize the SCNA
landscape across tumor-rich and normal tissue in two male patients with
localized prostate cancer. We identify two distinct karyotypes: ‘pseudo-
diploid’ cells harboring few SCNAs and highly aneuploid cells. Pseudo-diploid
cells form numerous small-sized subclones ranging from highly spatially
localized to broadly spread subclones. In contrast, aneuploid cells do not form
subclones and are detected throughout the prostate, including normal tissue
regions. Highly localized pseudo-diploid subclones are confinedwithin tumor-
rich regions and carry deletions in multiple tumor-suppressor genes. Our
study reveals that SCNAs are widespread in normal and tumor regions across
the prostate in localized prostate cancer patients and suggests that a subset of
pseudo-diploid cells drive tumorigenesis in the aging prostate.

Somatic copy number alterations (SCNAs) are pervasive in human
cancers1–3. It has been proposed that SCNAs form in the early stages of
tumorigenesis in punctuated evolutionary bursts4–7. Indeed, SCNAs
have been detected in pre-malignant lesions such as Barret’s

esophagus years before the onset of invasive esophageal cancer8 and
oral leukoplakias undergoing progressive transformation to oral
squamous cell carcinomas9. However, the exact timing and mechan-
isms of SCNA formation during carcinogenesis remain poorly
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understood and a map of SCNAs in early-stage, localized tumors and
their surrounding normal tissues is missing.

In prostate cancers, SCNAs represent the predominant type of
genomic alteration and are thought to be the major driver of these
tumors10. Early-stage localized prostate cancers are often character-
ized by the presence of multiple spatially confined tumor foci11. Thus,
these tumors represent an ideal model to investigate the spatial dis-
tribution of SCNAs in early-stage cancer and adjacent normal tissue.
Multi-region sequencing of medium-grade (Gleason 7) localized
prostate cancers previously showed extensive intratumor hetero-
geneity between distinct tumor foci at the level of single-nucleotide
variants (SNVs), SCNAs, and genomic rearrangements, suggesting an
independent origin of different foci12. Polyclonal origin was also sug-
gested by another study, in which SNVs were detected in morpholo-
gically normal prostate tissue distant from cancer lesions, consistent
with so-called cancerization field effects13. More recently, some of us
leveraged spatial transcriptomics (ST)14 to assess the spatial distribu-
tion of SCNAs in different tumor types, including two Gleason 7
prostate cancer samples15. By performing ST on tissue sections from
multiple tissue blocks excised from a midsection of a prostatectomy
sample, large chromosomal amplifications and deletions were detec-
ted both in cancerous areas and tissue regions classified as benign15.
However, since this approach infers SCNAs from RNA-seq data and
classical ST does not reach single-cell resolution, a thorough char-
acterization of the diversity of SCNAs across normal and tumor regions
was not achieved in that study15.

In this work, to overcome these limitations and gain further insights
into the spatial distribution of SCNAs and mutations in the prostate
gland, we perform multi-region single-cell copy number profiling com-
bined with targeted deep sequencing of genomic DNA extracted from
the same regions in two prostatectomy samples from patients diag-
nosed with localized prostate cancer. We show that SCNAs and, to a
lesser extent, mutations are widespread throughout the prostate gland,
including tissue regions classified as normal based on both morpholo-
gical assessment and RNA-seq. However, a subpopulation of cells car-
rying subclonal deletions affecting specific tumor suppressor genes is
highly enriched in tumor areas, implicating these subclones in early
tumorigenesis.We provide a prostate-wide, spatially resolved, single-cell
SCNA map, demonstrating that genome instability is widespread
throughout the aging prostate and suggesting that a specific set of high-
risk SCNAs paves the path towards tumorigenesis.

Results
Study design and methodology for single-cell SCNA profiling
We prospectively collected prostatectomy samples from six
patients (P1-P6) diagnosed with localized prostate cancer (age range:
43–65 yrs) and sliced a transversal prostate midsection into multiple
small tissue blocks ( ~ 125 mm3, hereafter named ‘regions’) using the
same approach that some of us previously adopted for multi-region
spatial transcriptomics15 (Supplementary Table 1 and Methods). We
sliced each region into halves and used one half for genomic DNA
(gDNA) /RNA extraction and the other for single nuclei isolation. For
two samples (P2 andP5) inwhich thequality of gDNAwashigh in all the
regions (n = 34 and 28 regions, respectively), we used the single nuclei
suspensions to profile SCNAs in individual cells, while we used the
extracted gDNA for targeted mutation sequencing (Fig. 1a and Meth-
ods). In addition, we performed histopathological assessment using
two tissue sections sliced, respectively, from the top and bottom of
each region and stained with hematoxylin and eosin (Methods). Since
in this study prostatectomywas performed endoscopically, the quality
of the RNA extracted from each region was not suitable for spatial
transcriptomics but sufficiently good for bulk RNA-seq. Therefore, to
complement the histopathological classification, we also performed
bulk RNA-seq for all the regions of P2 and P5 (Supplementary
Methods).

To perform single-cell SCNA profiling from all the regions in a
cost-effective manner, we leveraged our CUTseq method for highly
multiplexedSCNAprofiling16, anddeveloped a single-cell adaptationof
it, whichwe named single-cell CUTseq or scCUTseq (Methods). A step-
by-step scCUTseq protocol is available at Protocol Exchange. Briefly, in
scCUTseq, cells or nuclei are sorted into 384-well plates pre-filled with
mineral oil to prevent evaporation, and whole genome amplification
(WGA) by multiple annealing and looping based amplification cycles
(MALBAC)17 is performed in nanoliter volumes using a contactless
nanodispensing device (I.DOT) to minimize reagent volumes and
hence costs (Fig. 1b). For sorting, we optimized gating parameters
aiming at sorting only single cells or nuclei into each well (Supple-
mentary Fig. 1a–d). Next, each nucleus is barcoded using the same
approach as in CUTseq16 but reagent volumes are downscaled with
I.DOT to increase the efficiency of enzymatic reactions and further
reduce costs. Lastly, the barcoded nuclei are pooled together, fol-
lowed by gDNA purification and fragmentation, in vitro transcription
to selectively amplify gDNA downstream of CUTseq adapters, library
preparation, and sequencing on Illumina platforms (Fig. 1b). A key
feature of scCUTseq is its compatibility with fixed cells and nuclei,
allowing to immediately stabilize gDNA to prevent batch effects when
multiple samples must be processed in parallel and single-nucleus
sorting cannot be immediately performed after nuclei extraction, as in
this study.

To assess the analytical performance and validate scCUTseq, we
performed several experiments. First, we assessed the effect of cell
fixation and WGA volume reduction and found that the genome cov-
erage and copy number profiles remained stable down to 1:200
MALBAC reagent volume scaling, independently of cell fixation (Sup-
plementary Fig. 2a–f and Supplementary Methods). Importantly,
scCUTseq could clearly resolve the copy number profiles of different
cell lines and was free of cross-contamination (Supplementary
Fig. 2g, h), highlighting its specificity. Second, we assessed the sensi-
tivity of scCUTseq by determining its ability to detect a 7 megabase
(Mb) deletion introduced by CRISPR-Cas9 in a small percentage ( ~ 3%)
of cells transfected with two small guide RNAs (sgRNA) targeting the
KMT2A andHYLS1 loci on chromosome (chr) 11 (Supplementary Fig. 3a
and Supplementary Methods). In 3.3% of the cells transfected with
both sgRNAs, scCUTseq detected a single copy of the exact 7Mb
deletion, whereas in 3.2% of the cells the deletion extended until the
end of the q-armof chr11, in agreementwith similar estimates obtained
by DNA fluorescence in situ hybridization (FISH) (Supplementary
Fig. 3b–h and Supplementary Methods), thus highlighting the sensi-
tivity of our method. Third, to rule out that the MALBAC step intro-
duces SCNA artefacts, we compared scCUTseq with Acoustic Cell
Tagmentation (ACT)18, another single-cell SCNA profiling method that
is based on DNA tagmentation and does not involve a WGA step
(Methods). Although ACT performed better in terms of breadth of
coverage (as expected, given that scCUTseq utilizes restriction
enzymes, while ACT relies on tagmentation) and read count over-
dispersion, both methods yielded similar copy number profiles (Sup-
plementary Fig. 4a–h), indicating that theWGA step in scCUTseq does
not result in obvious artefactual SCNA calls. Altogether, these results
made us confident to apply scCUTseq to systematically profile SCNAs
across all the tissue regions of the P2 and P5 prostate samples
described above.

Twomajor types of SCNA-containing cells populate the prostate
of patients with localized prostate cancer
Wefirst classified each region inP2 andP5 as tumor-rich regions (TRRs,
>50% of tumor cells), focally enriched regions (FERs, 10–50% of tumor
cells), and normal regions (NORs) based on histopathological exam-
ination by two board-certified pathologists who assessed the samples
independently (Supplementary Figs. 5 and 6). In P2, TRRs and FERs
were mainly distributed along the left-posterior prostate margin,
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whereas in P5 they formed a clearly visible cluster in the right-anterior
part of the prostate (Fig. 1c, d). Clustering of bulk RNA-Seq data using a
non-negative matrix factorization approach yielded three distinct
clusters that recapitulated, although not completely, the distribution
of TRRs, FERs, and NORs (Fig. 1e, f, Supplementary Fig. 7a, b, and
Supplementary Methods). Gene set enrichment analysis (GSEA)

revealed that multiple genes associated with prostate cancer were
overexpressed in TRRs compared to other regions, including the well-
known prostate cancer biomarker PCA3 gene and the recently identi-
fied diagnostic biomarker TMTC4, which is highly specific for prostate
cancer19 (Supplementary Figs. 8 and 9, and Supplementary Methods).
Notably, especially in sample P2, several regions classified as NORs
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based on histopathology shared similar gene expression profiles with
TRRs or FERs, indicating that these regions might already contain a
population of tumor cells undetected by histopathology.

Next, we used scCUTseq to generate DNA copy number profiles
from 23,808 nuclei from 62 regions in total. To automatically filter out
low-quality profiles, we trained a random forest classifier on 2304
manually annotated single-cell profiles, which yielded a very high
classification accuracy (area under the curve, AUC: 0.993) (Supple-
mentary Fig. 10a–d, Supplementary Data 1, and Methods). By applying
this classifier to our dataset, we obtained a total of 9960 high-quality
profiles, including 194 high-quality profiles per region, on average, for
P2 (range: 98–362; percentage of nuclei retained for analysis:
25.5–94.3%) and 120 for P5 (range: 17–212; percentage of nuclei
retained for analysis: 4.4–55.2%) (Supplementary Fig. 10e, f). Com-
pared to ACT, scCUTseq typically yielded a higher fractionof cells with
high-quality copy number profiles from the same region (Supple-
mentary Fig. 10g). Notably, the percentage of cells retained by our
classifier was much higher in the case of other tissues that we profiled
by scCUTseq (Supplementary Fig. 10h), indicating that the type of
tissue and procedure to obtain it can greatly affect the fraction of cells
that can be analyzed.

We then wondered whether some of the cells rejected by the
random forest classifier are in the S phase of the cell cycle, explaining
their noisy copy number profiles. To test this possibility, we leveraged
scAbsolute20, a computational tool which infers the replication status
of single cells from scDNA-seq data. Application of scAbsolute to the
copy number profiles of 991 cells from four different scCUTseq
libraries from P2 and P5 yielded clearly bimodal distributions of the
cycling activity inferred by scAbsolute (Supplementary Fig. 11a–d and
Methods), indicating that a sizable fractionof the cells in these samples
were in S phase. Notably, the cycling activity was significantly higher
for cells rejected by the random forest classifier compared to cells with
high-quality copy number profiles (Supplementary Fig. 11e). Indeed,
the majority of cells excluded were classified as cycling based on
scAbsolute (Supplementary Fig. 11f–i), suggesting that even cells with
noisy copy number profiles are not necessarily an artefact of scCUTseq
but rather reflect a specific biological state. For simplicity, however,we
excluded these cells from all downstream analyzes.

Next, we visualized the spatial distribution across P2 and P5 of
cells with high-quality copy number profiles carrying SCNAs. To our
surprise, in both samples, SCNA-harboring cells were widespread
throughout all the regions examined and SCNAs were clearly enriched
inside TRRs and FERs (Fig. 1g, h). As a comparison, scCUTseq on 2,304
nuclei (of which 1,703 (73.9%) yielded high-quality copy number pro-
files) from fresh frozen human forebrain and skeletal muscle autopsy
samples from two donors revealed a very small number of SCNAs, and
genome-wide copynumber profileswere completely flat inmostof the
cells analyzed (Supplementary Fig. 12a–d, Supplementary Data 2, and
Methods), further proving that SCNAs detected by scCUTseq are not
an artefact. Furthermore, compared to SCNAs, point mutations were

more localized in TRRs and FERs, even though they were also detected
in many regions classified as normal (Fig. 1i, j).

We then sought to investigate the SCNAs detected in P2 and
P5 samples in depth. Visual inspection of high-quality copy number
profiles revealed the existence of three major groups of cells: (i)
diploid cells with completely flat copy number profiles; (ii) pseudo-
diploid cells harboring a few sparse alterations typically consisting of
(sub-)chromosomal arm deletions affecting one or few chromo-
somes; and (iii) aneuploid cells characterized by multiple whole
chromosome amplifications and deletions, reminiscent of so-called
‘hopeful monsters’ previously described in colorectal cancer7

(Fig. 1k). Pseudo-diploid cells accounted for 22.8% and 28.3% of all
high-quality cells in P2 and P5, respectively, and were significantly
enriched in TRRs compared to NORs in the same sample (Fig. 1l–n).
Conversely, diploid cells were significantly more abundant in NORs
compared to TRRs, as expected (Fig. 1m, n). Aneuploid cells
accounted for a lower fraction of the cells (12.5% and 15.7% in P2 and
P5, respectively) and were detected at similar frequencies across
TRRs, FERs, and NORs (Fig. 1l–n). Notably, we detected similar pro-
portions of diploid, pseudo-diploid, and aneuploid cells in two
regions that we profiled by scCUTseq in each of the four additional
prostate samples from four other patients collected in this study
(Supplementary Fig. 13a, b). Many of the deletions detected by
scCUTseq acrossmultiple pseudo-diploid cells were also captured by
shallow whole-genome sequencing (WGS) of gDNA extracted from
the same regions, while WGS of matched peripheral blood gDNA
yielded flat copy number profiles (Fig. 1o, p, Supplementary Fig. 14a,
b, and Supplementary Methods), further highlighting the specificity
of scCUTseq. We note, however, that smaller deletions present in
only a few cells might not have been detected in this validation
experiment because of the very low sequencing depth achieved.
These results indicate that SCNAs are ubiquitous in the prostate of
patients with localized prostate cancer and that pseudo-diploid and
aneuploid cells co-exist in these tissues, most likely reflecting dif-
ferent mechanisms of SCNA formation.

High clonal and spatial heterogeneity of pseudo-diploid cells
Next, we explored whether the pseudo-diploid cells detected
throughout the prostate gland are phylogenetically related and form
spatially distinct subclones. To this end, we used MEDICC221 to gen-
erate phylogenetic trees based on single-cell copy number profiles and
performed clustering to identify subclones sharing similar profiles. We
identified numerous (n = 79 and 52 in P2 and P5, respectively) highly
divergent subclones (range: 5–56 and 5–52 cells per clone, respec-
tively) mainly harboring whole-chromosome or chromosome arm-
level deletions typically affecting less than 3% of the genome (range:
0–435 and 0–239Mb in P2 and P5, respectively) (Fig. 2a–f and Meth-
ods). As a comparison, application of scCUTseq to 2304 nuclei (of
which 734 (31.9%) yielded high-quality SCNA profiles) from two breast
cancer samples resulted in a substantially smaller number (7 and 3,

Fig. 1 | SCNAs and mutations are widespread in prostates from patients with
localizedprostate cancer. aPhotograph of one of theprostate samples (P5) andof
two frozen tissue cubes (‘regions’) excised from the same sample. The dashed grid
marks (roughly) the regions in the corresponding maps in (d, f, h, j). b scCUTseq
workflow. c, d Schematic maps displaying the histopathological classification of
regions of the two prostate samples (P2 and P5, respectively). Each cell in the grid
represents a tissue region, white cells indicate absenceof tissue. e, f Similar to (c,d)
but displaying the classification of each tissue region based on clustering of RNA-
seq data (see Supplementary Fig. 5). g, h Percentage of all cells carrying at least one
SCNA in each region of P2 and P5, respectively. i, j Schematic map showing the
number of non-synonymous SNVs in P2 and P5, respectively. The anatomical
orientation of the maps in c-j is shown by the four arrows near each map. A,
anterior. P, posterior. L, left. R, right. k Representative copy number profiles

(500 kb resolution) of diploid, pseudo-diploid and aneuploid cells. l Fraction of
each karyotype shown in (k) in P2 and P5. n, number of cells. m, n Percentage of
each karyotype exemplified in (k) in tumor-rich regions (TRRs), focally enriched
regions (FERs) and normal regions (NORs) in P2 and P5, respectively. n, number of
regions. P, Wilcoxon test, two-tailed. Boxplots extend from the 25th to the 75th
percentile, horizontal bars represent the median, and whiskers extend from
–1.5 × IQR to +1.5 × IQR from the closest quartile. IQR, inter-quartile range. o Copy
number profiles (500 kb resolution, each row represents a single cell) from nuclei
extracted fromone region in sample P5 (top) and corresponding bulk copynumber
profile (500 kb resolution) from the same region (bottom). The arrowhead pin-
points a subclonal deletion that was detected by both scCUTseq and bulkDNA-seq.
p As in (o) but for a different region in sample P5. A link to the Source Data for this
figure is provided in the Data Availability statement.
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respectively) of phylogenetically related subclones identified (Sup-
plementary Fig. 15a–d and Methods). Notably, pseudo-diploid sub-
clones harboring deletions had very few amplification events and vice
versa (Fig. 2c, f).

We then assessed how the subclones identified are spatially dis-
tributed throughout the regions analyzed. Each region typically fea-
tured multiple subclones (range: 5–34 and 1–25 for P2 and P5,
respectively) and most of the subclones were detected in more than

one region (Supplementary Fig. 16a, b). Some subclones were highly
localized whereas others were spread throughout the entire prostate
midsection (Supplementary Figs. 17 and 18). To quantify the observed
subclonal spatial heterogeneity, we calculated the Shannon entropy of
each subclone across all the regions analyzed, normalizing for the
different number of nuclei that were retained by our random forest
classifier in each region (Supplementary Fig. 10e, f and Methods). Low
Shannon entropy values indicate localization to one or a few regions,
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whereas high values mark subclones localized to multiple regions. In
agreement with the spatial maps, most of the subclones displayed
intermediate entropy values and were distributed across many
regions, whereas a small fraction of subclones were associated with
either very low or high entropy values (Fig. 2g, h). Visual inspection of
the copy number profiles of the cells in the five most localized sub-
clones revealed that they were typically similar pseudo-diploid cells
within the same subclone, as expected (Supplementary
Figs. 19 and 20). Notably, in the P2 sample, the mean entropy value of
TRRs was significantly lower (P =0.0031, Wilcoxon test, two-tailed)
compared to NORs in the same sample (Fig. 2i), indicating that highly
localized pseudo-diploid subclones are concentrated in tumor-rich
regions. A similar trend was observed in sample P5, although the dif-
ference between TRRs and NORs was not statistically significant, most
likely due to an outlier region (Row 2, Column 6) in which only a few
cells (17) passed quality control (Fig. 2j). In line with these findings, in
both samples, the regions harboring all or most of the cells belonging
to the most localized subclones typically overlapped with either TRRs
or FERs (Fig. 2k, l). Theonlyexceptionwas subclone 32 inP5,whichwas
found in five NORs adjacent to TRRs or FERs (Fig. 2l). In contrast to
pseudo-diploid cells, aneuploid cells were not enriched inside TRRs
and did not form clearly distinguishable subclones, even though they
could be separated into distinct large clusters using uniformmanifold
approximation and projection (UMAP)22 (Supplementary
Figs. 21 and 22). Altogether, these results indicate that a subset of
clonally related pseudo-diploid cells is highly localized within tumor-
rich regions, suggesting that specific alterations in these cells might
drive tumorigenesis.

Spatial mapping of pseudo-diploid cells
To further investigate the spatial distribution of pseudo-diploid cells
and validate scCUTseq, we performed DNA fluorescence in situ
hybridization (FISH) to visualize the distribution of a pseudo-diploid
cell subclone featuring a monoallelic sub-chromosomal arm deletion
on chr13 detected at high frequency by both scCUTseq (77.3% of the
cells retained by our random forest classifier) and ACT (72.2%) inside
one TRR (Row 4, Column 3) of one of the other four prostate samples
(P6) collected in this study (Fig. 3a, b). To this end, we leveraged the
iFISH pipeline that we previously developed23 and generated three
DNA FISH probes in three colors targeting, respectively, the middle
part of the deleted chromosomal region as well as one upstream and
one downstream flanking region (Fig. 3c, Supplementary Data 3, and
Methods). Using theseprobes, wild-type chr13 copies should appear as
clusters of three close-by fluorescence spots—one spot for each of the
three probe colors—whereas clusters containing only two signals ori-
ginating from the two flanking probes should mark the deleted chr13
copies. Indeed, whole-slide widefield imaging (25X magnification)
followed by deconvolution with our open-source software
Deconwolf24 of the top tissue section obtained from the same TRR
profiled by scCUTseq and ACT detected both types of clusters
throughout the entire tissue section, allowing to pinpoint nuclei car-
rying the chr13 deletion (Fig. 3d, e). Next, we quantified FISH signals
across 51 fields of view (FOVs, 100X magnification), revealing that, on

average, the dot counts corresponding to the probe marking the
deletion were only ~75% of the downstream probe dot counts used as
reference, compared to ~100% for the upstream probe signals (Fig. 3f
and Methods). Because the deletion is monoallelic, this can be inter-
preted as ~50% of the cells in the FOVs examined carrying the deletion,
which is consistent with the fraction (~ 50%) of the same FOVs over-
lapping with tissue section areas classified as ‘tumor’ by a pathologist
(Supplementary Fig. 23). Indeed, we found a very strong positive cor-
relation (Pearson’s correlation coefficient, PCC: 0.89) between the
number of cells in a given FOV, which carried the deletion, and the area
in same FOV overlapping with annotated tumor regions (Fig. 3g),
indicating that these cells represent bona fide tumor cells. These
results further validate scCUTseq with an orthogonal method, and
highlight the power of iFISH combined with Deconwolf24 to quantita-
tively detect subclonal deletions across large tissue regions, which
could be harnessed in future diagnostic applications.

Loss of tumor suppressors in highly localized pseudo-
diploid clones
The observation that highly localized pseudo-diploid cell subclones
overlap with TRRs or FERs and typically carry deletions of one or few
sub-chromosomal regions led us to hypothesize that they might
represent tumor-initiating subclones in which one or more tumor-
suppressor genes (TSGs) have been lost. To test this hypothesis, we
focused on pseudo-diploid subclones detected exclusively within
TRRs or FERs and identified 7 TRR/FER-specific pseudo-diploid sub-
clones in P2 and 2 inP5, all ofwhich featureddeletions only (Fig. 4a and
Supplementary Fig. 24a). In P2, two groups of phylogenetically related
TRR/FER-specific pseudo-diploid subclones (Group 1: subclones
53–56; Group 2: subclones 66 and 69) localized to the anterior-left and
posterior-right poles of the prostate midsection, respectively, and
carried two deletions affecting common regions on chr6 (see single
asterisks) and chr13 (double asterisks), respectively, whereas one
subclone (65) was detected in four regions along the posterior margin
and only featured a chr12 deletion (Fig. 4b–i). In P5, both TRR/FER-
specific pseudo-diploid subclones were localized in the main tumor
area in the anterior-right pole of the prostate midsection and carried a
chr8 p-arm deletion also found in three (53–55) of the Group 1 sub-
clones in P2 (Fig. 4c–e and Supplementary Fig. 24b–d).

Next, we checked how many genes annotated as TSGs in the
Catalogue of Somatic Mutations in Cancer (COSMIC)25 were lost in
TRR/FER-specific pseudo-diploid subclones detected exclusively
within TRRs or FERs. We identified 42 and 16 TSGs monoallelically
deleted in P2 and P5, respectively, including several TSGs deleted in
both tumor samples (ARHGEF10, CDKN1B, ETNK1, ETV6, LEPROTL1,
NRG1, PTPN6, and WRN) and many TSGs co-deleted in the same sub-
clone as well as across multiple subclones (Fig. 4a, Supplementary
Fig. 24a, and Supplementary Data 4). In P2, all the six subclones
belonging to Group 1 and 2 had 8 TSGs (BRCA2, CCNC, CDX2, FOXO1,
FOXO3, LATS2, PRDM1, RB1) co-deleted in the same cells (Fig. 4a).
These TSGs map to two regions on chr6 and chr13 q-arms that are
frequently deleted in prostate adenocarcinomas in The Cancer Gene
Atlas (Fig. 4j and Supplementary Fig. 24e). Of note, two of these genes

Fig. 2 | Pseudo-diploid cells are characterized by high clonal and spatial het-
erogeneity. a Phylogenetic Newick tree of pseudo-diploid cells identified in sample
P2. Each leaf in the tree corresponds to one pseudo-diploid cell. b Copy number
profiles (500 kb resolution) of the pseudo-diploid cells in the phylogenetic tree
shown in (a). n, number of cells. c Fraction of the genome amplified (AMP) or
deleted (DEL) in each subclone identified in P2 and P5, respectively. d–f As in (a–c)
but for prostate sample P5. g, h Shannon entropy of each pseudo-diploid cell
subclone (C) identified in P2 and P5, respectively. The most localized and wide-
spread subclones in each sample are labeled (see Supplementary Figs. 17 and 18 for
the distribution map of each subclone). i, j Distribution of the mean Shannon
entropy of pseudo-diploid subclones inside tumor-rich regions (TRRs), focally

enriched regions (FERs) and normal regions (NORs) in P2 and P5, respectively. Each
dot represents one region. P, Wilcoxon test, two-tailed. n, number of tissue regions
for TRRs, FERs, and NORs, respectively. Boxplots extend from the 25th to the 75th
percentile, horizontal bars represent the median, and whiskers extend from
–1.5 × IQR to +1.5 × IQR from the closest quartile, where IQR is the inter-quartile
range. k, l Spatial distribution of the cells belonging to the five most localized
pseudo-diploid subclones (C) identified in sample P2 and P5, respectively, and
corresponding histopathological classification of each region, as in Fig. 1c, d. n,
number of cells in each subclone. The anatomical orientation of the maps is as in
Fig. 1c–j. A link to the Source Data for this figure is provided in the Data Availability
statement.
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(FOXO1 and FOXO3) encode members of the Forkhead transcription
factor family, which includes the FOXA1 gene frequently mutated in
prostate cancers26 and have been previously functionally annotated as
context-dependent TSGs or oncogenes27.

Prompted by these findings, we then mapped all the cells har-
boring a co-deletion of the aforementioned eight TSGs. Most of these

cells localized in FERs and TRRs, with the highest concentration in one
FER (Row 1, Column9) and twoTRRs (Row1, Column8; Row4, Column
2) corresponding to the regions in sample P2 with the highest fraction
of TRR/FER-specific pseudo-diploid subclones (Fig. 4k). Notably, the
same cells accounted for the highest proportion of pseudo-diploid as
well as of all the cells yielding high-quality copy number profiles from
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the same regions (including diploid and aneuploid cells) (Fig. 4l, m).
These results suggest that monoallelic loss of the above-listed eight
TSGs (possibly concomitant with inactivation of the other allele)might
drive early carcinogenesis in the prostate. Indeed, analysis of TCGA
prostate adenocarcinomas (PRADs) revealed that 28.7% of all PRADs—
including many Grade Group 2–3 PRADs corresponding to the same
Gleason score (7) assigned to sample P2—carry a loss of one ormultiple
of those TSGs. From these genes, RB1 and FOXO1 are the first and
second most frequently deleted TSGs, and CCNC-FOXO3-PRDM1 and
CCNC-FOXO1-FOXO3-PRDM1-RB1 the first and second most frequent
co-deletion combination occurring in these tumors, respectively
(Fig. 4n). Among the genes frequently deleted in TCGA PRADs we also
found FOXP1, another member of the Forkhead transcription factor
family. However, this gene is almost never co-deleted with the other
TSGs in TCGA PRADs (Fig. 4n), indicating that certain TSG deletions
might be mutually exclusive. Accordingly, we only detected 3 pseudo-
diploid cells with a BRCA2-FOXO1-FOXO3-FOXP1-RB1 co-deletion, two
of which localized in TRRs (Row 1, Column 8; Row 4, Column 2) con-
taining a high density of cells carrying the 8 TSGs co-deletion descri-
bed above. We did not find deletions affecting NKX3-1, PTEN and TP53
genes, which are frequently deleted in TCGA PRADs. However, this
might be due to the very limited sample size of our proof-of-
concept study.

Lastly, we wondered whether the TRRs and FERs in the two
prostate samples that we thoroughly profiled by scCUTseq also harbor
mutations in genes previously implicated in prostate cancer. We
identified mutations in several genes frequently mutated in PRADs28,
including FOXA1, FOXP1, LRP1B, SPTA1, and SPOP in sample P2, and
FOXA1 and LRP1B in sample P5 (Supplementary Fig. 24f, g and Sup-
plementary Data 5). In sample P2, LRP1B, SPTA1, and SPOP mutations
were found in the same TRRs/FERs in which we detected the highest
density of pseudo-diploid cells carrying the 8-TSG co-deletion descri-
bed above, as well as in few other TRRs/FERs (Fig. 4o–q). FOXA1
mutations were found in two TRRs as well as in two NORs, whereas
FOXP1 was mutated only in one NOR along the anterior margin of the
prostate midsection (Fig. 4r, s). In sample P5, only LRP1B mutations
were detected in one of the TRRs in the anterior-right pole of the
prostate midsection, whereas FOXA1 mutations were found in a few
FERs/NORs along the posterior margin (Supplementary Fig. 24h, i). Of
note, because these mutations were not detected in the same cells
profiled by scCUTseq, it is not possible to ascertain whether they co-
existed with the TSG co-deletions identified in pseudo-diploid cells.
However, the concomitant finding of these events within the same
prostate regions suggests that they might cooperatively act to initiate
or promote carcinogenesis in prostate glands marked by the ubiqui-
tous presence of cells with SCNAs.

Discussion
Leveraging scCUTseq to performspatially resolved single-cell profiling
of SCNAs across normal and tumor regions in two prostates from two

patients diagnosed with localized early-stage prostate cancer, we
have uncovered the existence of two major types of genomically
unstable cells—pseudo-diploid and aneuploid cells—characterized by
profoundly different SCNA profiles most likely reflecting a different
mechanism of origin. Pseudo-diploid cells carry a few (typically,
between 1 and 7) (sub-)chromosome arm alterations, predominantly
consisting of deletions. In contrast, aneuploid cells carry genome-
wide whole-chromosome copy number changes and are reminiscent
of ‘hopeful monsters’, which were previously shown to emerge
continuously in propagating colorectal cancer organoid cultures, as
a result of catastrophic mitotic errors7. We detected pseudo-diploid
and aneuploid cells throughout all the prostate regions examined,
including normal regions distant from tumor regions, suggesting
that they originate from widespread genome instability processes
that are active throughout the prostate gland. Nonetheless, the fact
that pseudo-diploid cells—but not aneuploid cells—can be clustered
in different subclones with similar SCNA profiles indicates that
SCNAs in these cells are still compatible with cell proliferation and
thus can be propagated, unlike the highly aberrant karyotypes of
aneuploid cells, representing singular events that cannot be
propagated.

In addition towidespread aneuploid and pseudo-diploid cells, our
study reveals the existence of a sub-population of pseudo-diploid cells
that are highly localized within tumor-rich regions and carry sub-
chromosomal deletions resulting in concurrent loss ofmultiple tumor-
suppressor genes, thus potentially representing tumor-initiating/
driving cells in these regions. In support of this hypothesis, in one (P2)
of the two prostate samples that we extensively profiled by scCUTseq,
we found that tumor regions were enriched in multiple phylogeneti-
cally related subclones with a monoallelic loss of multiple TSGs,
including BRCA2, CCNC, CDX2, FOXO1, FOXO3, LATS2, PRDM1, and RB1.
These TSGs are frequently deleted alone or in various combinations in
prostate adenocarcinomas (PRADs) in TCGA and RB1 has been shown
to be frequently deleted with TP53 and PTEN in localized prostate
cancers29. Of note, we did not uncover deletions in the latter two genes
even though these are the most frequently deleted genes in TCGA
PRADs, most likely reflecting the very limited number of patient
samples examined in this study. Furthermore, FOXO1, LATS2, and RB1
have been shown to act as tumor suppressor genes in various prostate
cancer models30–32. Notably, FOXO1 and FOXO3 are members of the
large family of Forkhead transcription factors involved in multiple
physiological and pathological processes27, which also includes FOXA1
and FOXP1 genes that are mutated (FOXA1) or deleted (FOXP1) in a
subset of PRADs and have been previously implicated in prostate
carcinogenesis33–35. We speculate that disruption of Forkhead tran-
scription factor networks, coupled with dosage effects on multiple
TSGs, represents a tumor-initiating event independently occurring at
multiple, spatially distinct locations in the prostate gland, in a subset of
patients with prostate cancer. Future studies leveraging emerging
spatially resolved genomic technologies to profile SCNAs and

Fig. 3 | Validation and spatial mapping of pseudo-diploid cells identified by
scCUTseq. a, b Single-cell copy number profiles (500kb resolution) obtained by
applying scCUTseq (a) or Acoustic Cell Tagmentation (ACT) (b) to nuclei extracted
froma single tumor-rich region inprostate sampleP6.n, numberof cells. The arrow
indicates a subclonal deletion on chr13 q-armdetected by both scCUTseq and ACT.
c Chr13 ideogram showing the location of the three DNA FISH probes (colored
dots) used todetect the chr13 deletion spanning the region indicatedby the vertical
bar on the left and corresponding to the deletion marked by the arrows in (a, b).
d Whole-slide low-magnification (25X) imaging after DNA FISH was performed
using the probes shown in (c). The white squared region is magnified on the right.
Scale bars, 1mm (left) and 100μm (right). e Examples of nuclei with both chr13
copies intact (stroma) or with one of the two copies carrying the deletion shown in
(c) (tumor).White arrows indicatemissing cyandots, which correspond to the FISH
probe targeting the deleted region. The nuclei shown are 100X magnification

zoom-in views of the same-color squared regions in (d). Scale bars, 5μm.
f Quantification of the number of fluorescent dots corresponding to each of the
DNA FISH probes in (c), across 51 (n) fields of view (FOVs) imaged at high magni-
fication (100X) in the whole-slide image shown in (d). The number of dots in each
color was normalized to the number of yellow dots, corresponding to the probe
downstream of the deleted region, as shown in (c). Each dot represents one FOV.
Error bars span from –1.5 × IQR to +1.5 × IQR from the closest quartile. IQR, inter-
quartile range. Horizontal bar, median. g Correlation between the fraction of cells
carrying the deletion in each of the FOVs (n) analyzed in (f), and the proportion of
the area of the corresponding FOVs that overlaps with regions annotated as tumor
(see Supplementary Fig. 23). Dashed red line: linear regression. PCC, Pearson’s
correlation coefficient. A link to the Source Data for this figure is provided in the
Data Availability statement.
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mutations at high spatial resolution across large sample cohorts will
enable addressing this hypothesis.

The Gleason grading system represents the main tool used for
predicting the prognosis and guiding the therapy of patients affected
by prostate cancer36. This system, however, is blind to the genomic
makeup of the cells analyzed and to spatial genetic heterogeneity

across different regions of the prostate, which likely encode important
prognostic information. Instead, the combined spatially resolved
single-cell SCNAprofiling and targeteddeep sequencing approach that
we have adopted here can capture genetic diversity and spatial het-
erogeneity throughout the prostate in an unbiased manner, providing
a quantitative portray of the type, relative proportions, and spatial
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distribution of cells with different karyotypes as well as of potential
cancer driver mutations. We propose using this approach to derive a
‘Genomic Diversity Index’, which could then be integrated with the
Gleason score to improve prognostication for patients affected by
prostate cancer.

The scCUTseqmethod thatwehavedeveloped and appliedhere is
versatile and cost-effective and is especially suited for profiling SCNAs
in single nuclei extracted from patient-derived samples, since the
nuclei can be first stabilized by fixation and stored up to several weeks
before being sorted and used for preparing sequencing libraries. The
use of fixed nuclei was not demonstrated before in tagmentation-
based scDNA-seqmethods suchasDLP + 37, DNRT38, andACT, although
wenowshow thatACTcan alsobe applied tofixed samples, similarly to
scCUTseq. Of note, the tagmentation-based scDNA-seq method Arc-
well, which uses nuclei extracted from archival formalin-fixed paraffin-
embedded (FFPE) tissues, was recently described and applied to study
the clonal structure of ductal in situ carcinoma of the breast39.
Although in this study we have not tested scCUTseq on FFPE samples,
we expect that our method should also be applicable to these samples
since it builds on the CUTseqmethod, which we previously specifically
developed for FFPE samples16.

One inherent limitation of scCUTseq is the sparse breadth of
genome coverage that can be achieved (typically, less than 2%) when
single restriction enzymes are used, as in this study. This limits the
theoretical maximum genomic resolution that can be achieved (as we
previously extensively discussed for bulk CUTseq16) and precludes the
possibility of determining B-allele frequencies and hence obtaining
phased copy number profiles. However, as we have shown in this
study, scCUTseq detects very similar copy number profiles and cell
populations as tagmentation-based ACT, indicating that the use of
restriction enzymes is fully compatible with single-cell SCNA profiling
in tumors and other tissues. Of note, another scDNA-seq method
named Karyo-Seq also leverages restriction enzymes and was used to
profile SCNAs in patient-derived tumor organoids40, 41.

In conclusion, our study provides an organ-wide, spatially
resolved single-cell map of SCNAs in prostate samples with focal
adenocarcinoma and reveals a previously undetected class of geno-
mically unstable cells (pseudo-diploid) carrying recurrent (sub-)chro-
mosomal deletions representing putative tumor-initiating cells. Future
studies combining concurrent genome and transcriptome sequencing
from the samecell with spatial resolutionwill be pivotal to characterize
this cell population in depth.

Methods
Ethical regulation statement
All research complieswith the ethical regulations andwas approved by
the relevant Ethical Committees. The collection of prostate samples
was approved by the Regional Ethics Committee of Sweden, ethical
permit: 2018/1003-31. The collection of brain and skeletal muscle
samples was approved by the Regional Ethics Committee of Sweden,

ethical permit: 2010/313-31/3. The collection of breast cancer samples
was approved by the Candiolo Cancer Institute Ethical Committee,
ethical permit: “Profiling”, 001-IRCC-00IIS-10. All patient-derived
samples were collected and used in conformity to the permits. None
of the donors received compensation. Written informed consent was
obtained for the donors of the prostate and breast cancer samples.
Informed consent was not specifically obtained for the present study
for the brain and skeletal muscle samples, since the study was not
conceived at the time of collection. However, ethical approval was
obtained for the use of these tissues. Sex and/or gender was deter-
mined based on self-reporting but was not taken into consideration
during the analysis. For more information, please refer to the
Reporting Summary.

Experimental methods
Samples
Cell lines. We purchased IMR90, SKBR3 and MCF10A cell lines from
the American Tissue Culture Collection (ATCC, cat. no. CCL-186, HTB-
30, and CRL-10317, respectively) and Drosophila S2 cells from Gibco
(cat. no. R69007). TK6 cells werepreviously described42. None of these
cell lines is registered in the International Cell Line Authentication
Committee (ICLAC) database of misidentified cell lines. We periodi-
cally tested all the cell lines for mycoplasma contamination using the
MycoAlert Mycoplasma Detection Kit (Lonza, cat. no. LT07-118) and
consistently obtained negative test results. Culturing conditions were
as follows: (i) IMR90 cells: Eagle’s Minimum Essential Medium (EMEM)
(Sigma, cat. no. M5650) supplemented with 10% heat-inactivated fetal
bovine serum (FBS; Sigma, cat. no. F9665), 2 mM L-glutamine (Sigma,
cat. no. 59202C), and 1% non-essential amino acids (Gibco, cat. no.
11140035); (ii) SKBR3 cells: McCoy’s 5 A Medium (Sigma, cat. no.
M9309) supplemented with 10% heat inactivated FBS (Sigma, cat. no.
F9665); (iii) MCF10A cells: Mammary Epithelial cell Growth Medium
(MEGM) (Lonza, cat. no. CC-3150) supplemented with 100ng/ml cho-
lera toxin (Sigma, cat. no. C8052) according to the ATCC guidelines;
(iv) S2 cells: Schneider’s medium (Gibco, cat. no. 21720024) supple-
mented with 10% heat inactivated FBS (Sigma, cat. no. F9665); (v) TK6
cells: Roswell Park Memorial Institute Medium (GIBCO, cat. no.
11875093) supplemented with 5% horse serum (GIBCO, cat. no.
11510516), 1mM sodium pyruvate (GIBCO, cat. no. 11360070), 100U/
mL penicillin-streptomycin (GIBCO, cat. no. 15140122) and 2 mM
L-glutamine (GIBCO, cat. no. 25030081). We grew all the cell lines at
37 °C in 5% CO2 air, except for S2 cells, which were grown at 28 °C in a
non-humidified, ambient air-regulated incubator.

Prostate samples. We prospectively collected six prostatectomy
samples (P1-P6) from male patients aged 43–65 and operated for
localized prostate cancer by endoscopic surgery at the Södersjukhuset
Hospital in Stockholm, Sweden. From the same patients, we also col-
lected peripheral blood for gDNA extraction. The main pathological
characteristics of each sample are summarized in Supplementary

Fig. 4 | Tumor suppressor genes lost in highly localized pseudo-diploid sub-
clones are putative drivers of early prostate tumorigenesis. a OncoPrint plot
showing genes classified as tumor-suppressor genes (TSGs) in the Catalogue of
Somatic Mutations in Cancer (COSMIC) that were deleted (blue rectangles) in
pseudo-diploid subclones (C) localized exclusively in tumor-rich regions (TRRs) or
focally enriched regions (FERs) in prostate sample P2. n, number of pseudo-diploid
cells in each subclone. Asterisks indicate genes annotated both as TSGs and as
oncogenes (context-dependent TSGs) in COSMIC. b As in Fig. 1c. c–i Spatial dis-
tribution of the seven pseudo-diploid subclones (C) shown in (a). Themedian copy
number profile of each subclone is shown on top of the corresponding tissue map.
Asterisks indicate regions on chr6 (*) and chr13 (**) that are deleted in many sub-
clones. j Circos plot showing chromosomal regions frequently amplified (AMP) or
deleted (DEL) (identified using GISTIC63) across 492 (n) prostate adenocarcinoma

(PRAD) samples in The Cancer Genome Atlas (TCGA). Y-axis, –log10(q-value). The
asterisks mark the regions on chr6 and 13 that were found deleted in multiple
pseudo-diploid subclones, as shown in (c–h). k–m Spatial distribution of the
pseudo-diploid cells carrying a co-deletionof the indicated eight TSGs in sample P2.
n OncoPrint plot displaying TCGA PRAD samples with an amplification (AMP),
deletion (DEL) or mutation (SNV) of the eight TSGs shown in (k–m) plus FOXP1.
Each row in theplot corresponds tooneTCGAPRADsample and the corresponding
Grade Group is shown in the colorbar on the right. o–s Schematic maps showing
where the indicated genes were foundmutated (non-synonymous SNVs) in sample
P2. Gray cells indicate tissue regions in which the indicated gene was not altered.
White cells indicate absence of tissue. The anatomical orientation of all themaps in
(c–i) and (o–s) is as in (b). A link to the Source Data for this figure is provided in the
Data Availability statement.
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Table 1. For each tumor, we obtained a ~ 0.5 cm thick transversal mid-
section of the prostate and then immediately cut it into multiple
~0.5×0.5×0.5 cm3 tissue blocks. We embedded each block in Tissue-
Tek OCT compound (VWR, cat. no. 00411243), snap-froze it in iso-
pentane, and stored it at –80 °C. We stained one section from the top
and one from the bottom of each blockwith hematoxylin-eosin (H&E),
and then scanned each section using a Hamamatsu Nano Zoomer-XR
Digital slide scanner. Two board-certified pathologists at Qilu Hospital
of Shandon University, China independently evaluated each tissue
section and performed Gleason grading following the International
Society of Urological Pathology (ISUP) 2014/World Health Organiza-
tion 2016 modified system43. Accordingly, regions containing more
than 50% of tumor cells were classified as tumor-rich regions, whereas
regions containing 10-50% of tumor cells were labeled as focally enri-
ched regions. All the prostate and breast cancer samples described
above are unique biological samples the use of which is restricted to
this study, and thus cannot be distributed to other researchers.

Brain and skeletalmuscle samples. We retrieved fresh frozen human
prefrontal cortex tissue and skeletal muscle samples from two donors
(1male and 1 female, aged 45–50. Also see SupplementaryTable 2) that
had been procured through the KI Donatum Tissue Collection pro-
gram, a collaboration between the Swedish National Board of Forensic
Medicine and the Department of Oncology-Pathology at Karolinska
Institutet.

Breast cancer samples. We retrieved two frozen Luminal B-like breast
cancer specimens (here labeled B1 and B2) at the Pathology Unit of the
Candiolo Cancer Institute (Italy). The samples had been previously
collected from two female patients, aged 55—65, and stored in the
frameof aprospective study for the identification ofmolecular profiles
conferring resistance to selected target therapies in oncological
patients. Following excision in the surgical theater, the samples were
immediately placed in vacuum and stored at + 4 °C until further pro-
cessing. ~1×1×0.5 cm3 tissue blocks were embedded in Tissue-Tek OCT
compound (VWR, cat. no. 00411243), snap-frozen in isopentane, and
stored at –80 °C.

scCUTseq. A detailed step-by-sep scCUTseq protocol is available at
Protocol Exchange.

Cells andnuclei preparation. We prepared cultured cells for standard
MALBAC as described in the Supplementary Methods. For prostate
samples, we cut each tissue block into halves and kept each half
in DNA/RNA Shield at –80 °C until further processing. We prepared
single nuclei suspensions from breast and prostate samples following
the Tapestri frozen tissue nuclei extraction protocol (https://
missionbio.com). Briefly, we first prepared a spermine solution com-
posed of 3.4mM sodium citrate tribasic dihydrate (Sigma, cat. no.
C8532)/1.5mM spermine tetrahydrochloride (Sigma, cat. no. S1141)/
0.5mM tris (hydroxymethyl) aminomethane (Sigma, cat. no. 252859)/
0.1% v/v IGEPAL CA-630 (Sigma, cat. no. I8896) and stored it at +4 °C.
We retrieved the frozen breast cancer or prostate cancer tissue blocks
and kept them on dry ice until further processing.We then transferred
one sample at a time into a pre-chilled Petri dish placed onto a dry-ice
pad, added 200μL of tissue lysis solution containing spermine solu-
tion (pH 7.6)/0.03mg/mL trypsin-EDTA (0.25%), phenol red (Thermo
Fisher scientific, cat. no. 25200072)/0.1mg/mL collagenase (Wor-
thington, cat. no. CLS-7 LS005332)/1mg/mL Dispase II (Gibco, cat. no.
17105-041) on top of the tissue block and incubated it until the tissue
lysis solution had frozen ( ~ 3min). We minced the sample thoroughly
with two pre-chilled sterile scalpels and then transferred it to room
temperature, while continuing mincing until all the tissue fragments
could flow through a 1mL pipette tip without clogging it. We added
additional 1.8mL of tissue lysis solution to rinse the dish, transferred

all the tissue fragments from the Petri dish into a clean 5mL low-
binding tube (Eppendorf, cat. no. 0030108.310), and rotated the tube
at 20 rpm at room temperature for 15min. We stopped the lysis by
adding 2mL of stop solution containing spermine solution (pH 7.6)/
0.5mg/mL trypsin inhibitor from chicken egg white, type II-O (Sigma,
cat. no. T9253)/ 0.1mg/mL ribonuclease A from bovine pancreas, type
I-A (Sigma, cat. no. R4875-100mg) and mixed the solution by gently
inverting the sample. Next, we filtered the solution through a 50μm
cell strainer and collected the flowthrough in a clean 5mL low-binding
tube. We centrifuged the flowthrough at 300 × g for 5min at room
temperature and discarded the supernatant. To fix the nuclei, we
resuspended them in 400μL of a nuclei fixation solution containing
66% v/v methanol/33% v/v acetic acid pre-chilled at +4 °C and thor-
oughly pipetted the nuclei suspension up and down. After 15min
incubation on ice, we centrifuged the sample at 300 × g for 5min at
room temperature to collect the fixed nuclei. We discarded the
supernatant and resuspended the nuclei in 1X PBS/5mM EDTA/0.05%
NaN3 and filtered the nuclei through a 20μm cell strainer. We have
successfully used fixed nuclei prepared in this manner, that were kept
at 4 °C for several weeks up to two months. We extracted gDNA and
RNA from the tissue blocks simultaneously using the Quick-DNA/RNA
MicroprepPlusKit (ZYMOResearch, cat. no. D7005). ForDNAandRNA
purification, we first homogenized the tissues that were stored in
1×DNA/RNA Shield following the instructions for Tough-to-Lyse sam-
ples using Biomedical FastPrep Homogenizer (MP Bio). We then per-
formed the DNA and RNA purification steps following the
manufacturer’s instructions. We checked DNA/RNA quality and quan-
tity with NanoPhotometer (Implen).

To isolate neuronal cell nuclei from human prefrontal cortex tis-
sue, we thawed and homogenized ~1 g of tissue in 10mL of an ice-cold
lysis buffer containing 10mM Tris-HCl pH 8.0/0.32M sucrose/5mM
CaCl2/3mM magnesium acetate/0.2mM EDTA/0.1% Triton X-100/
1mM DTT using a glass Douncer. We added 20mL of ice-cold 1.8M
sucrose solution to the homogenate and layered the mix onto a
cushion of 10mL 1.8M sucrose solution followed by centrifugation at
30,000× g for 2 h at 4 °C. We carefully aspirated the supernatant and
resuspended the pellet in 1.5mL of a nuclei storage buffer containing
10mM Tris-HCl pH 7.2/15% sucrose/70mM KCl/2mM MgCl2/1.5mM
spermine tetrahydrochloride. We fixed the isolated nuclei in 4%
methanol-free formaldehyde (ThermoFisher Scientific, cat. no. 28908)
for 10min at room temperature and quenched the reaction in 1X PBS
pH 7.4/125mM glycine for 5min at room temperature. We centrifuged
the samples at 500 × g for 10min at 4 °C andwashed the nuclei once in
1X PBS/10mM EDTA pH 7.4. To isolate neuronal cell nuclei, we incu-
bated the nuclei suspension on ice for 30min with an anti-NeuN
antibody (Alexa647-conjugate, clone A60, Merck, cat. no. MAB377)
diluted 1:500 in 1XPBS/10mMEDTApH7.4 followedbyfiltrationof the
nuclei suspension through a 30 µm pre-separation filter (Miltenyi
Biotec, cat. no. 130-041-407) to remove large particles and nuclei
aggregates. Lastly, we stained the nuclei with Hoechst 33342 (Thermo
Fisher Scientific, cat. no. 62249) and proceeded to sort single nuclei as
described below.

To isolate nuclei from human skeletal muscle tissue, we minced
the tissue samples with a disposable scalpel before homogenizing
them. We homogenized ~0.5 g of tissue in 10mL of an ice-cold
homogenization buffer containing 10mM HEPES pH7.4/60mM KCl/
2mM EDTA/0.5mM EGTA/300mM sucrose/0.5mM spermidine/
0.15mM spermine using a T25 Ultra Turrax (IKA) device set at
25,000 rpm for 10 sec. We added 10mL of ice-cold homogenization
buffer supplementedwith 1%BSA, followedbyhomogenizationusing a
glass Douncer, filtration through a 100 µmcell strainer (Falcon BD, cat.
no. 352360) to remove debris and large aggregates, and centrifugation
at 4500× g for 10min at 4 °C. We resuspended the nuclei pellet in
1.25mL of 10mM HEPES pH 7.4/60mM KCl/0.1mM EDTA/0.1mM
EGTA/300mM sucrose/0.5mM spermidine/0.15mM spermine/0.5%
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bovine serum albumin pre-mixed with 0.75mL of a Percoll stock
solution containing 80% Percoll (Sigma Aldrich, cat. no. P1644)/10mM
HEPES pH 7.4/60mM KCl/0.1mM EDTA/0.1mM EGTA/300mM
sucrose. We centrifuged the samples at 16,900 × g for 30min at 4 °C
followed by removal of the compressedmyofibrillar layer from the top
of the suspension. We then collected the floating nuclear layer and
transferred it into 1mL of a nuclei storage buffer containing 10mM
Tris-HCl pH 7.2/15% sucrose/70mMKCl/2mMMgCl2/1.5mMspermine
tetrahydrochloride, followed by centrifugation at 700 × g for 5min at
4 °C. We resuspended the nuclei pellet in 1X PBS/3% BSA and added
methanol-free formaldehyde (ThermoFisher Scientific, cat. no. 28908)
to reach a final concentration of 4%, followed by incubation for 10min
at room temperature. We quenched the reaction in 1X PBS pH 7.4/
125mM glycine for 5min at room temperature, centrifuged the sam-
ples at 500 × g for 10min at 4 °C, andwashed the nuclei once in 1X PBS
pH 7.4/10mM EDTA. Lastly, we stained the nuclei with Hoechst 33342
(Thermo Fisher Scientific, cat. no. 62249) and proceeded to sort single
nuclei.

Preparation of CUTseq adapters. We used either the 96 CUTseq
adapters previously described16 or 384 adapters that we newly
designed. The sequences of all the oligonucleotides (oligos) used are
available in Supplementary Data 6. We purchased the oligos from
Integrated DNA Technologies (IDT) as standard desalted oligos at
100μM in Nuclease-Free Water in 96-well plates. In each well of a 96-
(for 96 adapters) or 384-well plate (for 384 adapters), we dispensed
5μLof a senseoligo and then added40μLof phosphorylation reaction
mix containing 1μL of T4 Polynucleotide Kinase (PNK; NEB, cat. no.
M0201S), 5μL of T4 PNK buffer (NEB, cat. no. M0201S) and 5μL of
10mMATP (ThermoFisher Scientific, cat. no. PV3227) inNuclease-Free
Water and incubated at 37 °C for 30min followed by inactivation at
65 °C for 20min. Then, we added 5 μL of the corresponding antisense
oligo to each well and annealed the complementary sense and anti-
sense oligos by incubating the plates at 95 °C for 5min, followed by
cooling down to 25 °C over a period of 45min in a PCR thermocycler.
Afterwards, we diluted the annealed adapters to 33 nM in Nuclease-
Free Water and stored them at –20 °C. Adapter dilutions stored in this
way are stable for 6–8 months.

Single nucleus sorting. Before sorting, wemanually dispensed 5 μL of
Vapor-Lock (Qiagen, cat. no. 981611) into each well in the targeted
region of a 384-well plate. We then transferred the samples into FACS-
compatible tubes, added 2.46 ng/mL Hoechst 33342 (Thermo Fisher
Scientific, cat. no. 62249) to them and incubated for 2min on ice in
darkness, while rotating. We sorted single nuclei in 96- or 384-well
plates (one nucleus per well in 10 nL sorting volume) using the BD
FACSJazz Cell Sorter or BD Aria III (BD Biosciences) based on forward
and side scatter properties. After sorting, we immediately sealed the
plates, spun them at 3,220×g for 5min and stored them at –20 °C until
further processing.

Scaled down MALBAC. We used the MALBAC kit (Yikon Genomics,
cat. no. Y001A) for whole genome amplification and the I.DOT
nanodispensing system (CELLINK) for dispensing all reagents in
small volumes, to increase the efficiency of reactions while limiting
the reagent costs per cell. For the cell lysis step, we prepared a lysis
mix containing 30 nL of cell lysis buffer and 0.6 nL of cell lysis
enzyme per cell. We then dispensed 30 nL of the lysis mix into each
well and incubated the plates at 50 °C for 1 h and 80 °C for 10min in a
PCR thermocycler. For the pre-amplification step, we prepared a pre-
amplificationmix containing 150 nL of pre-amplification buffer and 5
nL of pre-amplification enzyme mix per cell. We then dispensed 150
nL of the pre-amplification mix into each well, and incubated the
plates at 94 °C for 3min to denature DNA, followed by 8 cycles of
quasi-linear amplification (20 °C for 40 sec; 30 °C for 40 sec; 40 °C

for 30 sec; 50 °C for 30 sec; 60 °C for 30 sec; 70 °C for 4min; 95 °C
for 20 sec; and 58 °C for 10 sec) in a PCR thermocycler. For the
amplification step, we prepared an amplification mix containing 150
nL of amplification buffer, 4 nL of amplification enzyme mix and 11
nL of 4x SYBR Green (Thermo Fisher Scientific, cat. no. S7563) per
cell, and kept the mix protected from light until we dispensed it. We
dispensed 160 nL of the amplification mix into each well to reach a
final volume of 350 nL per well and incubated the plates at 94 °C for
30 sec to denature DNA followed by 14 cycles of exponential
amplification (94 °C for 20 sec; 58 °C for 30 sec; 72 °C for 3min) in a
PCR thermocycler. After each dispensing step, we shook the plates
on a ThermoMixer at 1000 rpm, centrifuged the plates at 3220×g for
10min, and placed them on ice until the next step.

High-throughput CUTseq. We performed CUTseq on the MALBAC
products largely following the high-throughput CUTseq protocol
based on the I.DOT system (Dispendix), which we described before16.
Briefly, for the digestion step, we prepared a digestion mix containing
100 nL of NlaIII restriction enzyme (NEB, cat. no. R0125L) and 50 nL of
CutSmart buffer (NEB, cat. no. R3104) per cell. We then dispensed 150
nL of the digestionmix into eachwell and incubated the plates at 37 °C
for 30min followed by65 °C for 20min to inactivate the enzyme. After
digestion, we dispensed 300 nL of 33 nM scCUTseq adapters (pre-
pared as described above) into each well (one barcode per cell), fol-
lowed by 700 nL of a ligation mix containing 200 nL of T4 rapid DNA
ligase (Thermo Fisher Scientific, cat. no. K1423), 300 nL of T4 ligase
buffer (Thermo Fisher Scientific, cat. no. K1423), 120 nL of 10 mΜ ATP
(Thermo Fisher Scientific, cat. no. PV3227), 30 nL of 50mg/mL bovine
serum albumin (Thermo Fisher Scientific, cat. no. AM2616), and 50 nL
of Nuclease-Free Water (Thermo Fisher Scientific, cat. no. 4387936).
We then incubated the plates at 22 °C for 30min, after which we dis-
pensed 5μL of Nuclease-Free Water/33mM EDTA (for a final con-
centration of 25mM) into each well and pooled the contents of all the
wells of each plate by placing the plates upside down onto a collection
plate (NUNC, cat. no. 267060) covered with parafilm, and centrifuged
them at 117 × g for 1min. We carefully transferred the collected solu-
tion into a 5mL low-binding tube and then removed as much as pos-
sible of the Vapor-Lock. We then purified the pooled samples with a
1.2 v/v ratio of the sample and Agencourt Ampure XP bead suspension
(Beckman Coulter, cat. no. A63881). After purification, we prepared
250ng of DNA and sheared it using Covaris ME220 Focused-
ultrasonicator with a target peak set at 200 base pairs (bp). To pre-
pare sequencing libraries, we followed the CUTseq protocol16, with the
following minor modifications: (1) We increased the PCR volume to
200μL and performed a split PCR reaction in 4-tubes strips; (2) We
purified the final library with a 0.8 v/v ratio of sample and Agencourt
AmpureXP bead suspension, and eluted the purified library in 50μL of
Nuclease-Free Water.

Sequencing. We first sequenced all scCUTseq libraries on NextSeq
500 (Illumina) in single-end mode using the NextSeq 500/550 High
Output Kit (75 Cycles) (Illumina, cat. no. FC-404-2005) except for
scCUTseq libraries from brain and skeletal muscle, which we
sequenced on NextSeq 2000 (Illumina) in single-end mode using the
NextSeq 2000 P2 Reagents (100 Cycles) kit (Illumina, cat. no.
20040559). For scCUTseq experiments on TK6 cells, breast cancer,
and prostate samples, we sequenced high-quality libraries (pre-
checked on Bioanalyzer) on NovaSeq 6000 (Illumina) in pair-end
mode using the NovaSeq 6000 S4 flow cell (300 Cycles) kit (Illumina,
cat. no. 20028312). See Supplementary Data 7 for a summary of
sequencing statistics.

scCUTseq validation by acoustic cell tagmentation (ACT). To vali-
date scCUTseq with a WGA-free scDNA-seq method, we adapted the
protocol for Acoustic Cell Tagmentation (ACT)18 for fixed nuclei and
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implemented it on the nanodispensing device (I.DOT) used for
scCUTseq. Briefly, we FACS-sorted single nuclei in 384-well plates
prefilled with 5μL of Vapor-Lock (Qiagen, cat. no. 981611) per well. For
cell lysis, we adapted the same conditions used in Dip-C44 and lysed
each nucleus in 150 nL of lysis buffer containing 20mM Tris pH8/
20mM NaCl/25mM DTT/0.15% Triton X-100/1mM EDTA/5 µg/mL
Qiagen Protease (Qiagen, cat. no. 19157). After dispensing, we cen-
trifuged the plate at 3220 × g for 3min, vortexed it at 1000 rpm for
1min, and then again centrifuged it at 3220 × g for 3min. Thiswasdone
after every dispensing stepwith I.DOT. For lysis, we incubated theplate
at 50 °C for 1 h followed by heat inactivation at 70 °C for 15min. To
neutralize EDTA in the lysis buffer, we dispensed 50 nL of 4mMMgCl2
into each well and then vortexed and centrifuged the plate. For tag-
mentation, we dispensed 600 nL of tagmentation reaction mix con-
taining Tagmentation DNA buffer (TD) and Amplicon Tagment Mix
(ATM) at 2:1 v/v ratio (Nextera kit, Illumina, cat. no. FC-131-1096) into
each well and performed tagmentation at 55 °C for 5min followed by
hold at 4 °C in a PCR thermocycler. To stop the reaction, we dispensed
200 nL of neutralization (NT) buffer into each well and incubated the
plate for 5min at room temperature. Lastly, we performed single
nuclei indexing by dispensing 600 nL of Nextera PCR Master Mix
(NPM) and 400 nL of a unique Nextera index pair (Illumina, cat. no.
20027213, 20027214, 20042666, 20042667) into each well. PCR set-
tings were as follows: 72 °C for 3min; 95 °C for 30 s; (98 °C for 10 s,
63 °C for 30 s, 72 °C for 30 s) for 16 cycles; 72 °C 5min; hold +4 °C.
Subsequently, we pooled the contents of all the wells of a 384-well
plate together and purified the resulting library using AMPure XP
beads (Beckman Coulter, cat. no. A63881) at 1.8 v/v ratio. We
sequenced all ACT libraries on NextSeq 2000 (Illumina) in single-end
mode using the NextSeq 1000/2000 P2 Reagents (100 Cycles) kit
(Illumina, cat. no. 20046811). See Supplementary Data 7 for a summary
of sequencing statistics.

scCUTseq validation by DNA FISH. To validate scCUTseq with an
orthogonal method, we leveraged our iFISH pipeline for high-
resolution DNA FISH23 with several modifications to the original
protocol specifically tailored for fresh-frozen tissue sections.

Probe design and production. We selected three regions of interest
(ROIs) on chr13, one corresponding to themidpoint of a large deletion
detected by both scCUTseq and ACT (chr13:54,000,000-55,000,000;
hereafter “deletion probe”) and two flanking regions, located ~3Mbon
either side of the deletion boundaries (chr13:29,000,000-30,000,000
and chr13:77,000,000-78,000,00; “upstream” and “downstream
probe”, respectively) (see Fig. 3c). We extracted all possible 40 nt
target (T) sequences from each ROI and attributed each sequence a
cost, depending on their level of off-target homology and intrinsic
parameters such as melting temperature, delta free energy of sec-
ondary structures, and length of homopolymers. For each ROI, we
selected the 6000 sequences providing the minimal combined indi-
vidual cost (quality of each sequence) and pairwise cost (genomic
distance between consecutive sequences). Lastly, we appended left (L)
and right (R) 20 nt adapter sequences on the 5’ and 3’ side, respec-
tively, of the T sequences. The sequences of all the oligos in eachprobe
as well as the sequences of fluorescently labeled detection oligos are
provided in Supplementary Data 3. We produced the probes using our
iFISH pipeline23 starting from synthetic oligopools (purchased from
Twist Bioscience).

Probe hybridization. We obtained 10 μm-thick cryosections and
directly transferred them onto microscope slides then stored at
–80 °C until performing the experiments. For H&E staining, we first
fixed the cryosections with cold acetone (prechilled at –20 °C) for
2min followed by a brief wash in running water to remove acetone.
We then stained the sections in Mayer’s hematoxylin solution (VWR,

cat. no. 10047105) at 25 °C for 3min. After a brief wash in running
water, we transferred the sections into hot running water (preheated
at 60 °C) for 10min, followed by a short rinse in running water and
staining in Eosin Y solution (Histolab, cat. no. 01650) for 1min. We
then dehydrated the sections through 95% ethanol and twice 100%
ethanol, 10 sec each. Finally, after clearing the sections in xylene
twice 5min each, we mounted the sections with Sub-X Mounting
Medium (Leica, cat. no. 3801741). On the day of the FISH experiment,
we let the frozen slides reach –20 °C before transferring them
directly to 1X PBS/4% paraformaldehyde (PFA) (VWR, cat. no.
10047105). We incubated the sections in PFA for 10min at room
temperature, followed by PFAquenchingwith 1X PBS/125mMglycine
and permeabilization in 1X PBS/0.5% Triton X-100 for 20min at room
temperature, followed by 5min in 0.1 N HCl. To remove unspecific
background fluorescence, we incubated the slides in 1X PBS/0.1mg/
mL RNase A (Sigma Aldrich, cat. no. R4875) at 37 °C for 1 h, followed
by 1X PBS/0.5mg/mL collagenase type 3 (Thermo Fisher Scientific,
cat. no. 16111810) at 37 °C for 20min. We performed successive
dehydration steps in ethanol and let the slides air-dry.We transferred
the slides to a buffer containing 2X SSC/50mM sodium phosphate
buffer (Thermo Fisher Scientific, cat. no. J60158.AP)/50% v/v for-
mamide (Millipore, cat. no. S4117) and incubated them overnight in
darkness at room temperature. On the following day, we covered the
tissue sections with a pre-hybridization buffer containing 2X SSC/
50mM sodium phosphate buffer/50% formamide/5X Denhardt’s
solution (Invitrogen, cat. no. 750018)/1mMEDTA (SigmaAldrich, cat.
no. AM9261)/100 µg/mL salmon sperm DNA (Thermo Fisher Scien-
tific, cat. no. 15632011) and incubated them for 1 hour at 37 °C. We
directly replaced this solution with hybridization buffer with the
same composition plus 10% w/v dextran sulfate (Sigma Aldrich, cat.
no. D8906) and the three FISH probes, each diluted at 0.05 nM
per oligonucleotide. We covered the hybridization mix with an
18 × 18 mm2 coverslip and sealed the sides of the coverslip with
rubber cement (Fixogum, Triolab, cat. no. LK071A). We performed
denaturation at 75 °C for 3min followed by overnight incubation in a
humidity chamber at 37 °C in darkness. After hybridization, we
removed the coverslips inside a Petri dish pre-filled with 2X SSC/0.2%
Tween-20, followed by washing off unbound probes twice in 0.2X
SSC/0.2% Tween-20 at 60 °C for 7min. We then pre-incubated the
slides for 15min in a buffer containing 2X SSC/25% v/v formamide
before proceeding with secondary hybridization. We covered the
samples with a hybridization buffer containing 2X SSC/25% v/v for-
mamide/10% w/v dextran sulfate/1mg/mL E. coli tRNA (Sigma
Aldrich, Merck cat. no. 10109541001)/0.02% w/v bovine serum albu-
min (BSA, Thermo Fisher Scientific cat. no. AM2618) plus fluores-
cently conjugated detection oligonucleotides (purchased from
Integrated DNA Technologies) diluted at 20 nM each. We incubated
the slides covered with hybridization mix in a humidity chamber at
30 °C overnight. On the next day, we washed away unbound fluor-
escent oligos in 2X SSC/25% v/v formamide at 30 °C for 1 hour, fol-
lowed byDNA staining in 2X SSC/25% v/v formamide/1 ng/μLHoechst
33342 (Thermo Fisher Scientific, cat. no. 62249) for 1 hour at 30 °C.
Finally, after washing the slides in 2X SSC, we mounted them in an
anti-bleach imaging buffer containing 2X SSC/10mMTris-HCl/10mM
Trolox (Sigma Aldrich, cat. no. 238813)/37 ng/μL glucose oxidase
(Sigma Aldrich, cat. no. G2133)/32mM catalase (Sigma Aldrich, cat.
no. C3515)/0.4% w/v glucose.

Imaging. We imaged all the samples on a custom-built Nikon Ti-E
Eclipse wide-field microscope equipped with an iXon Ultra 888
EMCCD camera (Andor Technology)23. We imaged the samples
using a 25X/1.05 NA silicon oil-immersion objective (Nikon) for
whole-section imaging and a 100X/1.45 NA oil-immersion objective
(Nikon) for selected zoom-in regions. We acquired z-stacks span-
ning the entire slice thickness with a NIDAQ Piezo Z unit with an
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interplane distance set at 450 and 300 nm for 25X and 100X mag-
nification, respectively.

Computational methods
Sequencing data pre-processing. After each sequencing run, we
demultiplexed raw sequence reads to fastq files using the BaseSpace
Sequence Hub cloud service of Illumina. In the case of scCUTseq,
each fastq file typically contains 384 single cells. We further
demultiplexed each fastq file using a custom Python script. In short,
we extracted cell-specific barcodes and UMIs from each read at the
specified nucleotide locations. Following this, we matched the bar-
codes to a list of predefined barcodes allowing for twomismatches if
using a set of 384 adapters, or one mismatch if using a set of 96
adapters. We then re-wrote the reads to cell-specific fastq files with
the barcode and UMI appended to the read name. For sequence
reads that extended through adapters, we trimmed the adapters
from cell- (or sample-) specific fastq files using fastp (version
0.20.1)45. We aligned the fastq files to the hg19 human reference
genome using bwa-mem (version 0.7.17-r1188)46 or to the dm6 Dro-
sophila melanogaster reference in the case of S2 cells, and subse-
quently sorted and indexed using samtools (version 1.10)47. We
moved barcodes and UMI tags from the bam file read header to the
tags using a customPython script. Finally, we deduplicated the reads
based on the UMI tag and read position using umi-tools (version
1.1.1)48. In the case of WGS, we skipped the additional demultiplexing
and trimming steps and deduplicated the reads using gatk Mark-
Duplicates (version 4.2.0.0)49 instead. All the procedures described
above are fully automated and streamlined using snakemake (ver-
sion 5.30.1)50.

Copy number calling. We counted reads in genomic bins of variable
length (average length: 100 kb for bulk CUTseq; 250kb for
TK6 scCUTseq; 500 kb for all other scCUTseq andACTdatasets) based
on mappability. Genomic bins that are located in low mappability
regions are extended, while bins in high mappability regions are
shortened. Following this, wefiltered out blacklisted regions, including
telomeric and centromeric regions, using a blacklist adapted from
https://github.com/Boyle-Lab/Blacklist. The adapted blacklist is avail-
able at https://github.com/BiCroLab/scCUTseq/ under snakemake
pipelines. We then normalized reads for library size and GC-content.
Briefly,we calculated the ratiobetween readcounts in each bin and the
mean readcounts across all bins and log-normalized the ratio. For each
bin, we computed the GC-content and modeled a weighted linear
regression between the GC-content and the normalized read counts
using the LOWESS R function. We used this model to scale the read
counts, normalizing for GC-content. Next, we either segmented the
normalized read counts using the Circular Binary Segmentation
module in the DNAcopy (version 1.66.0)51 R package or, in the case of
all breast and prostate single-cell data, joint segmentation using the
multipcf function in the copynumber (version 1.29.0.9)52 R package.
Following this, we merged adjacent segments that were not sig-
nificantly distinct using mergeLevels in the aCGH (version 1.78.0)53 R
package. In the case of single-cell data, we then inferred integer copy
numbersusing a grid search betweendifferent ploidy (ranging from 1.7
to 6, using 0.01 step sizes) and purity (being 1 for single-cell data)
combinations and selecting the combinationwith the lowest error. We
skipped this last step in the case of bulk sequencing data.

Copy number quality control using a random forest classifier. To
exclude low-quality single-cell copy number profiles from our ana-
lyses, we trained a random forest classifier54 based on 16 different copy
number profile features (see Supplementary Data 2), using the profiles
of 2304 single cells. In short, we manually annotated 2,304 scCUTseq
profiles as high or low quality. We trained a random forest on 80% of
these cells using the randomForest (version 4.6–14)55 R package with

ntree = 500 and importance = TRUE ensuring class balance. To assess
the performance of the random forest, we used the remaining 20% of
the cells that were not used in the initial training as a validation set.
Based on a receiver operating characteristic curve (ROC), we selected
themost optimal threshold to classify single-cell copynumberprofiles.

Cell cycle analysis using scAbsolute. To assess whether some of
copy number profiles discarded by our Random Forest classifier cor-
respond to cycling cells in S phase, we applied the recently developed
scAbsolute tool20 to infer the cycling activity of 991 cells from four
different scCUTseq libraries (MS101 and MS102 from prostate sample
P2 and NZ235 and NZ236 from prostate sample P5, see Supplementary
Data 7). We ran scAbsolute using the workflow described here: https://
github.com/markowetzlab/scDNAseq-workflow. After obtaining the
cycling activity for each cell in those libraries, we predicted, for each
library separately, whether the cells were in S-phase using the pre-
dict_replicating() function in scAbsolute.

Calculation of scCUTseq and ACT breadth of coverage and over-
dispersion. We first downsampled single cells to 800K reads.We then
calculated the genome coverage using genomeCoverageBed from
bedtools (version v2.25.0)56 and the overdispersion by calculating the
variance of read counts per bin normalized by the mean read counts
per bin.

Cell classification in tumor samples. We classified cells in three dif-
ferent groups (diploid, pseudo-diploid, and aneuploid) based on their
copy number profile. To this end, we calculated the percentage of the
genome that was altered in each cell, meaning non-diploid copy
numbers in autosomes and a non-diploid copy number state in chrX
for female samples and non-haploid chrX formale samples. In the case
of prostate samples, we then classified all the cells with no alterations
as diploid; cells with less than 25% of the genome altered as pseudo-
diploid; and cells with more than 25% of their genome altered as
aneuploid. For breast cancer samples, we did not make a distinction
between pseudo-diploid and aneuploid cells but classified all the cells
harboring copy number alterations as (potential) tumor cells.

Phylogenetic reconstruction and clone identification in tumor
samples. We constructed phylogenetic trees of pseudo-diploid pros-
tate cells andof tumorbreast cells usingMEDICC2 (version0.8.1)21 with
default parameters and total copy numbers of single cells as input.
Following this, we used TreeCluster (version 1.0.3)57 to cluster cells
based on the Newick tree generated by MEDICC2. We used the ‘max’
clustering method, which clusters leaves (cells) so that the maximum
distance between leaves within the same cluster is at most t, with t
equal to 3 and 4 for prostate samples P2 and P5, respectively, and 30
and 22 for breast cancer samples B1 and B2, respectively.

UMAP on aneuploid cell SCNAprofiles. For aneuploid prostate cells,
we first embedded the cells using UMAP with the following para-
meters: seed = 678, distance = ‘manhattan’, min_dist = 0 and n_neigh-
bors = 6 (P2) and 3 (P5). Subsequently, we clustered the cells using the
hdbscan function in the dbscan (version 1.1-8)58 R package with
minPts = 10.

Pseudo-diploid subclone spatial distribution. To quantify the spatial
distribution of pseudo-diploid subclones in prostate samples, we cal-
culated the Shannon entropy per clone as a proxy for how local or
widespread clones are distributed. We normalized the number of cells
from each clone based on the total number of cells that passed QC for
each region and then calculated Shannon’s entropy using the Desc-
Tools (version 0.99.49)59 R package. An entropy close to 0 indicates
highly localized distribution of a subclone while higher values indicate
more widespread distributions.

Article https://doi.org/10.1038/s41467-024-47664-z

Nature Communications |         (2024) 15:3475 14

https://github.com/Boyle-Lab/Blacklist
https://github.com/BiCroLab/scCUTseq/
https://github.com/markowetzlab/scDNAseq-workflow
https://github.com/markowetzlab/scDNAseq-workflow


TCGA data analysis. We downloaded segmented copy number pro-
files and masked somatic mutations of Prostate Adenocarcinoma
samples (n = 499, TCGA, Firehose Legacy) from the cBioPortal60

(https://www.cbioportal.org/) using the TCGAbiolinks (version
2.28.2)61 R package.We classifiedpatients infivedifferent gradegroups
basedon theirGleason score as following: 1) group 1: patientswith 3 + 3
Gleason score; 2) group 2: patientswith 3 + 4Gleason score; 3) group 3:
patients with 4 + 3 Gleason score; 4) group 4: patients with 4 + 4
Gleason score; and 5) group 5: patients with combinedGleason score 9
or 10.We then overlapped genomic regions thatwere either amplified,
deleted ormutated with COSMIC and used ComplexHeatmap (version
2.16.0) to visualize the alterations. Finally, we used GISTIC262 (version
2.0.23) to look for genomic regions that are enriched for amplifications
or deletions.

DNA FISH image analysis. We converted raw.nd2 image files to.tif
format and performed 3D deconvolution using our
Deconwolf software24 using 100 iterations for all FISH channels and 50
iterations for the DNA channel. We reconstituted an overview of the
entire tissue section by stitching the images acquired with 25x mag-
nification, on which two pathologists independently manually anno-
tated tumor and stroma regions using QuPath63. In parallel and blindly
from the tumor annotation, we manually quantified FISH dots using
ImageJ264 in 50 images acquired at 100x magnification and decon-
volved using Deconwolf24. We then related the dot count of ‘deletion’
and ‘upstream’ probes to that of the ‘downstream’ probe (see Experi-
mental Methods for a detailed description of the probes). Since the
deletion is predicted to be monoallelic, we converted the relative
proportion of deletion dots to the proportion of cells exhibiting the
deletion in exactly one copy of chr13 using the following equation:

Ncells with del: =
1�Ndel:dots

0:5
ð1Þ

Finally, we related the proportion of cells harboring the deletion
to the fraction of the 100x image covered by tumor lesions, according
to the annotation performed by the pathologists on the stitched 25x
magnification images.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data (raw) for all the cell lines and breast cancer
samples have been deposited in the European Nucleotide Archive
(ENA) under accession code PRJEB71681. Supplementary Data 7 con-
tains an overview of all sequencing runs and provides information
whether the raw data are available on ENA, or not. The sequencing data
(raw) for prostate, brain, and skeletal muscle samples cannot be pub-
licly shared, either because the ethical permit for collecting the samples
explicitly excluded it (prostate) or because explicit informed consent
was lacking (brain and skeletal muscle). However, these data may be
sharedwith individual researchers after sending a formal request to the
corresponding author and only upon stipulation of a dedicated data
transfer agreement, pending approval of the relevant ethical review
board. An initial response to a request may be expected from the
corresponding author within two weeks. All sequencing data sets have
been aligned to the hg19 reference genome. Processed sequencing data
for all samples including prostate, brain, and skeletal muscle are
available on Figshare65. Tabulated data to reproduce all the plots in the
main Figures and Supplementary Figs. are available as a Source Data
file. The TCGA data that we used here can be downloaded from https://
www.cbioportal.org/study/cnSegments?id=prad_tcga. Source data are
provided with this paper.

Code availability
All the custom code used for processing the sequencing data gener-
ated by scCUTseq is available on GitHub (https://github.com/
BiCroLab/scCUTseq and https://bicrolab.github.io/scCUTseq/) and
zenodo66.
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