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Memory-electroluminescence for multiple
action-potentials combination in
bio-inspired afferent nerves

Kun Wang1,5, Yitao Liao1,5, Wenhao Li1,5, Junlong Li1, Hao Su1, Rong Chen2,
Jae Hyeon Park3, Yongai Zhang1,2, Xiongtu Zhou1,2, Chaoxing Wu 1,2 ,
Zhiqiang Liu 4 , Tailiang Guo 1,2 & Tae Whan Kim 3

The development of optoelectronics mimicking the functions of the biolo-
gical nervous system is important to artificial intelligence. This work
demonstrates an optoelectronic, artificial, afferent-nerve strategy based on
memory-electroluminescence spikes, which can realize multiple action-
potentials combination through a single optical channel. The memory-
electroluminescence spikes have diverse morphologies due to their history-
dependent characteristics and can be used to encode distributed sensor
signals. As the key to successful functioning of the optoelectronic, artificial
afferent nerve, a driving mode for light-emitting diodes, namely, the non-
carrier injection mode, is proposed, allowing it to drive nanoscale light-
emitting diodes to generate a memory-electroluminescence spikes that has
multiple sub-peaks. Moreover, multiplexing of the spikes can be obtained by
using optical signals with different wavelengths, allowing for a large signal
bandwidth, and the multiple action-potentials transmission process in
afferent nerves can be demonstrated. Finally, sensor-position recognition
with the bio-inspired afferent nerve is developed and shown to have a high
recognition accuracy of 98.88%. This work demonstrates a strategy for
mimicking biological afferent nerves and offers insights into the construc-
tion of artificial perception systems.

Bio-inspired electronic systems with artificial functions, such as
biosensing1–3, bionic robotics4–6, and neuromorphic computing7–10,
have attractedmuch interest. Especially, the realization of distributed,
parallel, and event-driven information input and processing is of
importance for bio-inspired electronic systems11. When an external
stimulus affects the receptors in the human nervous system, it gen-
erates potential changes. These changes are then combined into a
single afferent fiber. The cerebral cortex processes and recognizes the

signals generated by the irritation andprovides feedback in the human
body12, as shown in Fig. 1a. Similar to the human nervous system, sci-
entist have an urgent desire to find ways to transmit the excitation
signals from distributed sensors via artificial afferent nerves in bio-
inspired electronic systems13. Artificial electronics, basic unit of elec-
tronic systems with artificial intelligence, are of great significance for
the establishment of artificial nervous systems. However, in typical
electronic systems, the electrical signals from distributed sensors
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should be encoded as voltage pulse sequences to map changes in the
external excitation, which is totally different from the efficient spike-
based signal transmission in the human nervous system14.

External excitations, for instance, pressure, electricity, light, etc.,
are usually used to generate the corresponding electrical or optical
feedback from the electronics to mimic the function of the biological
system15–20. Compared to electrical signals, optical signals have the
advantages of high speed, large bandwidth, and spatial transmission
signals21–24. Therefore, a promising approach would be to use optical
pulse signals in an artificial nervous system. Researchers have devel-
oped a series of neuromorphic optoelectronic devices, such as two-
terminal optical synapses25–27 and three-terminal optoelectronic
transistors28–30. However, current optoelectronic devices typically use
light signals as input stimuli or generate light signals of varying
intensity in response to electrical stimulation. It is difficult to apply
theseoptoelectronicdevices to electronic systemwithmultiple action-
potentials because how to achieve the encoding of light signals is
challenging. Therefore, optical-encoding schemes for artificial nervous
systems must be further developed.

In thiswork,wedemonstrate that a nanoscale light-emittingdiode
(Nano-LED) operating in the non-carrier injectionmode with memory-
electroluminescence (Mem-EL) behavior can be used to transfer

electrical signals to history-dependent optical signals. Those multiple
optical signals can then be transmitted into a single light fiber. The
history-dependent luminescence characteristic is defined as that the
current luminescence state is highly dependent on the luminescence
history. Therefore, as long as the EL intensity of the previous moment
is different, the light signal is different even though the amplitude of
the currently applied voltage is the same. In other words, the device is
capable ofmemorizing the luminescent state of the previousmoment.
The Mem-EL with interesting history-dependent characteristics is the
result of electron oscillations in themultiple quantumwells (MQWs) of
the Nano-LEDs. The Mem-EL spikes triggered by distributed sensors
are received and transmitted to a convolutional neural network for
recognition, which mimics the brain’s recognition for spike signals
(Fig. 1b). In addition, we demonstrate that wavelength-division multi-
plexing of light by using Nano-LEDs with different wavelengths can be
used to increase the bandwidth of transmitted information.

Results
Design and performance of Nano-LEDs
As shown in Fig. 1c, the Nano-LED contains gallium nitride (GaN)-based
nanorod LEDs sandwiched between two aluminum oxide (Al2O3)
insulating layers. The Al2O3 insulating layers can block charge carrier
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Fig. 1 | Artificial brain recognition based on the afferent nerve. a Process of
human brain recognition for external stimulation. Potential changes of the recep-
tors are generated by external stimulation and are combined into a single afferent
fiber to generate action potentials. The brain processes the input information to
achieve position judgments. b Artificial brain recognition system based on the
artificial afferent nerve. When the sensors are triggered, electrical signals are

generated to drive Nano-LEDs to emit memory-electroluminescence (Mem-EL)
spikes. The Mem-EL spikes transferred in a single light fiber are transmitted to a
convolutional neural network for recognition, mimicking the brain’s processing
and recognition. c Schematic of the Nano-LED, which has an ITO/ Al2O3 /nano-LED/
Al2O3 /ITO structure. d Transmission electron microscope image of the Nano-LED.
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injection from the external indium-tin-oxide (ITO) electrodes (Sup-
plementary Figs. 1, 2). Therefore, under high-frequency alternating-
current (AC) voltages, the electrons inside the LED will oscillate peri-
odically in the MQWs (Fig. 1c), leading to Mem-EL light emission. Fig-
ure 1d shows the details of the device structure, where an Al2O3

insulating layer (60 nm) and an ITO electrode (100 nm) are deposited
sequentially on the LED. The sapphire substrate and the ITO layer on
the transparent glass are used as the bottom insulating layer and the
bottom electrode, respectively. That the introduction of the insulating
layer is the key to generatingMem-EL spikes,whichwill be discussed in
detail later, is worth noting.

A combined voltage signal (Vcombine) is used to generate Mem-EL
spikes (Fig. 2a) and consists of two parts: (1) The first is a base sinu-
soidal voltage (Vbase) with a single-period sinusoidal signal. (2) The
second is a superimposed sinusoidal voltage (Vsuperimpose) with a
smaller amplitude and a higher frequency. As shown in Fig. 2b, a per-
iodic radiative recombination of the carriers occurs inside the Nano-
LEDunderVcombine and generates theMem-EL spikes. Interestingly, the
morphology of the Mem-EL spikes can be varied by adjusting the
amplitude (A), frequency (f), and phase difference (Φ) of Vsuperimpose

while Vbase remains unchanged (Supplementary Fig. 3). Figure 2c–n
show the variations in the properties of the Mem-EL under different
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Fig. 2 | Characteristics of the Nano-LED. a Generation of Vcombine. Vcombine can be
obtained by superimposing Vsuperimpose on Vbase. b Light emitted from a Nano-LED
driven by Vcombine. c–f Different Vcombine used to drive a Nano-LED by adjusting the
amplitude, phase and frequency of Vsuperimpose. The EL can only be observed in the
positive-half cycle of Vbase (red area). g–j EL intensity-voltage relationship to the
variation of Vcombine during the positive half-cycle of Vbase. The inset shows the
trend of the EL intensity with voltage, where the blue arrows represent decreasing

EL intensity and the red arrows represent increasing EL intensity. k–n Effect of a
rising and then falling voltage near the peak of Vcombine on the EL intensity. The red
arrows represent increasing voltage and the blue arrows represent decreasing
voltage. o EL spikes generated by a Nano-LED driven by two consecutive square
signals (Vs1 = 3 V and Vs2 = 6 V) and (p) by another two consecutive square signals
(Vs1 = 4 V and Vs2 = 6 V).
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Vcombine. A typical waveform for the Vcombine of Vsuperimpose super-
imposed on Vbase is shown in Fig. 2c–f. The EL intensity-voltage rela-
tionships under differentA, f, andΦ are also presented to demonstrate
the Mem-EL process more clearly. Here, the applied voltage increases
anddecreases periodically (inset of Fig. 2g–j). As illustrated in Fig. 2g–j,
two or even more different EL intensities can be observed under the
same voltage, which is quite similar to the widely reported behavior of
a memristive device. The EL intensity-voltage relationship shows a
hysteresis behavior (Fig. 2k–n).

Moreover, the hysteresis behavior of theMem-EL spikes will differ
depending on the values of A, f, and Φ. No linear correlation exists
between the EL intensity and the applied voltage amplitude, which is
utterly different from the behavior of a conventional LED in the
ordinary operation mode (Supplementary Movies 1–3). As is well
known, for a memristive device, the current-voltage curve shows a
hysteresis-loop characteristic31–33. Although the memory character-
isticsof theproposedNano-LEDaredifferent from thoseofmemristive
devices, they have similar output performances. To illustrate history-
dependent luminescence or memory electroluminescence more
clearly, we further provide the EL intensity-voltage characteristics
driven by AC voltages with different amplitudes (Supplementary
Fig. 4). The lower the applied drive voltage is, the lower the brightness
and the smaller the opening of the hysteresis loop are. As the ampli-
tude is increased, the EL intensity increases, which produces a larger
hysteresis-loop opening. Therefore, the hysteretic EL intensity-voltage
curve is similar to the hysteretic current-voltage curve in memristive
devices that have history-dependent characteristics. Therefore, we
tend to say our device has history-dependent luminescence.

To further demonstrate this history-dependent luminescence
characteristic, we used two consecutive square signals (the voltages
are defined asVs1 and Vs2) to drive the Nano-LED, as shown in Fig. 2o, p.
When Vs1 = 3 V and Vs2 = 6 V, the first EL intensity is 0.44, and the
second EL intensity is 0.21. However, when Vs1 is increased to 4 V and
Vs2 is kept constant at 6 V, the first EL intensity increases to 0.57, and
the second EL intensity decreases to 0.08. Therefore, the current EL
intensity is not necessarily determined by the current voltage but is
influenced by the previous EL intensity. In other words, the current EL
intensity greatly depends on the historical EL intensity, which is the
history-dependent luminescence characteristic of the device.

Operating mechanism of Mem-EL
The finite element analysis method is used to study the operation
mechanism of the Nano-LED (Supplementary Table 1), and the struc-
ture of the simulated Nano-LED is shown in Fig. 3a. After considering
simulation convenience and computational complexity, we set the
thickness of the Al2O3 to be 100 nm in the simulation. Even though the
thickness of the sapphire insulating layer will have an influence on the
EL intensity, the purpose of the simulations is to demonstrate the
history-dependent luminescence properties of the devices. Therefore,
this simulation mode can demonstrate the mechanism behind the
generation of history-dependent luminescence. Vcombine is applied to
the established Nano-LED model (Supplementary Fig. 5), and as is well
known, the region of the MQWs contributes to generating lumines-
cence fromGaN-based LEDs34,35. Therefore, studying the concentration
distribution of carriers near that region helps in the understanding of
the Mem-EL characteristics. The distributions of the electron and the
hole concentrations (Ce and Ch) in the MQWs during a period of
Vcombine are presented in Fig. 3b, c. The experimental and simulation
results show that the luminescence occurs only in the positive half-
cycle of the drive signal, which is determined by the structure of the
pn-junction. An applied electric field acting on the pn-junction is
generated under the positive half-cycle of the AC drive signal. When
this applied field is larger than the LED turn-on threshold, the carriers
inside the Nano-LED are driven into the MQWs to generate radiative
recombination, which is equivalent to the forward bias of the pn-

junction. However, due to the existence of the insulator, the EL will
stop because there are no externally injected carriers. The electrons/
holes are accumulated at the p-GaN/insulator interface and the n-GaN/
insulator interface, respectively. When driven by the negative half-
cycle of the AC drive signal, a reverse electric field acting on the pn-
junction is generated. The reverse electricfield, togetherwith the built-
in field will release the charge accumulated by the previous positive
half-cycle voltage, allowing the internal carriers of the LED to be
restored to their initial states or sufficient carriers to be accumulated
for the radiative recombination in the next positive half-cycle (Sup-
plementary Fig. 6 and Supplementary Note 1).

Driven by the positive-half cycle voltage, holes from p-GaN and
electrons from n-GaN are transported into the MQWs, and radiative
recombination occurs (Supplementary Figs. 7, 8). Under the periodic
increase and decrease of the applied voltage, radiative recombination
does not occur at once but in batches, resulting inMem-EL spikes with
multi-peaks (Supplementary Figs. 9, 10). As shown in Fig. 3b, due to the
relatively high mobility of electrons, the trend of the electron con-
centration in the MQWs is consistent with that of Vcombine. In contrast,
the concentration distribution of the holes showsmultiple oscillations
over time. This is similar to changes in the morphology of the Mem-EL
spikes, which indicates that holes largely determine the formation of
Mem-EL spikes, as shown in Fig. 3c. Of note is that when two con-
secutive voltage peaks with the same amplitude (V1 and V2 in Fig. 3c)
are applied, the variations in hole concentration in the MQWs are
different, and these variations cause the EL intensities to be different.
More specifically, the hole concentration under V1 is more significant
than that under V2, which means the hole concentration for current-
state electroluminescence is determined by the applied voltage and
influenced by the EL history.

The average electron and hole concentration in the MQWs pro-
vides a clearer demonstration of Mem-EL, as depicted in Fig. 3d. When
driven by Vcombine, the electron concentration remains high while the
hole concentration exhibits a significant variation similar to the EL
waveform. If the working mechanism of Nano-LEDs is to be explored,
not only the carrier concentration in the MQWs, but also the electron
and hole concentrations at the n-GaN/insulator interface and p-GaN/
insulator interface, respectively, must be considered36–39. As illustrated
in Fig. 3e, f, n-GaN and p-GaN exhibit a depleted state, resulting from
the depletion of carriers without external replenishment40–42. More-
over, the depletion states at both ends are voltage dependent, and the
depletion region of p-GaN is larger than that of n-GaN. The length of
the depletion region mainly depends on the doping concentration of
GaN (Supplementary Fig. 11). In the simulation model, the doping
concentration of holes in the p-region is smaller than the doping
concentration of electrons in the n-region (Supplementary Table 1).
Therefore, the p-region, which has a lowhole concentration, requires a
longer depletion region to provide an equivalent number of holes as
electrons.

According to the above results, a carrier transport model of the
Nano-LED with Mem-EL characteristics is proposed and is shown in
Fig. 4. Note that the change rate of the voltage signal will lead to
changes in the operating state of the device because of the non-carrier
injection mode. Even when a positive voltage is applied to the device,
the current in the external circuit is reversed as longas the voltage is on
the falling edge. Similarly, when the voltage is on the rising edge of the
negative half cycle, the current in the external circuit is positive, which
is completely different from the conventional DC mode of operation.

As shown in Fig. 4a, the total number of electrons or holes used for
radiative recombination in a Vcombine cycle is defined asQ, and only the
carrier transport process under a voltage pulse is considered. The
Nano-LED is in thermal equilibrium when no voltage is applied. Once a
voltage pulse is applied and starts to increase (V1), radiative recombi-
nationof theholes fromp-GaNwith the electrons fromn-GaNoccurs in
the MQWs (Fig. 4b). If the number of electrons or holes consumed at
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this stage is assumed to be Q1, the number of remaining holes or
electrons is Q − Q1. When the voltage reaches its maximum, the
remaining carriers are used for further radiative recombination (Q2), as
shown in Fig. 4c.Due to the insulating layer, external carriers cannot be
injected into theNano-LED to replenish the consumed carriers, leading
to the formation of a depletion region at the GaN/insulator interface.
The induced electric field caused by the depletion region would pre-
vent further radiative recombination.

When the voltage decreases (at this point the applied voltage is V2,
andV2 =V1), the induced electric field is greater than the applied electric
field. Therefore, the carriers accumulated at the electrode/insulator
interface decrease, leading electrons and holes to move to the n-GaN
and the p-GaN, respectively. However, the luminescence does not stop
immediately because the remaining carriers in the MQWs can still be
used for radiation recombination (Fig. 4d). Therefore, the number of
carriers (Q3) used for radiation recombination is smaller thanQ1, and the
EL intensity is smaller than that in Fig. 4b, leading to the hysteretic EL
intensity-voltage loop. Thus, the behavior of the EL intensity with time
shows a dependence on the history of the EL.

Performance of the bio-inspired afferent nerve
According to the above analysis, the state of the EL intensity at the
present time is influenced by historical electrical stimulations, which

greatly influence Mem-EL spikes. In other words, the Nano-LED can
generate different Mem-EL spikes under different Vcombine. Thus, we
can utilize this electro-optical conversion process to mimic the gen-
eration of multiple action-potentials and their combination in bio-
inspired afferent nerves. Here, a tactile perception process in an arti-
ficial neural system based on the Nano-LED is demonstrated, including
the sensor trigger, voltage signal generation, signal driving, light signal
generation, reception, and recognition (Supplementary Fig. 12). For
the realization of sensor encoding and voltage signal generation, an
8-bit digital signal encodes 256 sensors, as shown in Fig. 5a. For
example, the sensor ‘S104’ is encoded as 01101000 based on decimal-
to-binary encoding rules. Here, the first 2 bits ‘01’, the middle 4 bits
‘1010’, and the last 2 bits ‘00’ are mapped to the amplitude (A = 1 V),
frequency (f = 12 MHz), and phase difference (Φ = 0°) of Vsuperimpose,
respectively (Supplementary Table 2). Finally, the combined signal
Vcombine can be obtained by superimposing Vsuperimpose on Vbase (Sup-
plementary Fig. 13). Notably, theVbase used in thiswork is fixed, with an
amplitude of 5 V and a frequency of 1 MHz (Supplementary Fig. 14).

Different combinations of A, f, and Φ will lead to 256 different
Vcombine. As shown in Fig. 5b, when f andΦ are not changed (f = 9MHz
and Φ = 0°), four different Vcombine can be obtained with different
values of A (0.5 V, 1 V, 1.5 V, 2 V). Furthermore, when A and Φ are not
changed (A = 1 V and Φ = 0°), another four different Vcombine can be
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obtainedwith different values of f (9MHz, 10MHz, 11MHz, 12MHz), as
shown in Fig. 5c. Similarly, four different Vcombine can be obtained by
changing only Φ (A = 1 V, f = 9 MHz and Φ = 0°, 90°, 180°, 270°), as
shown in Fig. 5d. Therefore, this encoding and mapping process con-
verts sensor triggers toVcombine. Driven by these conditions ofVcombine,
the Nano-LED generates various history-dependent Mem-EL spikes, as
shown in Fig. 5e–g.

In order to make the variation in the waveforms of the Mem-EL
spikesmore apparent, we present the variation of the EL intensity with
A, f, and Φ in Fig. 5h–j. When f and Φ are fixed and only A is changed,
the number and position of EL spikes remains almost unchanged, but
the EL intensity changes and increases with increasing A (Fig. 5h and
Supplementary Fig. 15). On the other hand, whenA andΦ arefixed, the
number, position andEL intensity change significantlywith increasing f
(Fig. 5i). Similarly, the number, position, and EL intensity change when
only Φ is changed (Fig. 5j). The rich variation of Mem-EL spikes has
promising applications in mimicking afferent nerve function in biolo-
gical nervous systems.

Compared to electrical signals, optical signals have the advantage
of being able to realizewavelength-divisionmultiplexing (WDM). Here,
we demonstrate two-channel WDM, which was realized using two
Nano-LEDs (blue and green), as shown in Fig. 6a. The center wave-
lengths of the two devices are 451.4 nm and 519.8 nm, respectively

(Supplementary Fig. 16). To ensure that as much light as possible can
pass through the filters, we chose two filters with center wavelengths
of 450 nm and 520 nm, respectively. Worth noting is that, in practical
applications, the light signals pass through the filters before training
and recognition. Although the light is attenuated as it passes through
the filter, as long as enough light passes through the filter, the recog-
nition of the light signal will not be affected. Therefore, sufficient light
passes through the filters due to their having 88% transparency, so the
light signal is sufficient for training and recognition, and does not
affect the experimental process.

When two different Vcombine are applied to the blue and green
Nano-LEDs, Mem-EL spikes with different wavelengths and different
morphologies are generated. We assume that the Vcombine applied to
blue Nano-LEDs is encoded as ‘11010111’ while the Vcombine applied to
green Nano-LEDs is encoded as ‘01001100’. The two optical signals
with different wavelengths are multiplexed into a single optical fiber
for transmission, generating a signal that is composed of Mem-EL
spikes and carries two encoded spikes. At the receiving end, filters of
specific wavelengths can be used to filter out the blue and green sig-
nals, and the Mem-EL spikes are decoded to obtain the hidden
information.

Figure 6b, c show the combined EL spikes, the blue EL spikes and
the green EL spikes driven by four different Vcombine. The first Vcombine
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encoded as ‘11001000’ and the second Vcombine encoded as ‘10101000’
are applied to the green Nano-LEDs and blue Nano-LEDs, respectively.
The waveform of the generated green spike (Fig. 6b) is superimposed
on the waveform of the generated blue spike (Fig. 6c) to obtain a cyan
spike with a waveform carrying the hidden information (Fig. 6d).
Similarly, when driven by another two Vcombine that are encoded as
‘11010111’ and ‘10000110’, by superimposing the waveform of the blue
spike (Fig. 6e) on thewaveformof the green spike (Fig. 6f), a cyan spike
with a waveform (Fig. 6g) carrying other hidden information is
obtained.

Artificial intelligence is used to recognize these Mem-EL spikes to
judge the triggered artificial sensors, which can mimic the human
brain’s response to tactile perception, as shown in Fig. 7a. This study
designed a convolutional neural network based on a gramian angular
field (GAF) residual network (ResNet) for recognizing EL spike
waveforms43–45. The input Mem-EL spike waveform is a one-
dimensional sequence. The GAF is used to convert this one-

dimensional sequence into two-dimensional matrix data to enhance
the features of the Mem-EL spike’s waveform. Moreover, a residual
network is used for further feature extraction, and 256 waveform
features are obtained after several convolution and pooling calcula-
tions. Finally, the obtained features are input to the fully connected
layer for 256 classification outputs (Supplementary Fig. 17 and Fig. 7b).

The well-trained neural network can accurately recognize 256
Mem-EL spike waveforms, in which almost 100% recognition accu-
racy is achieved on the training and validation sets. The testing
accuracy is as high as 98.88% (Fig. 7c). Finally, software platforms
are employed to achieve the sensor-position recognition required
for bio-inspired afferent nerves, as shown in Fig. 7d. The eight
artificial receptors in the virtual robot’s palm are defined as ‘S47’,
‘S102’, ‘S121’, ‘S92’, ‘S119’, ‘S34’, ‘S49’, and ‘S56’, respectively. When
these receptors are touched, the signal generator is triggered to
generate a corresponding voltage signal that drives the Nano-LED to
emit Mem-EL spikes. These Mem-EL spikes are received by the APD

0 90 180 270
0.0

0.2

0.4

 (°)

EL Intensity (a. u.)
V = 1 V, f = 9 MHz

0.0

0.2

0.4

0.6

0.8

0.0 0.5 1.0
-6
-3
0
3
6

0.5
1

1.5
2

)V(
egatloV

0.0 0.5 1.0
-6
-3
0
3
6

9
10

11
12

)V(
egatloV

0.0 0.2 0.4
0.0
0.3
0.6

0.5
1

1.5
2).u.a(

ytisnetnI
LE 0.0 0.2 0.4

0.0
0.3
0.6

0
90

180
270).u.a(

ytisnetnI
LE0.0 0.2 0.4

0.0
0.3
0.6

9
10

11
12).u.a(

ytisnetnI
LE

01      1010      00

A=1 V =0f=12 MHz

A: 1 V
f : 12 MHz

: 0

MappingCoding
104

Touch

0.5 1.0 1.5 2.0
0.0

0.2

0.4

A (V)

EL Intensity (a. u.)
f = 9 MHz, = 0

0.0

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14 16
0.0

0.2

0.4

f (MHz)

EL Intensity (a. u.)
A = 1 V, = 0 

0.0

0.2

0.4

0.6

0.8

01101000

a

0.0 0.5 1.0
-6
-3
0
3
6

0
90

180
270

)V(
egatloV

b

A: 5 V
f : 1 MHz

c d

e f g

h i j

Fig. 5 | Encoding of artificial receptors, generation of Vcombine, and the corre-
sponding typicalMem-EL spikes. a An example of encoding for sensor ‘S104’ and
mapping to Vcombine. Each sensor is encoded as an 8-bit binary code, where the first
2 bits represent the amplitude of Vsuperimpose, the middle 4 bits represent the fre-
quencyofVsuperimpose, and the last 2 bits represent the phase ofVsuperimpose.Vcombine

is obtained by superimposing Vbase on the 8-bit mapped Vsuperimpose. b–d Vcombine

that vary with amplitude, frequency, and phase. e–g EL spike waveform that varies
with amplitude, frequency, and phase. h–jHeat maps of the EL intensity that varies
with amplitude, frequency, and phase.

Article https://doi.org/10.1038/s41467-024-47641-6

Nature Communications |         (2024) 15:3505 7



and read into the well-trained residual neural network based on the
Gramian angular field (GAF-ResNet) for recognition (Supplemen-
tary Fig. 18 and Supplementary Movie 4). In this process, Nano-LEDs
combined with artificial intelligence technology are used to mimic
the combinations of multiple action-potentials in bio-inspired
afferent nerves, which is expected to promote the development of
optoelectronic devices for artificial nervous systems.

Discussion
This work demonstrates a nanoscale, optoelectronic device based on a
Nano-LED with history-dependent luminescence. The conversion of
electrical signals to memory-electroluminescence (Mem-EL) spikes is
achieved using this device, which mimics the generation of multiple
action-potentials and their combinations in bio-inspired afferent
nerves. Moreover, the software and hardware platforms are combined

to build sensor-position recognition using the bio-inspired afferent
nerves. Finally, a GAF-ResNet is designed to recognize, with a high
recognition accuracy of 98.88%, these Mem-EL spikes to mimic the
human brain’s response to tactile perceptions. This study provides an
idea for mimicking artificial, biological perception systems, which has
great application prospects in building electronic devices for artificial
nervous systems.

Methods
Fabrication of the Nano-LEDs
SiO2 nanospheres (600 nm in diameter) are used as nano-masks.
Inductively-coupled-plasma etching is used to etch the LED wafer. A
60nm-thick layer of Al2O3 is deposited as an upper insulating layer on
the Nano-LED by using magnetron sputtering. A 100 nm-thick ITO
electrode is deposited on the upper insulating layer by using
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magnetron sputtering. A sapphire substrate (650μm in thickness) is
used as the bottom insulating layer, and an ITO film on transparent
glass is used as the bottom electrode.

Simulation
The finite element method is used to simulate the Nano-LED with a
structure of Al2O3 (60 nm)/p-GaN (200nm)/AlGaN electron blocking
layer (20 nm)/a 7-period QW (well length: 3 nm, barrier length: 12 nm)
/n-GaN (2000nm)/Al2O3 (60 nm). The detailed simulation parameters
are shown in Supplementary Table 1, and the Vcombine used in the
simulation of Nano-LED is shown in Supplementary Fig. 5.

Measurements
The Vcombine is compiled using a computer and generated using a
function generator (RIGOL, DG5352). The electrical characteristics and
light waveform are recorded using an oscilloscope (RIGOL, DS2302A).
The EL intensity ismeasuredusing an avalanchephotodiode (Thorlabs,
APD130A2/M).

Neural network for waveform recognition
The GAF-ResNet is trained using a graphics processing unit (NVIDIA,
GeForce RTX 3070). Each one-dimensional waveform sequence used
for training contained 198 samples and a cycle of 2500 points. A
waveform is transformed to a 224 × 224 × 3 matrix after the GAF

waveform transformation. After a series of convolution and pooling
processes, 256 features are extracted from the matrix and sent to the
full-connect layer to calculate one of the 256 categories.

Data availability
The data supporting the findings of this study are available within the
article and its Supplementary Information. Additional data are avail-
able from the corresponding author upon request.

Code availability
The code used in the current study are available from the corre-
sponding author on request.
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