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Using genome and transcriptome data from
African-ancestry female participants to
identify putative breast cancer
susceptibility genes

A list of authors and their affiliations appears at the end of the paper

African-ancestry (AA) participants are underrepresented in genetics research.
Here, we conducted a transcriptome-wide association study (TWAS) in AA
female participants to identify putative breast cancer susceptibility genes. We
built geneticmodels to predict levels of gene expression, exon junction, and 3′
UTR alternative polyadenylation using genomic and transcriptomic data
generated in normal breast tissues from 150 AA participants and then used
thesemodels to perform association analyses using genomic data from 18,034
cases and 22,104 controls. At Bonferroni-corrected P <0.05, we identified six
genes associated with breast cancer risk, including four genes not previously
reported (CTD-3080P12.3, EN1, LINC01956 and NUP210L). Most of these genes
showed a stronger association with risk of estrogen-receptor (ER) negative or
triple-negative than ER-positive breast cancer. We also replicated the asso-
ciations with 29 genes reported in previous TWAS at P <0.05 (one-sided),
providing further support for an association of these genes with breast cancer
risk. Our study sheds new light on the genetic basis of breast cancer and
highlights the value of conducting research in AA populations.

Breast cancer is themost common cancer diagnosed amongwomen in
the world, with ~2.3 million new cases diagnosed annually, accounting
for ~12% of all new cancer diagnoses1. In the United States, womenwith
African-ancestry (AA) generally have a slightly lower incidence rate of
breast cancer than women with European-ancestry (EA)2. However, AA
women are at a higher risk of developing estrogen receptor (ER)
negative and triple-negative breast cancer (TNBC) than their EA
counterparts3,4. It has been suggested that genetic factors may explain
some of the difference in breast cancer risk between these two
populations5–8.

Since 2007, genome-wide association studies (GWAS) have iden-
tified >200 genetic variants associated with breast cancer risk9–12.
However, most of these genetic variants were identified from studies
conducted in populations of European or Asian ancestry13,14. Recently,
several transcriptome-wide association studies (TWAS) have been

conducted to identify putative susceptibility genes for breast
cancer9,15–18. However, none of these studies were conducted on AA
participants. Two recent TWAS included AA female participants.
However, these two studies were small, evaluated only breast cancer
mortality and recurrence, and used transcriptomic data from tumor
tissues for model building, which could affect the accuracy of model
building19,20. Given the differences in genetic architecture between AAs
and other populations21, genetic studies conducted among AA parti-
cipants could provide added insights into breast cancer genetics and
biology.

Previous TWAS of breast cancer focused primarily on investigat-
ing associations of gene expression levels with the risk of this common
cancer. It has been proposed that investigating genetic variants related
to post-transcriptional regulations, such as performing splicing TWAS
(spTWAS) to investigate exon junction levels or performing alternative
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polyadenylation (APA)-wide association studies (APA-WAS) to investi-
gate 3′ untranslated region (3′ UTR) APA levels, could also help to
identify putative disease susceptibility genes22,23. In this study, we
performed these three types of TWAS in AA participants to system-
atically investigate genes associated with breast cancer risk.

Results
We used GWAS data from the African-ancestry Breast Cancer Genetic
(AABCG) Consortium. Study participants were recruited from more
than 20 studies conducted in the United States and Africa, the details
of which were reported in a previous publication and summarized in
the supplemental notes and Table S124. In brief, 18,034 female cases
and 22,104 female controls of African-ancestry were included in this
study (Table S2). Information regarding breast cancer subtypes was
available for 9304 ER-positive cases, 4924 ER-negative cases, and 2860
TNBC cases.

We performed RNA sequencing of normal breast tissue samples
donated by 150 AA female participants to the Susan G. Komen Normal
Tissue Bank. Genomic DNA samples of these participants were geno-
typed using the Illumina multi-ethnic genotyping array (MEGA) plat-
form. Thesedatawere used to build geneticmodels to predict levels of
gene expression, APA, and exon junction.

Association analyses identify new putative susceptibility genes
for breast cancer risk
Of the 36,387 genes measured, gene expression prediction models
were successfully built for 18,787 genes, of which 9982 genes achieved
a five-fold cross-validation prediction performance with R >0.1
(Table 1). Applying these 9982 models to GWAS data using S-Pre-
diXcan, one lncRNA gene CTD-3080P12.3 (also known as TERLR1) was
associated with overall breast cancer risk at the Bonferroni-corrected
significance of P < 5.0 × 10−6 (0.05/9982). We further evaluated the
associations between predicted gene expression and risk of breast
cancer by subtypes and identified two genes, EN1 and LINC01956 (for
ER-negative and TNBC), showing an association at the Bonferroni-
corrected significance level (Table 2). These three genes (CTD-
3080P12.3, EN1, and LINC01956) have not been previously identified
in TWAS for breast cancer risk. CTD-3080P12.3 is located at a known
breast cancer risk locus (lead variant rs2853669). Both EN1 and
LINC01956 are located at an AA-specific risk locus (lead variant
rs76664032) thatwas identified in our recent GWAS conducted among
AA participants24.

We identified 22,559 APA events and 80,566 exon junctions, of
which 3309 APA events and 11,426 exon junctions can be predicted
with an R >0.1 (Table 1). Using these models, we identified one APA
event in gene TET2 that showed an association with overall breast
cancer risk at the Bonferroni-corrected significance of P < 1.5 × 10−5

(0.05/3309, Table 2). We also found that two exon junctions in genes
BRD9 and NUP210L showed an association with overall breast cancer
risk at the Bonferroni-corrected significance of P < 4.3 × 10−6 (0.05/
11,426, Table 2). Both TET2 and BRD9 are located at previously GWAS-
identified breast cancer risk loci (lead variants rs62331150 and
rs2853669). NUP210L was not located at any known breast cancer risk
locus and has not been reported by any previous breast cancer TWAS.
Analyses by subtypes of breast cancer identified TET2 from APA-WAS
in association with ER-negative breast cancer risk at the Bonferroni-
corrected significant level and BRD9 from spTWAS in association with
ER-negative and TNBC subtypes at the Bonferroni-corrected sig-
nificant level (Table 2).

We further assessed genetic variants located within the ±500Kb
region for each of the 13 genes that were identified in our TWAS to be
significantly associated with breast cancer risk, overall or by sub-
types. Within these regions, 11 lead variants show GWAS significance
at P < 5 × 10−8 (Table 3) in AA with different subtypes of breast cancer.
To evaluate whether the associations for these 13 genes might be

explained by these lead risk variants identified in GWAS, we per-
formed conditional analyses by adjusting for the nearest GWAS-
identified risk variants. The NUP210L gene is located far away
from any of the index risk variants, and thus we cannot perform a
conditional analysis for this gene. For gene EN1 and LINC01956,
we adjusted the SNP rs76664032 identified in our recent
AA GWAS. SNP rs76664032 is located at 2q14.2 and is 10Kb from the
3′ end of LINC01956 and 18Kb from the 3′ end of EN1. The results
of the conditional analysis revealed that the association with EN1
and LINC01956 remains highly significant for the risk of ER-negative
(EN1: PConditional = 5.0 × 10−7; LINC01956: PConditional = 6.4 × 10−4) and
TNBC subtypes (EN1: PConditional = 4.0 × 10−7; LINC01956:
PConditional = 7.1 × 10−4) (Table S3). These results suggest that the
associationwith EN1 and LINC01956 identified in our TWAS cannot be
explained entirely by the risk variant identified in GWAS. On the
other hand, the association was substantially attenuated for the CTD-
3080P12.3 gene (PConditional = 0.028) or became non-significant for
other genes, suggesting that most of the association signal for these
genes can be explained by the index variants identified in GWAS. We
also performed permutation tests to evaluate the extent to which the
risk variant-expression weights contribute to the TWAS association
signals identified in this study and demonstrated that the integration
of expression data significantly enhances the association with breast
cancer risk (Table S3). We utilized eQTpLot25 to visualize eQTLs and
GWAS statistics for putative risk genes identified in this study. All the
variants employed in the prediction models were used in the visua-
lization (Supplementary Figs. S1–S11). For many of these genes, var-
iants used in the prediction models showed a highly significant
association with breast cancer risk.

Evaluation of previously TWAS-identified genes
We used AABCG data to evaluate whether genes identified in our
previous TWAS conducted among Asian- and European-ancestry
participants9 are also associated with breast cancer risk in AA partici-
pants. Of the 137 genes identified in our previous TWAS (Table S4), 106
genes (77%) can be predicted in our genetic models for levels of gene
expression, APA event, and exon junction, and 86 genes (63%) reach
prediction R > 0.1 (Table S4). Of them, 29 genes showed the same
association direction as the previous Asian- or European-ancestry
TWAS at P <0.05 (one-sided) (Table 4). We also evaluated genetic
variants within the ±500Kb region for each of these 29 replicated
genes.Only one lead variant (rs56069439ofABHD8) in AAparticipants
showed an association with breast cancer risk at P < 5 × 10−8 (Table S5).

Discussion
Here, we have conducted a TWAS in African-ancestry participants to
systematically evaluate the associations of genetically predicted tran-
scriptome levels with breast cancer risk using expression data from
normal breast tissues. We identified six genes associated with the risk
of breast cancer, overall or by subtypes, at the Bonferroni-corrected
significant level of 0.05, including four genes not yet reported pre-
viously. Perhapsmore importantly,most of these genes showed amore
specific association with ER-negative or TNBC subtypes, for which AA
participants are at a higher risk than participants of other racial groups.
In addition, we replicated the association for 29 genes identified from
the previous Asian- or European-ancestry TWAS, providing support for
a potential causal association of these genes with breast cancer risk.
Our study highlights the value of conducting genetic studies in the AA
population and provides significant new information to understand the
genetics and etiology of breast cancer in AA participants who are sig-
nificantly underrepresented in genetic studies.

We identified four new genes (CTD-3080P12.3, EN1, LINC01956,
andNUP210L) showing a significant associationwith breast cancer risk
at the Bonferroni-corrected significance level. CTD-3080P12.3 was
associated with overall breast cancer risk. CTD-3080P12.3, also known
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as TERLR1, is located at a well-known breast cancer risk locus (lead
variant rs2853669, also known as the TERT SNP), however, this gene
has not been reported in associationwith breast cancer in anyprevious
studies. The upregulation of this lncRNA was reported to enhance
carcinogenesis and metastasis of esophageal squamous cell
carcinoma26. EN1 and LINC01956 were associated with the risk of ER-
negative breast cancer and TNBC, respectively. These two genes are
located at an AA-specific risk locus identified by our recent GWAS
conducted among AA participants24. EN1 is a transcription factor with
known roles in brain27 and dermomyotome28 development and its
downregulation significantly reduced viability and tumorigenicity in
TNBC cell lines29. LincRNA LINC01956 is an E2F1 target gene, and its
overexpression correlates with poor prognosis in basal-like breast
cancer participants30.NUP210Lwas found to be associatedwith overall
breast cancer risk. It has been reported that NUP210L could have a
significant impact on the function of nuclear pores, which may play a
role in defining the behavior of breast cancer31. Further in vitro func-
tional experiments may be applied to evaluate the potential functions
of these genes.

In this study, we replicated the associations for 29 putative breast
cancer risk genes identified in our previous TWAS conducted in Eur-
opean or Asian participants at nominal P <0.05, providing additional
evidence to support the associations of these genes with breast cancer
risk. Although the present study used the largest GWAS conducted
among AA participants, to our knowledge, the sample size is still
relatively small compared with GWAS studies conducted among Eur-
opean or Asian participants. The more limited sample size may be a
potential reason for the failure to replicate some previously reported
putative breast cancer susceptibility genes. Although these results do
not prove causality, consistent findings from studies conducted in
different populations provide support for a potential true association,
particularly given that the lead risk variants in these populations are
different.

In this study, we built three types of prediction models: gene
expression, APA events, and exon junctions. Of note, three genes
showing a Bonferroni-corrected significant association were identified
in APA-WAS or spTWAS, including one new gene (NUP210L) not
reported before. As APA-WAS or spTWAS investigate genetic variants
related to post-transcriptional regulations, these genetic variants may
affect the breast cancer risk of AA through post-transcriptional and
regulatory mechanisms. The conventional TWAS method, which
focuses only on gene expression, may fail to identify transcriptional
events related to post-transcriptional regulation. Studies using APA-
WAS and spTWAS, along with traditional TWAS, can potentially iden-
tify additional genes associated with complex traits.

The major purpose of TWAS is to identify breast cancer suscept-
ibility genes, similar to breast cancer GWAS that aim at identifying
genetic variants for breast cancer risk. Previous studies used gene
expression data to build gene prediction models for TWAS9,15,32. Gene
expressions in tumor tissue are altered by somatic mutations, and
thus, their levels arenot less likely to be regulatedby germline variants,
whichcould introduce noise and affect the accuracy ofmodel building.
We used gene expression data from normal breast tissues to build
gene expression prediction models for TWAS, which is a major
strength of this study. However, although TWAS identifies genes that
are associated with the trait of interest, they do not prove that these
genes are causal. Future studies, including functional experiments, are
needed to generate additional evidence for causal inference.

In summary, we performed a comprehensive TWAS based on the
integration of large GWAS data and transcriptomic data from African-
ancestry participants, to identify candidate susceptibility genes asso-
ciated with breast cancer risk. Our findings improve the population
diversity in genetic studies for breast cancer and provide new insights
into the biology and genetics of breast cancer.

Methods
Normal breast tissue samples donated by 150 African-ancestry female
participants to the Susan G. Komen Normal Tissue Bank were used in
this study to generate genomic and transcriptomic data to build
genetic models to predict levels of gene expression, APA, and exon
junction. Normal breast biopsies collected from the upper outer
quadrant of the breasts were frozen within an average of six minutes
from the time of biopsy, allowing for the preservation of the tissue
quality. All donors provided written informed consent, and the pro-
tocol was approved by the Indiana University Institutional
Review Board.

Genomic DNA samples of these 150 AA participants were geno-
typed using the Illumina MEGA platform at Vanderbilt University
Medical Center. All individuals had at least an 80% proportion of
African ancestry using Admixture33, with 1000 Genome samples as
reference (Table S6). Formodel building, we excluded genetic variants
with minor allele frequency <5%, Hardy–Weinberg equilibrium p
value < 10−4 and missing genotyping rate >5%. SNPs with a consistency
rate <98% among duplicate samples were also excluded. All

Table 1 | Summary of genetic models built to predict levels of
gene expressions, alternative polyadenylation (APA) event,
and exon junction

Models No. of events for
model building

No. of predictable
events

No. of events pre-
dicted with R > 0.1

Gene
expression

36,387 18,787 9982

APA event 22,559 8120 3309

Exon junction 80,566 31,591 11,426

Table 2 | Genes associated with breast cancer risk at the
Bonferroni-corrected significant level of 0.05

Breast
cancer
subtypea

Gene Cytoband Nearest
index SNPb

Z
score

P value

Exp-TWAS

Overall CTD-
3080P12.3

5p15.33 rs2853669 4.7 3.2 × 10−6

ER-Negd EN1 2q14.2 rs76664032c −5.7 1.6 × 10−8

LINC01956 2q14.2 rs76664032c −5.4 5.3 × 10−8

TNBCd EN1 2q14.2 rs76664032c −5.8 6.9 × 10−9

LINC01956 2q14.2 rs76664032c −5.6 2.5 × 10−8

APA-WAS

Overall TET2 4q24 rs62331150 −4.4 1.2 × 10−5

ER-Neg TET2 4q24 rs62331150 −4.9 1.2 × 10−6

spTWAS

Overall BRD9 5p15.33 rs2853669 −4.7 2.3 × 10−6

NUP210L 1q21.3 / −4.7 3.0 × 10−6

ER-Neg BRD9 5p15.33 rs2853669 −5.2 2.2 × 10−7

TNBC BRD9 5p15.33 rs2853669 −4.8 1.8 × 10−6

P values were derived from the Z score tests (two-sided). Statistical significant threshold for
multiple comparison adjustment is defined as P < 5.0 × 10−6 for gene expression TWAS of 9982
tests (0.05/9982), P < 1.5 × 10−5 for APA-WAS of 3309 tests (0.05/3309), and P < 4.3 × 10−6 for
spTWAS of 11,426 tests (0.05/11,426) using Bonferroni correction.
aER-Pos estrogen receptor (ER)-positive, ER-Neg ER-negative, TNBC triple-negative breast can-
cer, TWAS transcriptome-wide association study, Exp-TWAS gene expression TWAS, APA-WAS
alternative polyadenylation (APA)-wide association study, spTWAS splicing TWAS.
bWithin ± 500Kb region.
cThis index SNP (rs76664032) was identified in our recent GWAS conducted among AA female
participants.
dSuggestive associations were found for genes CTD-3080P12.3 (P = 1.3 × 10−5) with ER-negative
breast cancer risk and MRPL34 (P = 9.2 × 10−6) with TNBC risk at the p value near the significant
threshold after Bonferroni correction.
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genotyping data were imputed using the Trans-Omics for Precision
Medicine (TOPMed) as a reference panel. Genetic variants with impu-
tation quality score (r2) < 0.8 were excluded. Since it is difficult to
determine the effect allele, multi-allelic SNPs and strand-ambiguous
SNPs (with alleles A/T or C/G) were also excluded. Finally, SNPs that
hadnot been included in thefinal analysis data set of theAABCGGWAS
were excluded for model building.

Total RNAwas extracted and purified usingQiagen’s AllPrepDNA/
RNA/miRNA Universal Kit (Qiagen), following the manufacturer’s
instructions. The quantity and quality of the DNA/RNA samples were
checked by Nanodrop (E260/E280 and E260/E230 ratio) and by
separation on an Agilent BioAnalyzer. Rnase H was used to remove
rRNA. Each sample was sequenced pair-ended with a read length of
100bp using DNBSEQ on BGISeq. A minimum of 10M reads were
obtained for each sample.

Summary-level statistics data from the African-ancestry Breast
Cancer Genetic Study (AABCG), a GWAS conducted on female parti-
cipants of African ancestry recruited frommore than 20 studies in the
U.S. and Africa, were used for the association analysis. Detailed
descriptions of participating studies are included in the Supplemen-
tary Materials. All study participants provided informed consent, and
the AABCG was approved by the Vanderbilt University Medical Center
institutional review board. All participating studies were approved by
their appropriate ethics or institutional review board.

Transcriptome data profiling and processing
Gene expression. RNA sequencing (RNA-Seq) data were processed
following the mRNA analysis pipeline of the genotype-tissue expres-
sion (GTEx) project34. A two-pass method of the Spliced Transcripts
Alignment to a Reference (STAR) software was used for raw data
alignment to the human reference genome (hg38)35. The GENCODE
version 26 was used for coding gene and noncoding RNAs annotation
in the human genome36. Gene expression levels were quantified from
aligned BAM files using RNAseQC v1.1.937. A gene was removed if it did
not express in more than 5% of all samples. Gene expression levels
were measured using transcript per million (TPM) and log2-
transformed. Quantile normalization was performed to standardize
the expression level across 150 samples to the same scale. Probabilistic
estimation of expression residuals (PEER) factors were calculated to
correct for batch effects and other potential experimental con-
founders in further model building38,39. Thirty PEER factors were

determined as a function of sample size as suggested in the GTEx
protocol previously34.

APA events. We quantified levels of APA events by using the Percen-
tage of Distal polyA site Usage Index (PDUI) estimated from DaPars
v2.0 for each sample from aligned RNA-Seq data40. An APA event was
removed if it had>5%missing values among all samples.Weperformed
quantile normalization to transform the quantified PDUI values of APA
for each sample to the same distribution. PEER factors were estimated
by using the normalized APA levels to correct batch effects and
experimental confounders in our downstream prediction model
building. Thirty PEER factors were determined as suggested.

Exon junctions. We estimated exon junction levels from aligned RNA-
Seq data by using a probabilistic framework, MISO (Mixture-of-
Isoforms)41. Percent Spliced Isoform (PSI,Ψ value)was used toquantify
the isoform expression. An exon junction was removed if it had >5%
missing values among all subjects. Quantile normalization was per-
formed to the PSI values, and thirty PEER factors were estimated to
correct for batch effects and experimental confounders in our further
prediction model building.

Building genetic prediction models
Genetic predictionmodels for each type of transcriptomic event (gene
expression, APA event, and exon junction) were built using the pro-
cessed genotype and quantified levels (TPM, PDUI, and PSI, respec-
tively). Age, PEER factors, and the top five genetic principal
components were adjusted in the model building. All flanking genetic
variants (±500Kb region of the respective transcriptomic event)
available in the GWAS data of breast cancer were used to build the
elastic netmodel implemented in the glmnetRpackage,withα =0.5, as
recommended by Gamazon et al.42. Five-fold cross-validationwas used
to validate the models internally. Prediction R values (the correlation
between predicted and observed quantified level) were used to esti-
mate the prediction performance of each prediction model.

Association analyses with breast cancer risk using GWAS data
Based on the weight matrix and the summary statistics data on SNPs
from GWAS data, we evaluated the association between genetically
predicted transcriptome levels (gene expression, APA levels, or exon
junction levels) and breast cancer risk using the method from the

Table3 |Association results for the leadvariantswithin ±500Kb regionsof the 13putativebreast cancer riskgenes identified in
this study, results from the African-ancestry Breast Cancer Genetic Study

Breast cancer subtype Gene Lead variant Cytoband Position
(hg38)

Allelea EAFb OR (95% CI) P value

Overall CTD-3080P12.3 rs10069690 5p15.33 1279675 T/C 0.59 1.14 (1.11, 1.18) 1.07 × 10−16

TET2 rs61751053 4q24 105613442 T/C 0.01 1.49 (1.30, 1.70) 1.07 × 10−8

BRD9 rs10069690 5p15.33 1279675 T/C 0.59 1.14 (1.11, 1.18) 1.07 × 10−16

NUP210L rs1411273 1q21.3 153629959 T/G 0.71 1.08 (1.05, 1.12) 5.00 × 10−6

ER-negative EN1 rs76664032 2q14.2 118823485 A/G 0.81 1.22 (1.15, 1.30) 1.37 × 10−9

LINC01956 rs76664032 2q14.2 118823485 A/G 0.81 1.22 (1.15, 1.30) 1.37 × 10−9

CTD-3080P12.3 rs10069690 5p15.33 1279675 T/C 0.59 1.30 (1.23, 1.37) 1.71 × 10−24

BRD9 rs10069690 5p15.33 1279675 T/C 0.59 1.30 (1.23, 1.37) 1.71 × 10−24

TET2 rs57478337 4q24 105645241 A/G 0.02 1.39 (1.16, 1.67) 3.38 × 10−4

TNBC EN1 rs76664032 2q14.2 118823485 A/G 0.80 1.30 (1.20, 1.42) 3.51 × 10−10

LINC01956 rs76664032 2q14.2 118823485 A/G 0.80 1.30 (1.20, 1.42) 3.51 × 10−10

MRPL34 rs12974508 19p13.1 17290712 T/C 0.41 0.73 (0.68, 0.77) 1.29 × 10−23

BRD9 rs10069690 5p15.33 1279675 T/C 0.59 1.38 (1.30, 1.48) 7.31 × 10−24

aEffect allele/other allele.
bEffect allele frequency among controls.
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S-PrediXcan tool43. The details of the formula used in this method are

Zg≈
X

l2Modelg

wlg
σ̂l

σ̂g

β̂l

seðβ̂lÞ
ð1Þ

In brief, the Z score was used to estimate the association
between predicted transcriptome levels and breast cancer risk. In
this formula, wlg is the weight of SNP l for predicting the tran-
scriptome levels of gene g. β̂l and seðβ̂lÞ are the association regres-
sion coefficient and its standard error for SNP l in GWAS, and σ̂l

and σ̂g are the estimated variances of SNP l and the predicted
transcriptome levels of gene g, respectively. For this study, we
estimated the correlations between SNPs included in the prediction
models.

Conditional analyses and permutation tests
We additionally conducted conditional analyses by adjusting for the
nearest GWAS-identified risk signal (the lead SNP, with the strongest
association with cancer risk in the locus). For each variant included in
the model of genetically predicted levels of gene expression, APA,
and exon junction, GCTA-COJO analyses44 were performed to calculate

the statistical significance with cancer risk after adjusting for the
nearest leadvariant.We further conductedS-PrediXcan analyses based
on the adjusted statistics (i.e., β and SE) to investigate the genetically
predicted levels of gene expression, APA, and exon junction in asso-
ciation with cancer risk. The permutation test as described in Gusev
et al.’s32 work was used to assess whether the SNP/gene relationship
adds to the SNP/trait associations, with a maximum of 1000 permu-
tations and an initiate permutation P-value threshold of 0.05 for each
feature.

Statistical methods
The primary outcomes of the study are the risk of breast cancer overall
and by subtypes. To account for multiple testing, we applied the
Bonferroni correction to each association analysis for gene expression
(0.05/9982), APA (0.05/3309), and exon junction (0.05/11,426),
respectively. To compare the association direction of genes from our
study with previous TWAS, we employed a one-tailed P value with a
significance level of 5% (P <0.05).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Table 4 | Replications of previous TWAS-identified breast cancer-associated genes in African-ancestry participants at a
nominal significant level of P < 0.05 with consistent direction

Gene Current study Previous TWAS (EUR/ASN)

Z score P value Breast cancer subtypea Modelb Z Score P Value Breast cancer subtypea

ABHD8 2.4 9.0 × 10−3 Overall Exp-TWAS 4.8 2.1 × 10−6 Overall

ALS2CR12 1.9 2.9 × 10−2 Overall spTWAS 8.4 5.5 × 10−17 Overall

ATG10 −1.9 2.7 × 10−2 ER-Pos APA-WAS −6.7 2.5 × 10−11 Overall

CASP8 −2.4 7.9 × 10−3 Overall Exp-TWAS −8.5 2.0 × 10−17 Overall

CMB9-22P13.1 2.2 1.4 × 10−2 ER-Neg Exp-TWAS 5.6 1.7 × 10−8 Overall

CPNE1 −2.4 9.2 × 10−3 Overall Exp-TWAS −4.7 2.9 × 10−6 Overall

GSTM1 −2.0 2.5 × 10−2 Overall spTWAS −4.8 1.4 × 10−6 Overall

GTF2IP1 −1.8 3.4 × 10−2 Overall Exp-TWAS −4.8 1.3 × 10−6 Overall

GTF2IRD2 1.9 3.1 × 10−2 Overall Exp-TWAS 5.2 1.8 × 10−7 Overall

HLA-F 1.7 4.2 × 10−2 Overall APA-WAS 4.8 2.1 × 10−6 Overall

KLHDC7A −1.7 4.7 × 10−2 Overall Exp-TWAS −6.3 2.4 × 10−10 Overall

LINC00886 −1.7 4.2 × 10−2 ER-Neg Exp-TWAS −5.0 5.9 × 10−7 Overall

LRRC25 1.9 2.8 × 10−2 Overall Exp-TWAS 9.5 2.8 × 10−21 Overall

LRRC37A2 −1.8 3.7 × 10−2 ER-Neg Exp-TWAS −5.7 1.5 × 10−8 Overall

MAN2C1 −3.3 4.7 × 10−4 Overall Exp-TWAS −5.9 2.8 × 10−9 Overall

METTL15P1 −2.4 8.8 × 10−3 ER-Neg Exp-TWAS −5.1 2.8 × 10−7 Overall

MLEC 2.1 1.6 × 10−2 ER-Neg spTWAS 5.6 2.6 × 10−8 Overall

NAGLU −1.8 4.0 × 10−2 Overall spTWAS −5.3 1.3 × 10−7 Overall

NCF1 1.8 4.0 × 10−2 ER-Pos APA-WAS 4.9 9.4 × 10−7 Overall

PEX14 2.3 1.2 × 10−2 Overall Exp-TWAS 4.9 1.2 × 10−6 Overall

PLEKHM1 −1.7 4.9 × 10−2 ER-Neg spTWAS −5.9 4.1 × 10−9 Overall

PRSS45 −2.0 2.1 × 10−2 ER-Neg spTWAS −5.4 6.3 × 10−8 Overall

RCCD1 −2.6 4.7 × 10−3 Overall Exp-TWAS −10.9 1.6 × 10−27 Overall

RPS23 2.1 1.6 × 10−2 Overall Exp-TWAS 6.1 1.4 × 10−9 Overall

SEMA4A 1.7 4.2 × 10−2 TNBC spTWAS 6.3 4.2 × 10−10 Overall

SEPT14P8 −1.9 2.8 × 10−2 ER-Pos Exp-TWAS −6.0 2.0 × 10−9 ER-Neg

SGCE 1.7 4.1 × 10−2 ER-Pos APA-WAS 5.7 9.3 × 10−9 Overall

STXBP4 1.9 3.1 × 10−2 Overall spTWAS 10.0 2.2 × 10−23 Overall

THBS3 2.0 2.5 × 10−2 ER-Pos Exp-TWAS 5.3 1.3 × 10−7 Overall

P values were derived from the Z score tests (one-sided).
aER-Pos estrogen receptor (ER)-positive, ER-Neg ER-negative, TNBC triple-negative breast cancer.
bTWAS transcriptome-wide association study, Exp-TWAS gene expression TWAS, APA-WAS alternative polyadenylation (APA)-wide association study, spTWAS splicing TWAS.
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Data availability
The genotyping and RNA-Seq data of samples from the Komen Tissue
Bank generated in this study have been deposited in the dbGaP data-
base under accession code phs003535.v1.p1 [https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003535.v1.p1].
Summary-level statistics data for the AABCG study are available in the
GWAS Catalog under accession number GCST90296719 for overall
breast cancer, GCST90296720 for ER-positive breast cancer,
GCST90296721 for ER-negative breast cancer, and GCST90296722 for
TNBC. GENCODE datasets are available from https://www.
gencodegenes.org/human/release_26.html.

Code availability
The developed pipeline andmain source R codes used in this work are
available from theGitHubwebsite: https://github.com/pingjie/AABCG_
TWAS/45.
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