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Measuring statistics-induced entanglement
entropy with a Hong–Ou–Mandel
interferometer

Gu Zhang1,2,5, Changki Hong 3,5, Tomer Alkalay3,5, Vladimir Umansky3,
Moty Heiblum 3 , Igor Gornyi 2 & Yuval Gefen 4

Despite its ubiquity in quantum computation and quantum information, a
universally applicable definition of quantum entanglement remains elusive.
The challenge is further accentuated when entanglement is associated with
other key themes, e.g., quantum interference and quantum statistics. Here, we
introduce two novel motifs that characterize the interplay of entanglement
and quantum statistics: an ‘entanglement pointer’ and a ‘statistics-induced
entanglement entropy’. The two provide a quantitative description of the
statistics-induced entanglement: (i) they are finite only in the presence of
quantum entanglement underlined by quantum statistics and (ii) their explicit
form depends on the quantum statistics of the particles (e.g., fermions,
bosons, and anyons). We have experimentally implemented these ideas by
employing an electronic Hong–Ou–Mandel interferometer fed by two highly
diluted electron beams in an integer quantum Hall platform. Performing
measurements of auto-correlation and cross-correlation of current fluctua-
tions of the scattered beams (following ‘collisions’), we quantify the statistics-
induced entanglement by experimentally accessing the entanglement pointer
and the statistics-induced entanglement entropy. Our theoretical and experi-
mental approaches pave the way to study entanglement in various correlated
platforms, e.g., those involving anyonic Abelian and non-Abelian states.

A pillar of quantum mechanics—quantum entanglement–prevents us
from obtaining a full independent knowledge of subsystem A entan-
gled with another subsystem B. Indeed, the state of subsystem A may
be influenced or even determined following ameasurement of B, even
when both are distant apart. This feature, known as the non-locality of
quantum entanglement, is at the heart of the fast-developing field of
quantum informationprocessing (see, e.g., refs. 1–5). An apt example is
a system comprising two particles with opposite internal magnetic
moments (spin up and spin down). Imagine we put one particle on
Earth (subsystem A) and the other on Mars (subsystem B). If

measurement on A reveals the particle is in the up state, this instan-
taneously dictates that the B particle is down. Following Bell6 and
CHSH7 inequalities, measurements of the respective spins in different
directions may unambiguously demonstrate the quantum nature of
the entanglement of A and B.

An essential way in which quantum entanglement reveals itself is
the entangled subsystem’s entropy. The entanglement entropy (EE) of
subsystem A can be found when the complete information of B is
discarded. This amounts to summing over all possible states of B.
Formally, the von Neumann EE is defined as Sent = � Tr ðρA lnρAÞ,
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whereρA = TrB(ρAB) is the reduceddensitymatrix ofA after tracingover
the states of B, where ρAB is the density matrix in the entire Hilbert
spaceHA �HB. When the subsystems share common entangled pairs
of particles, such pairs are effectively counted by the EE.

Another pillar of quantum mechanics is the quantum statistics of
indistinguishable particles, whose wavefunction might acquire a non-
trivial phase upon exchanging the particles’ positions (braiding). This
phase is pertinent in classifying quasiparticles as fermions, bosons,
and, most interestingly, anyons. Being instrumental in realizing plat-
forms for quantum information processing (see, e.g., ref. 8), it moti-
vated several insightful experiments9–15 that intended to detect
anyonic statistics16–23. Among such experimental setups, the
Hong–Ou–Mandel (HOM) interferometer24 was employed as one of
the simplest platforms to manifest bosonic25, fermionic (see, e.g.,
refs. 26,27), and anyonic (Laughlin quasiparticles)14,21,28 statistics.
Despite their importance, the interplay of entanglement with quantum
statistics has hardly been studied, either theoretically or experimen-
tally (see, however, refs. 27,29).

In an attempt to address EE in the context of quantum transport, it
has been theoretically proposed30 to focus on a single quantum point
contact (QPC) geometry (with partitioning T of the incident beam),
which allows partial separation of two subsystems (arms), A and B.
Following partial tracing over states in one subsystem, the EE can, in
principle, be obtained indirectly via a weighted summation over even
cumulants of particle numbers extracted from the current-noise
measurements (see the discussion of noise cumulants in, e.g., ref. 31).
However, even measurement of the fourth cumulant is not
straightforward32 in mesoscopic conductors33. To our knowledge, no
study of EE through measurements of quantum transport has been
reported. We note that the EE had been measured in localized atomic
systems (see ref. 34 for a review). In addition, the impurity entropy (not
an EE), induced by frustration at quantum criticality wasmost recently
reported in refs. 35,36.

In the present study, we fuse two foundational quantum-
mechanical notions: quantum statistics and entanglement, and pro-
pose the concept of statistics-induced entanglement. We introduce
two functions quantifying entanglement arising from the quantum
statistics of indistinguishable particles: (i) the entanglement pointer
(EP, PE) and (ii) the statistics-induced entanglement entropy (SEE)
(denoted as SSEE). Both are derived from correlations of current
fluctuations in an HOM configuration and are expressed in Eqs. (1)
and (4). Importantly, these two functions vanish for distinguishable
particles, and are finite when indistinguishable particles are emitted
from the two sources SA and SB become entangled following
collisions.

Typically, entanglement is the outcome of Coulomb interaction
between distinct constituents of the system. Here, we focus on the
entanglement being solely amanifestation of quantum statistics. If one
considers current–current correlators, this contribution to the entan-
glementmay be complemented (or even fully masked) by the effect of
Coulomb interactions between the colliding particles. Below we show,
theoretically and experimentally, that with our specially designed
function, SSEE, the leading contributions of the Coulomb interaction
are canceled, with the remaining terms dominated by quantum sta-
tistics [cf. Eq. (3) and Eq. (S21) of Supplementary Information (SI)
Sect. S1].

We note that the acquisition of statistics-induced entanglement is
both instantaneous and non-local. It is acquired immediately when two
identical particles braid each other, even at a distance. By these fea-
tures it is universal. By contrast, the Coulomb interaction contribution
to the entanglement requires the two particles to directly interact with
each other, and depends on the strength and duration of this inter-
action, hence it is non-universal. This non-universal influence from
interaction becomes dominant in the measured noise (see below), but
is negligible in our constructed EP, PE.

Turning now to the technicalities of our study, the theoretical
derivation of the explicit forms of the EP and SEE (see “Methods”)
employs, respectively, the Keldysh technique31 and an extended ver-
sion of the approach of ref. 30 [see Eq. (8)]. The actual measurements
were carried out in a HOM configuration24, fabricated in a two-
dimensional electron gas (2DEG) tuned to the integer quantum Hall
(IQH) regime. Two highly diluted (via weak partitioning in two outer
QPCs) edge modes were let to collide at a center-QPC, and current
fluctuations (shot noise) of two scattered diluted beams (Fig. 1) were
measured. While the definitions of the EP and SEE are not restricted to
a specific range of parameters, expressing SEE in terms of the mea-
sured EP is possible only within the limit of highly diluted impinging
current beams [Eq. (7)]. As will be shown, the theoretical prediction
agrees very well with the experimental data.

Results
The model and the EP
Our HOM interferometer consists of four arms, all in the IQH regime
(Fig. 1). Two sourcesSA andSB are biased equally atVA = VB = Vbias, with
sources currents weakly scattered by two QPCs, each with dilution T A

and T B, respectively. The partitioned beams impinge on a central QPC
(frommiddle armsMA andMB in Fig. 1)with transmission T 21. The two
transmitted electron beams are measured at drains DA and DB.

With this setup, we define the first entanglement-quantification
function—EP, PE. It is expressed through the cross-correlation of the
two current fluctuations, excluding the statistics-irrelevant contribu-
tion,

PEðT A,T B,VbiasÞ � R
dt hIAðtÞIBð0ÞiirrjT A ,T B,Vbias

h
�hIAðtÞIBð0Þiirrj0,T B,Vbias

� hIAðtÞIBð0ÞiirrjT A ,0,Vbias

i
:

ð1Þ

Fig. 1 | Schematics of the setup. A Schematics of the experimental setup. B The
corresponding theoretical schematics. The Hong–Ou–Mandel interferometer
consists of two sources (SA and SB) and two diluted middle arms (MA, MB) via
transmission probabilities T A and T B (with two quantum point contacts). The
currents are measured at drains DA and DB. For later convenience, we call the
source arms after the diluters as ~DA and ~DB. For simplicity, the two sources are
equally biased: VA =VB =Vbias. The red line separates the two entangled subsystems,
A (the two upper arms with labels A) and B (the two lower arms with labels B).
C Distribution functions of the twomiddle arms (MA andMB) for non-interacting
fermions (fA, fB, respectively) at zero temperature (carrying shot noise). Thedouble-
step distributions are modified when the filling factor is larger than one, with an
added interaction between the two modes on each edge [Eq. (S34) of Supple-
mentary Information Sect. S2].
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Here, IA and IB refer to the current operators in the corresponding
drainsDA andDB (Fig. 1B), and “irr” refers to the irreducible correlators
(connected correlation function), where the product of the averages is
removed. Note that the last two terms in Eq. (1) are each evaluatedwith
only one active source (i.e., either T A or T B is zero), and, thus do not
involve the two-particle scattering in theHOMconfiguration19,26,37. This
removal of last two terms has been carried out in refs. 37,38, however
without referring to entanglement. Importantly, Eq. (1) yields zero for
distinguishable, non-interacting particles, since the first term is then a
superposition of two independent single-source terms. By contrast,
the EP is finite and statistics-dependent for indistinguishable particles.

For instance, for a double-step-like distribution of such particles
(e.g., Fig. 1C for fermions), weobtain cross-correlations (CC) of current
operators,

fermions:
Z

dthIAðtÞIBð0ÞiirrjT A ,T B,Vbias

= � e3

h
T ð1 � T Þ ðT A � T BÞ2 + T AT BPQPC

h i
Vbias,

bosons:
Z

dthIAðtÞIBð0ÞiirrjT A ,T B,Vbias

=
e3

h
T ð1 � T Þ ðT A � T BÞ2 � T AT BPQPC

h i
Vbias:

ð2Þ

Here PQPC describes an additional bunching (or anti-bunching) prob-
ability induced by Coulomb interactions within the central QPC (cf. SI
Sect. S2). Note that for equal diluters, T A = T B, the non-interacting
part of the CC vanishes, indicating that the nature of the CC is then
solely determined by interactions. This is however not so for the EP.
Indeed, with Eqs. (1) and (2), we obtain,

fermion EP:PE = ð2 � PQPCÞ
e3

h
T ð1 � T ÞT AT BVbias,

boson EP:PE = ð�2 � PQPCÞ
e3

h
T ð1 � T ÞT AT BVbias:

ð3Þ

In the presence of a weak inter-mode interaction among particles
within the middle armsMA andMB, PQPC is replaced with PQPC + Pfrac
[see “Methods” and Eq. (S51) of SI Sect. S2]. The term Pfrac refers to the
influence of intra-arm charge fractionalization that produces particle-
hole dipoles in the two interacting edgemodes (refs. 39,40). Crucially,
the unavoidable Coulomb-interaction contribution to the EP, para-
meterized by PQPC and Pfrac (introduced in Supplementary
Eqs. (S50) and (S51), respectively), appears in terms that are quadratic
in the beam dilution (T A and T B) and hence is parametrically smaller
than the linear (∼ T APA and ∼ T BPB) terms in the noise correlation
functions [see Eq. (13) in “Methods”]. It follows that the EP rids of the
undesired effect of Coulomb interactions, hence truly reflecting the
state’s statistical nature.

EE from statistics
The second entanglement quantifier is the SEE, which is defined in a
similar spirit to the EP (by removing the statistics-irrelevant single-
source contributions to the EE),

SSEEðT A,T BÞ � � SentðT A,T BÞ � SentðT A,0Þ � Sentð0,T BÞ
� �

: ð4Þ

To illustrate the relation between the SEE and Bell-pair entanglement,
we consider the caseof two incoming fermions (Fig. 2A). Thepure two-
particle state at the output of our device is represented as (see Fig. 2)

∣Ψi = ∣~ψ
�
+ ∣ψ

�
: ð5Þ

Here, ∣~ψ
� � ∣ψ2,0

�
+ ∣ψ0,2

�
denotes a state where both particles end

up in either subsystem A (2,0) or B (0,2) (Fig. 2B, C, respectively).

In either case, obeying Pauli’s blockade, twoelectronsmustoccupy the
two arms of the same subsystem: for example, ~DA andDA for the state
(2,0), which can be written as (1,1,0,0) in the basis of drain arms
~DA, DA, DB, ~DB. Any coupling between the arms within one subsystem
cannot change the 1,1 arrangement for subsystem A in ∣ψ2,0

�
. This

implies that no quantum manipulations on subsystem A, leading to
Bell’s inequalities (refs. 6,7) are possible with ∣~ψ

�
alone, i.e., without

coupling the present setup to extra channels. The same holds for
subsystem B. Nevertheless, ∣~ψ

�
is a non-product state with nonlocal41,42

entanglement: if the two particles are detected in subsystem A, this
automatically implies that no particles are to be detected in subsystem
B. In principle, Bell’s inequalities can be tested with ∣~ψ

�
usingmodified

devices akin to those proposed for a similar bosonic state (a NOON
state) in, e.g., refs. 43,44 and refs. 45,46, after the introduction of
external states.

By contrast,

∣ψ
�
= α∣"A

�
∣"B

�
+ β∣#A

�
∣#B

� � ∣ψ1,1

�
, ð6Þ

represents an effective Bell pair (with amplitudes α and β), where one
particle leaves the device through subsystem A and the other through
B (hence ∣ψ1,1

�
, as opposed to ∣ψ2,0

�
and ∣ψ0,2

�
, see Fig. 2D, E). Here,

∣"A

�
, ∣#A

�
are certain (mutually orthogonal) linear combinations of the

states ∣~DA

�
and ∣DA

�
; ∣"B

�
, ∣#B

�
are defined similarly for subsystem B

[see Eq. (S67) of SI Sect. S3]. The quantum superposition in Eq. (6)
allows for rotating the pseudospin (i.e., rotation between orthonormal
bases ∣"A

�
and ∣#A

�
) of subsystem A, hence the measurement of

pseudospins in a transverse direction is possible, as required by Bell’s
inequalities. It is also worth noting that the states ∣"A

�
, ∣#A

�
are non-

local: each of them is constructed out of states in the arms associated
with ~DA andDA, which are spatially separatedby themiddle armMA of
length about 2μm in the real setup, see below. The detailed forms of
∣~ψ
�
and ∣ψ

�
aremanifestations of quantum statistics, which underlines

the statistics-induced entanglement, captured by the function SSEE.
Motivated by the conditions of low temperature and minimal noise
underlining the experimental platform, we have focused here on the
ideal case of pure states. Departing from these conditions, one needs
to consider mixed states, in which case probing Bell’s nonlocality is
more demanding than addressing quantum entanglement42 (cf. Sect.
S7 of SI).

Technically, the building blocks of SEE, Sent [Eq. (4)] can be
obtained30,47,48 by calculating the generating function χðλÞ �P

q expðiλqÞPq of the full counting statistics (FCS)31 (see “Methods”).
Here Pq refers to the probability to transport charge q between the
subsystems A and B over the measurement time. In a steady state, SSEE
is proportional to the dwell time τ (see SI Sect. S5), which corresponds
to the shortest travel time from the central QPC to an external drain.
This should be replaced by the coherence time, τφ, if the latter is
shorter than the dwell time. The EE grows linearly with the coherent
arm’s length (beyond this coherence length the particles become
dephased, hence disentangled). In the following analysis, we neglect
externally induced dephasing along the arms, as the dephasing length
in this type of IQH device is known to be longer than the arm’s length.

While the function SSEE is in principle measurable, it becomes
readily accessible in the strongly diluted limit T A, T B ≪ 1. In this limit,
SSEE is approximately equal to a function ~SSEE, which is proportional to
the EP of free fermions and bosons (see “Methods”):

SSEE ����!
T A , T B ≪ 1 � 1

2e2
PE lnðT AT BT 2Þτ � ~SSEE: ð7Þ

Note the statistics-sensitive factor, PE. Since the non-interacting
(purely statistical) contribution to PE [cf. Eq. (3)] for bosons is
opposite in sign to its fermionic counterpart, so is the correspond-
ing ~SSEE.
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Importantly, addressing SEE (compared to Sent) has two obvious
upsides. First, extracting PE via current cross-correlation measure-
ments, this quantity is easy to obtain in the strongly diluted particle
beam limit. Second, it allows us to rid of most of the undesired effects
of Coulomb interactions, and clearly single out quantum statistics
contributions. To validate Eq. (7) we compare SSEE [calculated
according to Eq. (S21) of SI Sect. S1] and ~SSEE for free fermions (Fig. 3A,
B) and free bosons (Fig. 3C, D). We next compare our theoretical
predictions with experiments.

Experimental results
The experimental structure was fabricated in uniformly doped GaAs/
AlGaAs heterostructure, with an electron density of 9.2 × 1010 cm−2 and
4.2 K dark mobility 3.9 × 106 cm2 V−1 s−1. The 2DEG is located 125 nm
below the surface. Measurements were conducted at an electron
temperature ~14mK. The structure is shown in Fig. 1A (schematically)
and in Fig. 4A (electron micrograph). Two QPCs are used to dilute the
two electron beams, which collided at the central QPC located 2μm
away. Two amplifiers, each with an LC circuit tuned to 730KHz (with
bandwidth 44KHz) measuring the charge fluctuations, are placed at a
large distance (around 100 μm) from the 2D Hall bar. The outer-most
edge mode of filling factor ν = 3 of the IQH was diluted by the two
external QPCs.

Cross-correlation of the current fluctuations of the reflected
diluted beams from the central QPC (T = 0:53), with T A = T B = 0:2, is
plotted in Fig. 4B. The corresponding single source CC, with
T A = 0:2 and T B = 0, is plotted in Fig. 4C. Though the data is rather
scattered, the agreement with the theoretically expected CC is rea-
sonable. For both cases, the measured data displays a clear deviation
from the non-interacting curve: evidence of strong interaction influ-
ence. Importantly, for the equal-source situation (T A = T B = 0:2,
Fig. 4B), the CC is entirely produced by interactions within a single
source [see SI Eq. (S48)], indicating the inadequacy of CC to quantify
entanglement.

The measured data, with the applied source voltage larger than
the electron’s temperature (eV > kBT) was used to calculate the EP
(Fig. 4D) and the SEE (Fig. 4E), and then compared with the expected
EP and SEE. The measurement results conformed with the theoretical

prediction of the EP.More data for ν = 3 and ν = 1 situations is provided
in SI Sects. S8 and S9, respectively.

Asdiscussedabove, the currentfluctuations are also influencedby
two sources of Coulomb interactions: (i) inter-mode interaction at the
same edge, and (ii) interaction within the central QPC in the process of
the two-particle scattering (Fig. 4B, C). However, the influence of these
interactions on the EP and SEE is negligible in our setup, which is in
great contrast to, e.g., refs. 49,50, where entanglement is purely
interaction-induced; see also refs. 51,52, as Fig. 4D, E demonstrate (see
also SI Sect. S2). Thus, the measured current noise indeed yields
information on statistics-induced entanglement.

Discussion and outlook
Entanglement and exchange statistics are two cornerstones of the
quantum realm. Swapping quantum particles affects the many-body
wavefunctionby introducing a statistical phase, even if the particles do
not interact directly. We have shown that quantum statistics induces
genuine entanglement of indistinguishable particles, and developed
theoretical and experimental tools to unambiguously quantify this
effect. Our success in ridding of the contribution of the local Coulomb
interaction, facilitates a manifestation of the foundational property of
quantum mechanics—nonlocality. It also presents the prospects of
generalizing our protocol to a broad range of correlated systems,
including those hosting anyons (Abelian and non-Abelian, see e.g., SI
Sect. S7), and exotic composite particles (e.g., neutralons at the edge
of topological insulators53,54). Our protocol may also be generalized to
include setups based onmore complex edge structures, and platforms
where the quasi-particles involved are spinful. Another intriguing
direction is to explore the interplay of statistic-induced entanglement
and quantum interference (e.g., similar structures considered in SI
Sect. S8).

Methods
InMethods, we provide (i) the sample fabrication, (ii) the experimental
setups, (iii) an outline of the SEE derivation, (iv) a physical

Fig. 2 | Two components ∣eψE and ∣ψ
�
, of two-particle wavefunctions, shown in

the schematics of Fig. 1B. A Pre-collision configurations. Two particles (red and
blue pulses) are injected from SA and SB, respectively. Hereafter, post-scattering
quasi-particles comprise contributions from both incident particles (blue and red).
B,CConstituents of the state ∣~ψ

�
= ∣ψ2,0

�
+ ∣ψ0,2

�
.D, EConstituents of the Bell pair

state ∣ψ
�
= α∣"A

�
∣"B

�
+ β∣#A

�
∣#B

�
, Eq. (6). In comparison to ∣~ψ

�
configurations,

particle states of ∣ψ
�
configurations are entangled, both within (indicated by

dashed ellipses) andbetween (indicatedby the red–bluemixedpulses) subsystems.

Fig. 3 | Comparison between theoretical values of SSEE and eSSEE. Free fermions
(A,B) and free bosons (C,D). These functions perfectly overlap for the entire range
of T when T A = T B = 0:01 in (A, C). When T A = T B = 0:2 (B, D), a finite but small
difference begins to show up between them. The bias used Vbias = 20.7μV. We take
the dwell time τdwell = 0.01 ns (see Supplementary Information Sect. S5 for the
evaluation of τdwell).
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interpretation of the EP-SEE connection, and (v) a physical picture of
the effect of interaction along the arms: charge fractionalization.

Sample fabrication
TheGaAs/AlGaAsheterostructureweuse consists of a 2DEG layer (with
125 nm depth) and a donor layer (with 92 nm depth). We perform the
MESA layer (with a thickness of 100nm) etching with a wet solution
H3PO4:H2O2:H2O= 1:1:50. Ge/Ni/Au materials (with a stacked total
thickness of 450nm) serve as a rapid thermal annealed standard
Ohmic contacts. A high-κ oxide layer (HfO2, thickness 30 nm) is fabri-
cated with an atomic layer deposition machine. Ti/Au QPC gates with
200nm width and an 800nm gap, are deposited on the oxide layer.
Before the deposition of the last 300nm Ti/Au metal contact pad, the
sample is etched for reactive-ion etching with Ar and BCl3 gas window
for the oxide layer for the contact.

Experimental setups
The base temperature for the measurement was below 10mK by the
CMN temperature sensor and Rutinum Oxide sensor. A low fre-
quency of 13 Hz was used for the transmission and gate voltage ver-
sus conductance measurement by lock-in amplifier (NF corporation
LI 5655). For the noise measurement, a voltage source with a 1 GΩ
resistor series is connected for the DC currents to the source ohmic
contacts. Each amplifier line used around ~730KHz resonance fre-
quency LC resonant circuit with blocking capacitor and amplified by
ATF-34143HEMT based home-made voltage preamplifier at 4 K plate.
At room temperature, the noise amplified the room temperature
voltage amplifier (NF corporation SA-220F5) and measured the noise

with digital multi-meters (HP 34401A) after a homemade analog
cross-correlator.

Derivation of SEE
The system EE Sent (and the ensued SEE) can be obtained through its
connection with FCS30,47,48, i.e.,

Sent =
1
π

Z 1

�1
du

u

cosh2u
Im ln χðπ � η � 2iuÞ� �

, ð8Þ

where χ refers to the generating function that fully describes the tun-
neling between subsystems, and η is a positive infinitesimal.

Of the non-interacting situation, the zero-temperature generating
function equals31,55,

ln χðλFCSÞ = eVbiasτ ln 1 + T T Að1 � T BÞ eiλFCS � 1
� �h in

+ T T Bð1 � T AÞ e�iλFCS � 1
� �h io

=h,
ð9Þ

where τ is the dwell time and λFCS is an auxiliary field (the measuring
field) introduced in FCS. To the second order of dilutions, it approxi-
mately becomes

SentðT A,T BÞ
τ

≈
eVbias

h

n
T
h
T A + T B � T A ln T AT

� �
� T B lnðT BT Þ

i
� 1

2
T 2

�
T 2

A + T 2
B

�
+ T

�
1 � T

�
T AT B ln

�
T 2T AT B

�
+ O

�
T 3

A,B

�o
:

ð10Þ

Fig. 4 | Experimental setup and experiment-theory comparisons. A Scanning
electron microscope micrograph of the central part of the fabricated sample.
Subsystems A and B (cf. Fig. 1B) are highlighted by shaded blue and shaded red
areas, respectively. Transport directions of edge states in the arms associated with
the sources SA,B and drains DA,B, ~DA,B, as well as in the diluted middle arms MA,B,
are indicated by dashed black arrows. B, C Double-source and single-source cross-
correlations (CCs), respectively [see Eq. (S48) of the Supplementary Information
(SI) for expressions that include interaction contributions]. In both cases, theore-
tical curves with interaction taken into account (blue curves) agree better with the
experimental data (black dots). D, E Measured data for the entanglement pointer
(EP) and statistics-induced entanglement entropy (SEE).DCompares themeasured
EP (black dots) with theoretical curves: including interaction contributions (blue)
andnon-interacting particles (red). Although the interaction strength is the same as

in (B, C), the difference between the theoretically calculated values of the EP with
and without interaction contribution is much smaller than for the cross-current
correlations, in panels (B, C). This demonstrates that the expression for the EP
subtracts the interaction contribution to the leading order. E Comparison between
the experimentally measured data (black dots) and the theoretical dependence of
SSEE on the source current (here τdwell = 0.01 ns as in Fig. 4). Experimental data
points are obtained in two steps (see SI Sect. S1D for details): (i) we evaluate ~SSEE
(using Eq. (7)) with themeasured EP frompanel (D), and, (ii) relying on the fact that
at the experimental value T = 0:53 the ratio SSEE=~SSEE ≈ 1:22 in (B), we use this ratio
to scale the measured ~SSEE to reconstruct SSEE. Both the interacting (blue) and non-
interacting (red) theoretical curves for SSEE agree remarkably well with the
experimental data. The error bars represent the standard deviation of themean for
the set of measurements (see SI for more details).
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After the removal of the single-source contributions, Eq. (10) reduces
to Eq. (7), i.e.,

SSEE = � ½SentðT A,T BÞ � SentðT A,0Þ � Sentð0,T BÞ�

≈ � eVbias

h
T ð1 � T ÞT AT B lnðT 2T AT BÞ:

ð11Þ

The non-perturbative SEE expressions can be found in Eqs. (S21) of SI
Sect. S1 and (S60) of SI Sect. S2.

Understanding the relation between EP and SEE
To understand the EP–SEE relation Eq. (7), we start with a single-
particle situation where one particle from sourceSA contributes to the
entanglement

S1e = T AT lnðT AT Þ + ð1 � T AÞ lnð1 � T AT Þ
+ T Að1 � T Þ lnð1 � T AT Þ

that has three contributions. The second one ð1 � T AÞ lnð1 � T AT Þ
comes from the case when the particle stays in the upper source
SA ! ~DA. This term has no contribution to SEE as the involved par-
ticle has no chance to join a two-particle scattering. Of the remaining
two, the first one T AT lnðT AT Þ dominates in the strongly diluted
regime. It can be considered as the product of the conditioned EE
lnðT AT Þ and its corresponding probability T AT .

Now we move to two-particle scatterings to see the role of sta-
tistics. Following the single-particle analysis, a two-particle scattering
event produces the leading conditioned EE ½lnðT T AÞ + lnðT T BÞ�when
two particles enter the same drain (i.e., bunching) after the scattering.
Consequently, for a two-particle scattering event of free particles, the
difference in the EE emerges between indistinguishable (fermions and
bosons) and distinguishable cases,

fermion: ðPb
fermion � Pb

disÞ lnðT T AÞ + lnðT T BÞ
� �

=2

= � T ð1 � T Þ lnðT T AÞ + lnðT T BÞ
� �

,

boson: ðPb
boson � Pb

disÞ lnðT T AÞ + lnðT T BÞ
� �

=2

= T ð1 � T Þ lnðT T AÞ + lnðT T BÞ
� �

,

ð12Þ

where Pb
fermion, P

b
boson, and Pb

dis refer to the bunching probabilities of
fermions, bosons, and distinguishable particles, respectively. In more
realistic considerations, the two-particle scattering rate, i.e., T AT B

should be included as the prefactor of Eq. (12), leading to the statistics-
induced entropy of 2e-scattering processes�PE lnðT T AÞ + lnðT T BÞ

� �
=2

for fermions and bosons alike. It equals the auxiliary function ~SSEE [Eq.
(7)] after the integral over energy and time.

Notice that the arguments above on the EP-SEE connection rely on
the fact that both quantities can describe the tunneling between two
subsystems. As a consequence, this EP-SEE connection remains valid if
EP is instead defined after replacing IA and IB of Eq. (1) by the total
current of two subsystems A and B. This flexibility in the definition of
EP enhances the potential range of applicability of our theory.

Effect of interaction along the arms: charge fractionalization
In themain text, wemention that interaction along the arms influences
correlation functions, EP, and SEE via the introduction of charge
fractionalization39,40. To understand this phenomenon, we consider
two chiral fermionic channels 1 and 2. Both channels (with corre-
sponding fields ϕ1 and ϕ2) are described by free 1D Hamiltonians

H1 =
vF
4π_

Z
dxð∂xϕ1Þ2, H2 =

vF
4π_

Z
dxð∂xϕ2Þ2:

Fermions in channels also Coulomb-interact, leading to

H12 =
v

2π_

Z
dxð∂xϕ1Þð∂xϕ2Þ:

The total Hamiltonian can be diagonalized via the rotation
ϕ± � ðϕ1 ± ϕ2Þ=

ffiffiffi
2

p
, after which two modes ϕ± travel at different

velocities vF ± v. Consequently, after entering one middle arm, an
electron gradually splits into two (spatially separated) wave packets.
With fractionalization taken into consideration, the cross
current–current correlation becomes (see SI Sect. S2)

Z
dthIAðtÞIBð0Þiirr = � e3

h
T ð1 � T Þ ðT A � T BÞ2

h
+ T APA + T BPB + T AT BðPQPC + PfracÞ

�
Vbias,

ð13Þ

where

PA = � ð1 � T AÞ 1 � 1
2 � 2T


 �
+

l2

λ2

" #
v2

v2F
,

PB = � ð1 � T BÞ 1 � 1
2 � 2T


 �
+

l2

λ2

" #
v2

v2F
,

ð14Þ

refer to the modification of correlation function due to the particle
fractionalization in each arm, and

Pfrac = 2
v2

v2F

l2

λ2
, ð15Þ

only contributes when both sources are on. In these expressions, l and
λ refer to the distance from the diluter to the central QPC, and the half-
width of the diluted fermionicwave packet, respectively. Following the
equations above, the extent of fractionalization in our systemdepends
on the interaction amplitude v and thedistance l from thediluter to the
central QPC (around 2μm in our setup). Based on experimental data
(cf. SI Sect. S2), we expect the fractionalization to be minimal before
the packets arrive at the central QPC.

Data availability
The data used in this study are available in the figshare database
[https://doi.org/10.6084/m9.figshare.23546235].

Code availability
We do not develop code for this work.
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