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Emergence of enhancers at late DNA
replicating regions

Paola Cornejo-Páramo1,2, Veronika Petrova1,2, Xuan Zhang 1,
Robert S. Young 3,4 & Emily S. Wong 1,2

Enhancers are fast-evolving genomic sequences that control spatiotemporal
gene expression patterns. By examining enhancer turnover acrossmammalian
species and in multiple tissue types, we uncover a relationship between the
emergence of enhancers and genome organization as a function of germline
DNA replication time. While enhancers are most abundant in euchromatic
regions, enhancers emerge almost twice as often in late compared to early
germline replicating regions, independent of transposable elements. Using a
deep learning sequence model, we demonstrate that new enhancers are
enriched for mutations that alter transcription factor (TF) binding. Recently
evolved enhancers appear to be mostly neutrally evolving and enriched in
eQTLs. They also show more tissue specificity than conserved enhancers, and
the TFs that bind to these elements, as inferred by binding sequences, also
show increased tissue-specific gene expression. We find a similar relationship
with DNA replication time in cancer, suggesting that these observations may
be time-invariant principles of genome evolution. Our work underscores that
genome organization has a profound impact in shaping mammalian gene
regulation.

Enhancers are cis-regulatory elements essential as modulators of spa-
tiotemporal gene expression by acting as integrators of trans-acting
signals by recruiting transcription factors (TFs) and other effector
molecules. Enhancers are typically rapidly evolving and are frequently
species-specific1–4. For example, most human enhancers are not found
in the mouse3.

The factors responsible for enhancer turnover are not well
understood. The prevailing model of enhancer evolution is the mobi-
lization of transposable elements (TE) and their insertions to new
genomic locations5. As TEs are commonly found overlapping enhan-
cers, they have been hypothesized to play a major role in the dynamic
landscape of enhancer turnover in mammals by distributing cis-
regulatory elements across the genome.However, they donot account
for most recently evolved mammalian enhancers, many of which
appear to have originated from ancestral sequences without prior
biochemical activity in the same tissue6–10.

Notably, local point mutations in non-regulatory sequences can
give rise to enhancer activity, suggesting an alternativemechanism for
generating tissue-specific enhancers11–16. One of the most significant
predictors of local mutational density is DNA replication time17–19.
De novo mutations are elevated at late replicating genome regions
corresponding to the latter stages of S-phase - a phenomenon that is
potentially due to a reduced ability of DNA repair mechanisms to
function effectively during late replication time20. In hominids and
rodents, mutation rates are 20–30% higher at late compared to early
replication domains21, and this trend of accelerated mutational rate
extends throughout eukaryotic evolution22. The DNA replication tim-
ing program, defined by the temporal order of DNA replication during
the S-phase, is also closely linked to the spatial organization of chro-
matin in the nucleus and transcriptional activity23. Late replicating
domains are associated with facultative heterochromatin and tissue-
specific gene expression24,25.
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Thus, we hypothesized that DNA replication timing plays a role in
the emergence and diversification of enhancers through de novo
mutations2,26,27. In the context of enhancer turnover in mammals,
we investigate the role of nucleotide substitutions linked to DNA
replication timing. Using detailed maps of candidate cis-regulatory
elements across species, we take amulti-scale approach to explore the
relations between enhancer turnover and the genome.We examine the
contribution of TEs and the de novo creation of TF binding sites to
enhancer turnover. By comparing enhancers across DNA replication
domains and their tissue-specific activity across vastly different time
scales, we aim to illuminate the evolutionary trajectories of enhancers
and their implications for gene regulation.

Results
Germline replication time is associatedwith the rate of enhancer
turnover across the genome
Genetic changes occurring in the germline provide genetic variation
that is the substrate for species evolution. We examined multi-tissue
enhancer turnover inmice comparing across germlineDNA replication
time. Evolutionarily conserved and recently evolved, i.e., lineage-
specificmouse enhancerswereannotated using histonemarkChIP-seq
data based on multi-species comparisons (cat, dog, horse, macaque,
marmoset, opossum, pig, rabbit, and rat)9. Following convention,
candidate enhancers are defined as sequences enriched for H3K27ac
but absent in H3K4me3 (termed “active”) or enriched for H3K4me1
(termed “poised”)9,28 (Fig. 1A, B). To ensure robustness, all enhancers
were identified using consensus regions defined by overlapping mul-
tiple biological replicates by a minimum of 50% of their length9.

Next, enhancers were annotated as evolutionarily conserved if they
possess enhancer-associated histone marks in at least two other species
(n=94,107). Recently evolved enhancers were defined as cis-regulatory
elements identified only in mice (n=80,904), where approximately half
of these regions aligned to non-regulatory regions in other species
(~49%; liftOver -minMatch=0.6). This supports similarfindings in human
enhancers3. Both conserved and species-specific enhancers showed a
similar propensity to overlap ATAC-seq peaks, indicating comparable
levels of chromatin accessibility (Methods, Supplementary Table 1).

To compare DNA replication timing, we obtained Repli-Seq data
across the mouse genome from two germline stages: primordial germ
cells (PGC) (n = 2, male and female) and spermatogonia stem cells
(SSC) (n = 2), in addition to 22 other independent mouse cell lines
across ten early stages of embryogenesis29,30. Repli-seq resolves early
and late replicating DNA by labeling with nucleotide analogs at dif-
ferent time points during S-phase followed by high throughput
sequencing.31. We assessed DNA replication time dynamics across cell
types by partitioning the mouse genome into 200 kb regions and
performing k-means clustering of cell-type-specific DNA replication
timing data across cell types (n = 8966 blocks, Methods). This revealed
approximately a third of themouse genome to be consistently early or
late replicating across germline and developmental cell types, where
14% of the genome replicated early and 19% are late replicating (early:
RT >0.5, late: RT <−0.5) (Fig. 1C). Enhancers were more prevalent at
early DNA replicating regions, however recently evolved enhancers
were more likely to be located at consistently late replicating regions
compared to conserved enhancers (Conserved: 31.0% early vs. 1.4%
late, Recent: 21.2% early vs. 6.3% late) (Fig. 1D). To investigate the
emergence of new enhancers, we focused on the averaged replication
times across the four germline assays.

The fastest rates of enhancer turnover occurred at late DNA
replicating domains. New enhancers were proportionately 1.8 times
more common at late than early replicating regions, although the
absolute number of enhancers was higher at early replicating domains
(Fig. 1E–G and Supplementary Fig. 1). Enhancer turnover was highly
correlated with germline replication time (R2 = 0.95), although similar
trends were observed comparing using somatic developmental

replication time (R2 = 0.60, Fig. 1F and Supplementary Figs. 2, 3). It is
unlikely the observed trend is due to an ascertainment bias. Beyond
the analysis steps taken to ensure the reproducibility of the peak calls
(Methods), we identify the same relationship if we restrict to mouse-
specific enhancer chromatin marks at uniquely mappable coordinates
that exhibit sequence conservation across species, thereby excluding
potential mappability differences which could confound the result
(Supplementary Fig. 4).

Wenext examinedpoised and active enhancers across fourmouse
tissues (brain, liver, muscle, and testis). Recently evolved enhancers
were consistently later replicating for both poised and active enhan-
cers across the four mouse tissues (Fig. 1H). We found that liver and
testis enhancers evolved significantly faster than brain and muscle,
with the greatest disparity in enhancer turnover rates between organs
at late-replicating regions (t = 6.77 and 4.85; p = 1.2 × 10−07 and
3.07 × 10−05 for poised and active enhancers, respectively) (Fig. 1I). This
result parallels the faster evolution of testis gene expression levels and
a slower evolution of brain expression in mammals32. When germline
replication timing was replaced with somatic timing, the rapid turn-
over observed in testis remained consistent (Supplementary Fig. 3).

As transposable elements (TEs) are widespread across the gen-
ome and have been widely implicated in the turnover of cis-regulatory
elements5,9, we next assessed the relationship between TE evolution
and replication timing. We calculated the ratio between the numbers
of new TE families and the numbers of ancestral TE subfamilies across
replication timing regions. Similar to enhancers, new TE subfamilies of
TEs were more abundant in late-replicating regions (R2 = 0.96, Sup-
plementary Fig. 5). Recently evolved enhancers were also more likely
to overlap lineage-specific TEs (Fig. 1J). Excluding enhancers over-
lapping TE (~52% of enhancers) only slightly reduced the slope
between enhancer turnover and replication time (R2 = 0.94 and 0.95
for enhancers overlapping and not overlapping TE, respectively)
(Supplementary Fig. 6). Hence, the rate of enhancer turnover is not
wholly dependent on TE, but both are strongly correlated with DNA
replication time across large chromatin domains9,30,33.

To assess the population of species-specific enhancers that
could have emerged from recent copy number duplication events, we
clustered lineage-specific enhancers by sequence similarity in human
andmouse (Methods).While copy number variants arising fromrecent
homologous recombination events or transposition events are
expected to cluster based on shared similarity, sequences emerging
frommutations of ancestral sequences should not. The precise degree
of inter-enhancer similarity will depend on multiple parameters,
including mutation rate, life history, evolutionary pressures, and the
evolutionary comparison used for enhancer classification.

Using a significance cut-off of E = 1 × 10−6 and a relaxed sequence
coverage threshold of greater than 20% of the query sequence to
detect homology among recently evolved enhancers, we find the
proportions of singleton enhancers are 75.92% and 77.04% for human
and mouse enhancers, respectively. Proportions of singletons were
similar between humans and mouse despite a higher number of
expected mutations in mouse. As expected, fewer singletons over-
lapped repetitive elements, including TE, compared to non-singleton
enhancers (Fisher’s exact test, p = 3.56 × 10−40, odds ratio = 0.13 for
human enhancers; Fisher’s exact test, p = 6.8 × 10−171, odds ratio = 0.63
for mouse enhancers) (Supplementary Fig. 7). Our results are con-
sistentwith the hypothesis thatmost of these elements didnot emerge
from recent duplication events.

Enhancer gains are more prevalent in regions that already show
enhancer marks or chromatin accessibility in other organs, suggesting
the convergent evolution of enhancers due to a rapid pace of
evolution9,34. To rule out convergent evolution due to rapid turnover, we
progressively tightened our conservation criteria. We repeated the
analyses, requiring co-occurrence of at least four, and then at least
seven, histone marks between the enhancer and other species. We
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observed highly consistent findings across all these cutoffs (Supple-
mentary Fig. 8). In summary, althoughmost enhancers are found within
early germline replicating domains, species-specific turnover was dis-
proportionately enriched in late replication regions. This was the case
for both active and poised enhancers. Late germline DNA replication
time is associated not only with increased numbers of lineage-specific
enhancers but also new subfamilies of TEs (Supplementary Fig. 5). Most

lineage-specific enhancers do not share high degrees of similarities,
suggesting the gain of enhancer-associated histone modifications by
mechanisms other than duplications.

Mutations at TF binding sites are linked to enhancer turnover
TF binding sites can be considered the atomic unit of regulatory ele-
ment function35,36. When mutations occur at TF binding sites, they can
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disrupt or alter the binding of the TF, potentially leading to changes in
enhancer activity. Simulation studies have shown new enhancers can
evolve within a relatively short evolutionary time due to the accumu-
lation of mutations creating new TF binding sites12.

We hypothesized that the creation or disruption of TF binding
sites could change the activity of enhancers, leading to turnover. As TF
binding motifs do not fully explain binding, to test this, we used
experimental data from ChIP-seq to train a deep-learning model to
predict binding sites. The model takes a 500bp DNA sequence and
outputs a prediction of TF binding based on sequence alone. We
expect a higher predicted frequency of TF binding at new enhancers
(i.e., those with recently acquired enhancer histone marks) compared
to orthologous but non-enhancer sequences.

Our model architecture was trained on human and mouse ChIP-
seq of CEBPA and HNF4A in liver. As before, enhancers were defined
based on the enrichment of H3K27ac and the absence of H3K4me3
(Methods)3. To optimize the learning of shared functional sequences,
themodel predicts TF binding using a domain adaptive step to remove
sequence biases arising from the species-specific genome
backgrounds37. We retrained this model to ensure enhancer regions
used for model testing are excluded from the model training process
by removing regions harboring human and mouse-specific enhancers.
We then tested human and mouse lineage-specific enhancer sequen-
ces to assess whether sequence changes could explain enhancer
turnover through their impact on TF binding.

The sequence-based model identified a significantly higher num-
ber of HNF4A and CEBPA TF binding sites at human enhancers com-
pared to the mouse orthologs without enhancer marks, suggesting
that genetic variation between the sequences is associated with the
gain or loss of functional TF binding sites (p = 5.78 × 10−30; OR = 1.95)
(Fig. 2A and Supplementary Fig. 9). Conversely, a similar trend was
observed when comparing mouse-specific enhancers to orthologous
non-enhancer sequences in human (p = 1.27 × 10−77; OR = 3.82) (Fig. 2A
and Supplementary Fig. 10). Enhancer turnover was correlated to
sequence changes to the canonical bindingmotifs (Fig. 2B). Moreover,
total proportions of species-specific enhancers with predicted HNF4A
and CEBPA binding sites were increased at late replicating regions
(Fig. 2C). Our findings suggestmutations altering TFbindingmodulate
enhancer chromatin states.

New enhancers are enriched in eQTLs but lack strong signatures
of purifying selection
To understand the selective pressures at enhancers, we used human
population variation data to calculate a derived allele frequency (DAF)
score in 10 bp windows across the genome using whole-genome
sequencing of the relatively isolated Icelandic population (deCODE)38.
DAF odds ratio (OR) measures the ratio between the numbers of rare
and common variants. A high odds ratio indicates an excess of rare
variants compared to the background, suggesting purifying selection.
We plotted DAF for species-specific and conserved liver enhancers by

centering each enhancer based on functional motifs to increase the
power to detect purifying selection (Fig. 3A, B, Methods).

Our results revealed reduced purifying selection acting at recent
enhancers relative to evolutionarily conserved enhancers and recent
promoters. (Fig. 3C and Supplementary Fig. 11A, B). As expected, a
progressive increase in DAF OR at enhancers and promoters was
observed with increased degrees of species conservation (Fig. 3D). We
note that when the DAF scores significantly differed from genome
background, this difference may also be due to a higher frequency of
common variants rather than a depletion of rare variants (Supple-
mentary Fig. 11C, D). Such differences can be due to demographic and
not selective factors. For example, rare variants may not have had as
much time to increase frequency and spread through the population,
particularly for recently evolved elements.

The low DAF odds ratios suggest many of these gained ChIP-seq
peaks at late-replicating regions may not be as functional in driving
gene expression as their early-replicating counterparts. To delve dee-
per, we tested whether ChIP-seq peaks at late-replicating regions were
as likely to activate transcription as early-replicating regions. Using
enhancer activity data from human liver enhancers defined by
H3K27acmarks tested inHepG2 cells using STARR-seq39, we compared
the normalized activity score between recent and conserved human
liver enhancers (recent n = 254, conserved n = 270). We observed
slightly lower activity as measured by MPRA at late replication time,
although this was not statistically significant (alpha = 0.05) (Fig. 3E).
We further assessed whether enhancers with MPRA activity showed
evidence of increased purifying selection compared to tested enhan-
cers without an appreciable level of enhancer activity (“inactive”)39.
MPRA activity did not differentiate constrained enhancers within a
species (Fig. 3D). The same trend was observed for recently evolved
enhancers, (Fig. 3D). Weak affinity binding could be a potential
underlying mechanism for the slight reduction of enhancer activity at
late replicating regions40.

To address whether new and conserved enhancers make qualita-
tively different contributions to transcription, we tested the relative
enrichment of 226,768 significant liver cis-eQTLs from healthy indivi-
duals in the GTEx consortium (GTEx V7) at human-specific and con-
served enhancers. Species-specific enhancers harbored significantly
more eQTLs than conservedenhancers (Fisher’s exact test,p < 2 × 10−16,
odds ratio = 1.2), consistent with an increased frequency of eQTLs at
recently evolved promoters in the human genome41. That new
enhancers harbored more eQTLs than conserved enhancers, would
imply recently evolved enhancers are more likely to contribute to
standing gene expression variation but may be less important for
organismal fitness.

Tissue-specific evolution of enhancers is linked to late DNA
replication timing
Late replicating regions with their dynamically regulated hetero-
chromatin and nucleosome formation potential have been linked to

Fig. 1 | Enhancer turnover is coupled to germline replication timing. A Mouse
enhancers are defined based on combinations of histone marks. B Definition of
mouse recent and conserved enhancers9. Recent enhancers are defined as regions
with mouse-specific histone marks enrichment9. Conserved enhancers are aligned
to regions with regulatory activity in at least two other species. C Replication time
across 200 kb blocks of the mouse genome (n = 8966 blocks) in PGC (n = 2 cell
lines), SSC cells (n = 2 cell lines), and early somatic cell types (n = 22 cell lines). Row
clustering (blocks) was carried out with k-means clustering; columns are cell-type
clusters generated with hierarchical clustering. Row clusters were ordered from
early (top) to late (bottom) DNA replication timing, across columns (cell-type
clusters). D Numbers of recent and conserved enhancers in regions of (C) with
constitutively early (blue), constitutively late (red), and dynamic (gray) replication
time. E Enhancer turnover as the log fold change of conserved vs. recent enhancers
for the 200 kb clusters across mean germline replication time calculated across

PGC (n = 2) and SSP cell lines (n = 2). Shaded areas represent clusters with con-
stitutive DNA replication time. F Scatterplot of mean germline replication time
(PGC + SSP) across the 18 clusters shown in (C). P value from a two-sided test of the
Pearson correlation coefficient. Shaded areas represent a 95% confidence interval
(CI) of the best fits. G Scatterplot of germline mean DNA replication time (PGC +
SSP) and log10-transformed numbers of recent and conserved enhancers. Eachdata
point is a cluster defined in (C). The shaded region represents the 95%CI of the line
of best fit. HMean PGC and SSC DNA replication time of poised and active mouse
enhancers separated by tissue and type. I Mean germline DNA replication time
(PGC + SSP) versus enhancer turnover by tissue and enhancer type. Each data point
corresponds to a cluster in (C). The shaded region is the 95%CI of the line of bestfit.
J The number of recent/conserved enhancers overlapping recent/ancestral retro-
transposons (Fisher’s exact test, p < 2.2 × 10−16, two-sided, odds ratio = 2.99).
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tissue-specific gene expression24,25,42,43. Hence,we investigatedwhether
tissue-specific enhancer activity was also associated with late-
replicating regions.

Comparing mouse enhancers between the four mouse tissue
types, we found tissue-specific enhancers were indeed more likely to
be late replicating than enhancers active in more than one tissue
(Fisher’s exact test, p = 2.2 × 10−16, odds ratio = 0.28, Fig. 4A). Late

replication time is associated with increased tissue specificity regard-
less of evolutionary age (Fig. 4A). Tissue-specific elements are enriched
at late replication time and a faster evolutionary rate than enhancers
active in multiple tissues (regression test for difference in slope,
p = 1.27 × 10−5; Fig. 4B).

Because tissue-specific control of gene expression is critical during
development, we hypothesized that enhancers drive developmental
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Fig. 2 | Deep-learning model links changes in TF binding sites with enhancer
turnover. ADeep-learning domain adaptivemodel trainedwith HNF4A and CEBPA
binding sites in mouse and human genomes37. Prediction on species-specific
enhancers and their aligned non-enhancer sequences in the other species. The pie
charts show the percentage of enhancers and matched non-enhancer regions with
predicted HNF4A and CEBPA TFBSs with a probability threshold ≥ 0.9. Fisher’s
exact test two-sided p values are shown for each enhancer vs non-enhancer com-
parison. B Examples of species-specific liver candidate enhancers and their
sequence alignments to the other species where binding is not predicted in (A).
Boxed alignment of a motif identified in the species possessing the enhancer (top

sequence) and its alignment to the species without the enhancer (bottom
sequence). The motif’s position-weighted matrix (PWM) logo is on the right. The
logo is on the negative strand in the last example. * denotes changes to PWM in the
orthologous sequence without peak; Details on the data processing of this figure is
available in Supplemental Methods. C Numbers of mouse- and human-specific
enhancers with predicted TFBSs divided by the total number of enhancers across
replication time quintiles. The difference in enhancer proportions was tested using
a one-sided Fisher’s exact test between all pairs of DNA replication time quintiles,
testing for a higher proportion in the latest quintile (alternative = “greater”). P
values are indicated for significant tests (p ≤0.05).
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Allele Frequency (DAF) odds ratio for recently evolved (A) and conserved human
liver enhancers (B) and conserved promoters (C) compared to background geno-
mic regions as a measure of selection pressure. Promoters and enhancers were
centered based on the location of liver-specific functional motifs. p =0.01 and
4.34 × 10−12 for recent and conserved enhancers, and p = 8.58 × 10−16 for promoters
(two-sided Fisher’s exact test, significance code *P ≤0.05 and ****P ≤0.0001). In
(A–C), the shaded areas represent a 95%confidence interval fromsampling the data
with replacement (Methods). D Log2-transformed odds ratio of DAF scores for
conserved and recent enhancers and promoters. Conservation was defined using
multiple thresholds (number of species). Active and inactive enhancers were
separated using STARR-seq scores to measure enhancer activity in HepG2 cells39

(Methods). DAF Log ORs for recently evolved human enhancers aligned to the
mouse genomewhere TFBSwere detected or not detected using the deep-learning

model trained for HNF4A and CEBPA in Fig. 2 are shown. The middle points
represent the log2-transformedodds ratio values froma Fisher’s test comparing the
proportion of rare and common variants against the genome. Error bars represent
the 95% confidence intervals of Fisher’s exact test. Numbers of elements are shown
on the right. E Log2 transformed STARR-seq activity of human liver recent and
conserved enhancers separated into early (RT >0.5) and late (RT <−0.5) replicating.
The quartiles in box plots represent the 25th, 50th (median), and 75th percentiles.
The interquartile range (IQR) represents the difference between the 75th and 25th
percentiles. Theupperwhiskers extend to themaximumvalueof datawithin 1.5 IQR
above the 75th percentile. The lower whiskers extend to the minimum value in the
data within 1.5 IQR below the 25th percentile. Outliers are values above the upper
whiskers or below the lower whiskers. A two-sided Mann–WhitneyU-test p value is
shown in each case. The number of enhancers is indicated in each case.
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expression may replicate later than those that drive housekeeping
expression. Indeed, enhancers associated with developmental pro-
moter activity in Drosophila were later replicating than enhancers
associatedwith the housekeeping promoter (Fig. 4C;Mann–WhitneyU-
test, p =8.5 × 10−6; Methods). This pattern was consistent across differ-
ent chromosomes independent of the promoters’ endogenous location
(Supplementary Fig. 12).

We then examined whether enhancers located at late replicating
regionswerealsoassociatedwithbindingmore tissue-specificTFs.Using
an established index of tissue-specificity of gene expression, tau44, we
examined tissue-specificTFexpression for 477 and360genes inhumans
and mice across 27 and 19 tissues, respectively45. TFs were partitioned
into five groups based on the relative enrichment of their motifs at

enhancers from early and late replication time. TFs whose motifs were
most enriched motifs at late replicating enhancers were significantly
more likely to show tissue-specific expression patterns (Fig. 4D, E).

Developmentally associated motifs were enriched at late DNA
replication time
In mammals and other warm-blooded vertebrates, DNA replication
time is also linked to long regional stretches of compositionally
homogeneous DNA with uniform GC base composition26,27,46–49. These
are known as GC isochores and are distinct between early and late
replicating regions48,50,51. The origin of isochores can be partially
explained bymutational biases2,26,27. Late replicating sequences harbor
a biased substitution pattern towards A and T nucleotides21,52,53, where
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brain, liver, muscle, testis) (Two-sided Fisher’s exact test, p, and odds ratio values
are shown in each case). B Mean mouse germline DNA replication time versus
enhancer turnover rate, defined as log (number of recent enhancers/number of
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in red and blue, respectively) across the 18 DNA replication time clusters shown in
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tissue-specific enhancers, respectively. ANCOVA p value for the difference in slope
is shown. The shaded area represents a 95% confidence interval of the best fit.
C Mean replication time of developmental and housekeeping fruit fly enhancers
(one-sided Mann–Whitney U-test housekeeping versus developmental,

alternative = “greater,” n = 200 enhancers each class). The quartiles represent the
25th, 50th (median), and 75th percentiles. The interquartile range (IQR) represents
the differencebetween the 75th and 25th percentiles. Theupperwhiskers extend to
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test, pairwise comparison of later vs. earlier replicating quintile, alternative = “

greater,” significance code: ‘ns’ P >0.05, *P ≤0.05, **P ≤0.01, and ****P ≤0.0001).
P values for the significant (p ≤0.05) comparisons of consecutive quintiles are
shown. Across the panel, mouse germline replication times are calculated as the
mean across PGC and SSC cells, and human replication times are from H9 cells.
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the primary contributor is the deamination of methyl-cytosine at CpG
sites, resulting in C >T transitions.

Given the nucleotide differences in TF binding sites, we sought to
understand how the GC isochoremay impact genome-wide TF binding
dynamics. GC isochores are closely correlated to replication timing.We
confirmed that the loss of G andC nucleotides was greatest at late DNA
replication time using base substitutions inferred from the last com-
mon ancestor of Homo and Pan (Fig. 5A). Beyond TF binding sites, we
found the relationship between GC content and DNA replication time
was also broadly reflected at cis-regulatory elements (Fig. 5B) levels,
but enhancers contained higher GC than genomic background.

GC isochores corresponded to a profound shift in the counts of
different TF binding motifs at enhancers across replication times
(Fig. 5C, D and Supplementary Fig. 13). In humans and mice, the most
prevalentmotifs at late replicating enhancers were AT-rich, while early
replicating enhancers were GC-rich (Fig. 5C, D). Homeodomain factor
motifs, which act as critical regulators in development, were
predominantly enriched in late-replicating enhancers (Fig. 5E and
Supplementary Fig. 14). A similar trendwasobserved at promoters and
in mouse (Supplementary Figs. 15, 16). Restricting to the top-scoring
motifs resembling the consensus homeodomain TFBSs did not change
the observed trend (Fig. 5E). To interrogate this further, we also
compared TF motif enrichments at regions randomly sampled from
the genome (Fig. 5E). Motif enrichment was well predicted by repli-
cation time, but replication timing did not explain all enriched motifs
(e.g., HOXC13, HNF1B, and POU4F3) (Supplementary Fig. 16). Some
motifs possess a different nucleotide composition than predicted by
replication time, suggestive of natural selection.

Because the nucleotide frequencies of motifs at enhancers are an
indirectmeasure of TF binding, we askedwhether the observed trends
are reflected in vivo. Using the DNA binding locations of 71 proteins
from ChIP-seq data in human K562 cells, we found TF binding sites
were bimodally distributed with respect to replication timing (Sup-
plementary Fig. 17). We fitted Gaussian components using mixture
modeling for each protein, focusing on binding sites at later replicat-
ing time, which were more variable between TFs than early replicating
TFBS (Supplementary Fig. 17A, B and Supplementary Data 1). Our
results suggest that DNA replication time impacts the type and fre-
quency of TF binding motifs, thereby influencing the TFs bound at
these regions (Supplementary Fig. 17C). However, the in vivo pattern is
attenuated compared to motifs identified by computational search
reflective of the complex regulatory interplay between DNA sequence
and other factors, including epigenetic modifications, protein coop-
erativity, and the topological chromatin context.

In summary, DNA replication time is associated with not only the
tempo/rate of enhancer evolution but can also influence the type of TF
motifs that are enriched due to its association with large-scale shifts in
GC content, with the potential to impact which TFs are recruited.

Enhancer turnover in cancer is enriched at late DNA
replication time
Finally, we investigated whether the observed link between DNA
replication timing and cis-regulatory element turnover is conserved
across evolutionary timescales. We analyzed enhancer gains and losses
across four cancer types relative toDNA replication time (Fig. 6A). Prior
studies have shown DNA replication time is maintained in cancer,
allowing for comparisons with healthy samples54,55. We defined a “gain”
of enhancers as those characterized in cancer cell lines but not in the
non-diseased state. Inversely, enhancers in thehealthy cell state but not
in cancer were defined as “lost.” Enhancers annotated in both states
were termed ‘unchanged’ (Fig. 6A, B and Supplementary Table 2).

We annotated candidate enhancers in healthy breast, prostate,
thyroid, and pre-leukemic cells and in their diseased states56–60. In
breast and prostate cancer, enhancers were defined by ChIP-seq of
histone marks (Fig. 6A, Supplementary Fig. 18A, and Supplementary

Table 2). In AML and thyroid cancer, enhancers were defined as distal
chromatin accessible in patient-matched primary tissues and tumors
(thyroid cancer andmatched healthy n = 3, pre-leukemic andmatched
blast cells n = 3). We used DNA replication time information for pros-
tate cancer cell line (LNCaP), healthy prostate epithelial cells (PrEC),
and breast cancer cell line (MCF-7)54, with predicted DNA replication
time in pre-leukemic and thyroid cells (Methods).

Consistent with cross-species results, we found the highest rate of
enhancer turnover at late DNA replicating domains compared to
enhancers that remained unchanged (Fig. 6C–F and Supplementary
Fig. 18B–G). This trendwas unaffected by differences in recombination
breakpoints61 (Supplementary Fig. 19). Subsequently, we compared
cancer variants at gained, lost, and unchanged enhancers in thyroid,
AML, and prostate cancer. We used matched tumor and healthy sam-
ples from the same individual to calculate somatic mutations due to
cancer. Prostate cancer variants were identified from the whole-
genome sequencing of the prostate cancer genome cell line, and
common population variants were removed to focus the analyses on
somatic mutations only62.

Mutation numbers were elevated for enhancers gained or lost
compared to unchanged enhancers across the three cancer types for
which we had variant data (Fig. 6G–I, Supplementary Fig. 18H–N, and
Supplementary Table 2). The trend was consistent across all indivi-
duals for thyroid cancer and AML (Supplementary Fig. 20). Our results
demonstrate that in cancer, as well as across evolution, a higher
turnover of cis-regulatory elements occurs at late DNA replication
time. This turnover is associated with increased mutational burden,
suggesting thatmutations could play a causal role in the emergence or
loss of enhancers in tumorigenesis.

Discussion
In this study, we demonstrated the significance of genome structure
on enhancer evolution. While most enhancers, defined by histone
mark occupancy, were identified in early replicating regions, com-
parative analyses showed that young enhancers were almost twice as
likely to replicate later than conserved enhancers. Genetic changes
during evolution can create or abolish TF binding sites associated with
the emergence of cis-regulatory elements or decommissioning of
existing elements. The short length of TF binding motifs and their
degeneracy allows for the rapid emergence and fixation of TF binding
motifs11–16. We found that enhancer turnover is linked to sequence
changes that alter TF binding. Remarkably, similar patterns in cis-
regulatory evolution were evident in mammalian evolution, spanning
millions of years, and in cancer cells, occurring over months or years,
suggesting that regulatory evolution is intertwined with the evolution
of genome architecture across time scales.

Our definition of species-specific enhancers depended on the
other species in the comparison. The closest relatives to humans and
mice used in our comparisons were macaque and rats, respectively,
with divergence times of ~29 (human vs. macaque) and ~12 (mouse vs.
rat) million years ago63. Based on the mutation rate and generation
time for each species, we should expect ~15 mutations per kb in
humans and ~120 mutations per kb in mice since the last common
ancestor of human/macaque and mouse/rat, respectively (based on
mouse mutation rate of 5 × 10−9 per base per generation, human
mutational rate of 1.28 × 10−8, generation time of 0.5 and 25 years64,65).
Hence, recently evolved mouse enhancers are expected to exhibit
greater inter-species variation compared to human-specific enhancers.

Our results imply that evolutionary innovation in gene regulatory
modules is more likely to emerge from regulatory elements at later
replication domains in a tissue-restricted manner. Indeed, disparities
in enhancer turnover between organs were also most pronounced in
late-replicating regions. Late replicating regions are associated
with developmental enhancer activity and are enriched for devel-
opmentally relevant TF binding sites related to body patterning (e.g.,
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represented at late replication time in mammals. A GC percentage of human
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genome, excluding promoters and enhancers) (n = 28,175, 11,520, and 5000
enhancers, promoters, and genomic background, respectively). Difference in GC%
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adjusted by their ancestral nucleotide frequency, and log10 transformed. Error bars
represent standard error (the number of regions per quintile is shown in Supple-
mentary Table 4).C Scatterplot of the proportionofGC forTFbindingmotifs based
on enrichment at early versus late replicating human liver enhancers. Two-sided

Pearson correlation coefficient and p value are shown. The shaded area represents
the 95% confidence interval of the best fit.D The bar plot shows the GC proportion
of each motif. Heatmap of the GC/AT nucleotide content of TF binding motifs
ordered based on their relative enrichment at early versus late replicating human
liver enhancers (n = 5538 each replication time). Each column shows a human TF
binding motif from the JASPAR database). E Relative enrichment of TF binding
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heatmap). The GC content of the motifs is shown on the right. Bars are colored by
TFClass.OnlyTF classeswithmore than tenTFs are shown. The heatmapon the left
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cating enhancers using JASPAR human motifs (left column) and using only the
highest scoringmotifs (mid column) (Methods). The columnon the right shows the
relative enrichment of homeodomain factors in early versus late GC%-matched
genome background.
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homeobox). Consistent with this, tissue-specific enhancers are enri-
ched at late replicating regions, where they are associated with tissue-
specific TFs.

Our findings also provide a compelling explanation for tissue-
specific gene expression differences inmammals linked to GC isochores

whose position mirrors replication domains54,66. We showed that the
highly organized isochore patterns in mammalian genomes influenced
the genome location and frequencies of TF binding sites, with specific
types of TFs more likely to be recruited at certain replication timing
domains. Specifically, tissue-specific TFs are frequently linked to AT-rich,
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AOverviewof the enhancer datasets in cancer andmatched healthy tissues and cell
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type (bottom). B Proportions of unchanged, gained, and lost enhancers in each
cancer type.C,DReplication time of gains, unchanged enhancers, and losses in the
prostate (C) and breast (D) cancer (two-sided Mann–Whitney U-test; p value is
shown for each comparison). A similar trend exists in thyroid cancer and AML
(Supplementary Fig. 18B, C). The quartiles represent the 25th, 50th (median), and
75th percentiles. The interquartile range (IQR) is the difference between the 75th
and 25th percentiles. The upper whiskers extend to the maximum value of data
within 1.5 IQR above the 75th percentile, and the lower whiskers extend to the
minimum value in the data within 1.5 IQR below the 25th percentile. Outliers are
values above the upper whiskers or below the lower whiskers. E, F Proportions of
enhancer gains and losses in thyroid cancer (E) and AML (F) are relative to the

number of unchanged enhancers across replication time quintiles. Proportions of
losses were multiplied by (−1). G Log transformed the number of mutations nor-
malized by enhancer width for AML gains, losses, and unchanged enhancers (two-
sided Mann–Whitney U-test; p value is shown for each comparison). The boxplot
quartiles and outliers were defined as in (C, D). H Log transformed the number of
mutations normalized by enhancer width in AML across replication time quintiles
(two-sided Mann–Whitney U-test). The boxplot quartiles and outlier values were
defined as in (C,D). IMedian log-transformed number of mutations normalized by
enhancer width at prostate cancer gains, unchanged enhancers, and losses across
replication time quintiles (error bars represent standard error). The numbers of
enhancers and mutations in each cancer type are in Supplementary Table 2. Cell
type-specific replication timing datasets are used (Methods). The numbers of
enhancers in each group in panels C, D, G–I are shown in Supplementary Table 5.
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late replicating binding sites, which may explain the observed enrich-
ment of tissue-specific gene expression in GC-depleted regions24,25.

We speculate that transcriptional changes occurring at late
replicating domains may have played a pivotal role in the evolution of
the bilaterian body plan and embryonic development of multicellular
organisms. Notably, replication timing is dynamic between cell types
and varies between germline and somatic cell types29,67,68. Approxi-
mately 30%of the humangenome switches between replication timing
domains across 26 human cell lines69. Therefore, enhancers emerging
in germ cells at late replication time could shift to earlier replicating
domains in differentiated cell types, where theymay have a significant
influence on gene activity.

Methods
Mammalian enhancer annotation
Unless specified otherwise, all analyses were performed on the human
and mouse genome assemblies hg19 and mm10. R v4.0.070 was used.
Species-specific ChIP-seq datasets were defined using multi-species
ChIP-seq datasets3,9. To summarize, the candidate enhancer identifi-
cation strategy reads were aligned using BWA v.0.5.9/0.7.12, and peaks
were called usingMACS v.1.4.2/2.1.1 using total DNA input control with
p < 1 × 10−5 threshold. Consensus peaks that overlapped two or three
biological replicates by a minimum of 50% length were used. Enhan-
cers were defined as those regions that overlapped an H3K27ac or
H3K4me1 enriched region but not a H3K4me3 enriched region.

Conserved human enhancers (n = 13,329) were defined as liver
enhancers in at least two of 18 other mammalian species (Rhesus
macaque, green monkey, commonmarmoset, mouse, rat, Guinea pig,
rabbit, Northern tree shrew, dolphin, sei whale, Sowerby’s beaked
whale, cow, pig, dog, cat, ferret, opossum, and Tasmanian devil)3.
Recently evolved (i.e., human-specific) enhancers (n = 10,434) were
defined as human cis-regulatory elements without a histone mark
indicative of enhancer activity in another species at aligned regions
(~85%) or did not align to the genomes of other species (~15%). Sup-
plemental Table 6 and SupplementaryData 2 show themean enhancer
width per dataset (human and mouse) and the number of human
enhancers aligned to other species’ genomes, respectively.

The alignment of mouse recent enhancers to other species’ gen-
omes was determined based on liftOver mapping with option -min-
Match =0.6.We used chainfiles for the assemblies RheMac10, CalJac4,
Rn6, OryCun2, SusScr11, CanFam3, FelCat9, EquCab3, and MonDom5.

To check the overlap of conserved and species-specific enhancer
with chromatin-accessible regions, we used ATAC-seq data for the
human liver andDNAse-seq data for themouse brain, liver, andmuscle
(Supplementary Table 1). The minimum overlap of an enhancer with
ATAC-seqorDNAse-seq peakswas 30%of the enhancer base pairs in all
cases. The alternative hypothesis tested was a higher overlap of con-
served enhancers with accessible regions using the option alter-
native = “greater” in Fisher’s exact test. Conserved enhancers were
conserved in at least two other species.

Replication time data
Repli-seq data was generated by treating cells with 5-bromo-2’-deox-
yuridine (BrdU), a thymidine analog, to label newly synthesized DNA.
Subsequently, cells are fixed and FACS-sorted based on their DNA
content into early S-phase and late S-phase cell populations. The DNA
from these cells is then amplified and mapped to the reference gen-
ome. Toquantify the timingofDNA replication, the ratio of normalized
read coverage between the early and late fractions is calculated71.
Higher values in this ratio represent early DNA replication; low values
indicate late replication. The replication time of every enhancer was
calculated by averaging the replication time of the regions they over-
lap. Early and late replication elements were denoted as mean times
>0.5 and<−0.5, respectively. The difference in the probability of recent
enhancers between the early and late replication time was calculated

as follows:

PðRecent enhancerjLate RTÞ
P Recent enhancer j Early RTð Þ ð1Þ

Z-score transformed replication timing data was obtained from
human ESC H972, mouse primordial germ cells (PGC), spermatogonial
stem cells (SSC)30, and 22 mouse cell lines differentiated from ES
cells29. Mean mouse germline replication time was calculated across
PGC (n = 2) and SSP cell lines (n = 2).Mean somatic replication timewas
calculated across all 22 mouse cell lines. For cancer analyses, DNA
replication time information for prostate cancer cell line (LNCaP),
healthy prostate epithelial cells (PrEC), and breast cancer cell line
(MCF-7)54, together with predicted pre-leukemic and thyroid DNA
replication time data using ATAC-seq information was used (see
below). All genomic regions with available replication time data were
included in downstream analyses.

STARR-seq data for HepG2
We used STARR-seq data of human liver enhancers defined by ChIP-
seq and tested on the HepG2 cell line39. After removing negative con-
trols, we separated the tiles (n = 6735) into active and inactive groups
using the published threshold (log2 score >1) and overlapped with our
enhancers.

Estimation of DNA replication time using ATAC-seq
Where relevant replication timing data was unavailable, ATAC-seq data
was used to infer replication time using Replicon v0.973. ATAC-seq
signal was normalized to a mean of 0 and unit variance. Replicon was
run with default options on every chromosome (excluding scaffolds).
The predicted replication time values were multiplied by −1 to match
the direction of Repli-Seq RT values. Themean ATAC-seq signal across
pre-leukemic samples was used to predict replication time.

Clustering of mouse replication time data
Replication time data from 22 early embryonic mouse cell lines dif-
ferentiated from mouse embryonic stem cells were transferred to
mm10 coordinates (USCS liftOver tool) and overlapped with the
replication time regions from PGC (n = 2 cell lines) and SSP cell lines
(n = 2 cell lines)29,30. Mean replication time was calculated for every
200 kb region across the mouse genome (n = 8966 replication time
bins across all cell types). Mean replication time values were centered
and scaled using the function “scale”70. The function “Mclust” from the
R package mclust was used to estimate the best number of k-means
clusters of 200 kb replication time bins (G= 1:k.max, modelNames =
mclust.options (“emModelNames”), where k.max is 20) (mclust ver-
sion 5.4.6)74. The best number of clusters was selected based on its
Bayesian Information Criterion (BIC) (k = 18, BIC= −37291.04). Repli-
cation time bins clusters were obtained with the function kmeans (18,
iter.max= 20). Cell types were clustered using hierarchical clustering
with k = 9 (function hclust from base R, method = “complete”,
distance = “Euclidean”).

Tissue-specificity score
Tau (τ) scores of tissue specificity were calculated with the following
formula:

τ =

PN
i= 1 1� xi

� �

N � 1
ð2Þ

Where N represents the number of tissues, xi represents the
expression profile of one tissue divided by the maximum expression
value across tissues44. This analysis used the previously described
mouse tissue data from the brain, liver, muscle, and testis.
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Model to test for tissue-specific differences
We used a linear model to test for differences in tissue-type-specific
evolutionary rates. Using the formula logFC_enh ~ mean_RT + tissue_-
pair + tissue_pair:mean_RT, where logFC_enh represents the log
(number of recent enhancers/number of conserved enhancers) values,
tissue_pair is the tissue pair codified as binary (liver and testis = 1, brain
and muscle = 0) and mean_RT is the mean germline replication time.
The interaction effect was tested using the t-test statistic.

Transposable elements
Transposable elements fromRepBase (v27.04 formouse and human)75

were annotated using RepeatMasker (v4.0.6 for mouse, v4.1.0 for
human) using the sensitive search setting for mouse (“-s”)76. Species-
specific elements, as classified by RepBase, were termed “recent,” and
the remaining TEs termed “ancestral.”

Developmental enhancer analysis
Summit coordinates of Drosophila enhancers determined using
STARR-seq on the S2 cell line were downloaded77. Housekeeping and
developmental promoter were of RpS12 and even-skipped TF, respec-
tively. We defined housekeeping and developmental enhancers as the
most highly ranked 200 enhancers for each promoter based on their
STARR-seq score. Fly DNA replication time profiles for S-phase in S2-
DRSC cells were used78. Enhancer summits were extended by 250 bp
upstreamanddownstream, andeachenhancer’smean replication time
was calculated.

Cross-species deep-learning model
Weused themodel architecture from ref. 37 and retrained theirmodel
to ensure our test data was not used in the training process and to
focus the model on learning differences at orthologous regions that
show species-specific histone marks indicative of differences in
enhancer activity between human and mouse genomes.

A domain adaptive neural network architecture was used to
remove background sequence biases between human and mouse
genomes at TF binding sites37. Input data were generated by splitting
the mouse (mm10) and human (hg38) genomes into 500bp windows,
with 50 bp offset. After excluding all regions containing human- and
mouse-specific enhancers and their orthologous region in the other
species, we trained the model described in ref. 37. Liver human and
mouseHNF4a and CEBPA ChIP-seq peak data from2 were remapped to
hg38 or mm10, respectively. We trained two sets of models for every
TF: humans as the source species and mice as the source species. For
each species, peakswere converted to binary labels for eachwindow in
the genome: “bound” (1) if any peak center fell within the window,
“unbound” (0) otherwise. We constructed balanced datasets for
training using all bound regions and an equal number of randomly
unbound samples (without replacement). Sequence data was one hot
encoded. Human and mouse genome sequences were used for model
training, excluding Chr 1 and Chr 2. Genomewindows from Chr 2 were
used for testing. Genomewindows fromChr 1were used for validation.
For each TF and species, models were trained for 15 epochs to reduce
bias (Supplementary Fig. 21). Final models were selected based on
maximal auPRCs. The test dataset comprised species-specific enhan-
cers centered on the middle 500bp of each element. For predictions
using the model, we used a probability ≥0.9. USCS “liftOver” with
minMatch= 0.6 was used for genome assembly remapping. We
selected models that maximized the auPRC. We evaluated the per-
formance of the models using test datasets (Supplementary Fig. 22).
We used the models to predict TF binding in species-specific enhan-
cers centered on the middle 500 bp of each element.

Natural selection analysis
Human genome variation datawere retrieved from the deCODEwhole-
genome sequencing study of the Icelandic population38. Derived allele

frequency (DAF scores) of every segregating SNP was calculated, and
alleles were defined as either rare (<1.5% population frequency) or
common (>5% frequency) as previously described41. The number of
rare and common alleles in 10 bp windows were centered with respect
to the locations of functional liver-specific TF binding motifs from the
database funMotifs (v1.0), and 75 unique motifs were annotated79.
These counts were normalized for the average rates with 2–4 kb
upstream anddownstream flanking regions. Confidence intervals were
obtained by performing 100 bootstrap replicates of sampling the
motif locations with replacement. Odds ratios of rare against common
alleles between enhancers (and promoters) and size-matched back-
ground genomic regions selected randomly were calculated in 10 bp
windows. Odds ratio confidence intervals and p values were obtained
using Fisher’s exact test. Only autosomes were considered.

Copy number analyses
Homology was assessed using blastn with the option -max_target_seqs
N (blast + /2.11.0)80; this option was used to retrieve the maximum
number of hits for every enhancer; N represents the number of
enhancers in every dataset, 10,434 and 80,904 for human and mouse,
respectively. Hits were filtered by E-value <1 × 10−6 and query coverage
>20. We defined singleton enhancers as enhancers without significant
similarity to other enhancers.

Motif frequency analysis
Motif enrichment in human and mouse enhancers and human pro-
moters used the function annotatePeaks.pl fromHOMER (v.11) (option
-size given) with human motifs from the JASPAR 2020 database
(n = 810). The reference genome annotation was provided through the
option -gtf81. To calculate the nucleotide composition of JASPAR
motifs, a nucleotide was assigned to a position of the PWMmatrix if its
frequencywas higher than 0.5.Otherwise, an “N” is set to that position.
The proportion of every nucleotide is calculated with respect to the
length of the motif (number of bases).

Motif replication timewas calculated as the relative enrichment of
a motif early against late replicating enhancers. For each motif, we
used the formula log2 ((present_early/absent_early)/(present_late/
absent_late)), where present_early is the number of early replicating
enhancers (RT >0.5) with non-zeromotif instances of a givenmotif and
absent_early is the number of enhancers with zero motif instances.
Similarly, present_late and absent_late represent the number of late
replicating enhancers (RT <−0.5) with non-zero and zero motif
instances, respectively. Thismeasure reflects the relative abundanceof
the motif between early versus late replicating enhancers. The
nucleotide composition of motifs was calculated based on the motif
consensus sequence. High-scoring homeodomainmotifs were defined
as the motifs in the top quintile of all human homeodomain motifs
according to their score from HOMER annotatePeaks.pl.

We identified genomic regions with matched GC content using
the function genNullSeqs from the R package “gkmSVM” (version
0.83.0). GC%, sequence length, and repeat content werematched with
2% tolerance (repeat_match_tol = 0.02, GC_match_tol = 0.02, and
length_match_tol = 0.02,batch size = 5000, nMaxTrials = 50).

Gaussian mixture models
We collected Chip-seq data for the binding sites of 71 transcription
factors. Hg19 coordinates were used.We overlapped all the TF binding
sites with H9 ESCDNA replication time and calculated each TF binding
site’s mean DNA replication time. Afterward, we built a Gaussian mix-
ture model for every TF using the function normalmixEM with k = 2 to
get two components (Rpackagemixtools version 1.2.0)82. The function
returns mu, sigma, and lambda values for each component. Mu
represents themeanDNA replication time; sigmadenotes the standard
deviation; lambda indicates the final mixing proportions (i.e., the
contribution of each component to the final mixture distribution).
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Cancer datasets
ChIP-seq data from the prostate cancer cell line, LNCaP, was used to
annotate enhancers59. For healthy prostate epithelial cells (PrEC),
enhancerswere defined using chromHMM60.We used ChIP-seq data of
histone marks in the breast cancer cell line, MCF-7, to annotate
enhancers and healthy epithelial breast cells (patient’s epithelium
samples). LNCaP, MCF-7, and breast epithelium enhancers were
defined as enriched in H3K27ac or H3K4me1, excluding proximal
regions (±1 kb from TSS).

Cancer ATAC-seq pre-processing and peak calling
We used matched ATAC-seq from cancer and healthy thyroid samples
from three individuals57, and ATAC-seq files for the matched pre-
leukemic and blast cells from three individuals56. ATAC-seq fastq files
for the matched cancer and healthy thyroid samples from three ran-
domly chosen individuals were downloaded57. Adapter sequences
were identified and removed using BBDuk (ktrim = r k = 23 mink = 11
hdist = 1 tpe tbo, http://jgi.doe.gov/data-and-tools/bb-tools/). Trim-
med reads for each sequencing runweremapped to genome assembly
hg19with bowtie2 v.2.3.5.1 in paired-endmode83. Discordant and poor-
quality reads were removed (-f2 -q30 -b), and the output was sorted
with samtools v.1.1084. The obtained.bam files were merged by sample
(MergeSamFiles) with duplicates removed (MarkDuplicates, http://
broadinstitute.github.io/picard/), resulting in three tumors and three
healthy libraries. ATAC-seq fastq files for the matched pre-leukemic
and blast cells from three randomly chosen individuals with AML56

were processed similarly. For each sample from each cancer type,
peaks were called usingMACS385 (-g hs -f BAMPE -B and default q-value
cutoff of 0.05), and a union set of peaks was defined.

Cancer variant calling
We restricted our mutational analysis to single nucleotide poly-
morphisms (SNPs). Prior to variant calling in thyroid cancer and AML
enhancers, we corrected for systematic bias and other sequencing
artifacts. Base quality scores of ATAC-seq reads were recalibrated with
BaseRecalibrator and ApplyBQSR (GATK v4.2.5.086) using variants
from 1000 Genomes and the Database for Genomic Variants (--known-
sites Mills_and_1000G_gold_standard.indels.b37.sites.vcf --known-sites
Homo_sapiens_assembly19.known_indels_20120518.vcf --known-sites
dbsnp_138.b37.vcf.gz). To distinguish somatic mutations, in addition
to Genome Aggregation Database (gnomAD), we generated a custom
database from the matched healthy samples to filter out the patient-
unique germline variants. A panel of healthy (pon) was developed by
calling variants on healthy samples in Mutect287 (with option --max-
mnp-distance 0), at open chromatin regions identified by MACS3.
FilterMutectCalls was used to remove population-level standing var-
iation, patient-specific germline variants, and variants that show
alignment, strand, or orientation biases. This was done by selecting
variants marked by PASS in the FILTER field of the result.

For prostate cancer, variants called from the whole genome
sequence of LNCaP62 were mapped from hg38 to hg19 using Picard
LiftoverVcf (v2.26.10, http://broadinstitute.github.io/picard/). Germ-
line genetic variations found in the population were removed using
three datasets: HapMap, 1000 genomes phase 3, and National Heart
Lung and Exome Sequencing Project data62. We removed indels using
bcftools view (option “--types snps”) (v1.9)88. Where variants with
multiple alleles existed, one was selected at random. 48,161 putative
somaticmutations were identified across 37,482 enhancers in prostate
cancer. An average of 1.46 mutations was observed per enhancer
(0.08% of total sequence length).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Processed datasets used in this study are available at Zenodo89. Human
andmouse-specificChIP-seq original data are available atArrayExpress
(https://www.ebi.ac.uk/biostudies/arrayexpress) under accessions E-
MTAB-2633 and E-MTAB-7127. H9 DNA replication time is available in
NCBI’s Gene Expression Omnibus through GEO Series accession
number GSE137764. Mouse PGC and SSC DNA replication times are
available under GEO Series accession number GSE109804. Mouse
somatic DNA replication times are available under GEO Series acces-
sion number GSE18019. ChIP-seq data from the prostate cancer cell
line and prostate epithelial cells (PrEC) used in the study are available
under GEO Series accession numbers GSE73783 and GSE57498. ChIP-
seq data of histone marks in the breast cancer cell line, MCF-7, and
healthy epithelial breast cells are available under GEO Series accession
numbers GSE96352, GSE86714, GSE139697, and GSE139733, respec-
tively. Matched ATAC-seq from cancer and healthy thyroid samples
from three individuals are available under GEO Series accession
numbers GSE162515 (C1, C7, C8). ATAC-seq files for the matched pre-
leukemic and blast cells from three individuals are available underGEO
Series accession number GSE74912 (SU484, SU501, and SU654).

Code availability
The code used is available at https://github.com/ewonglab/enhancer_
turnover90.
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