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Estimating the effects of temperature on
transmission of the human malaria parasite,
Plasmodium falciparum

Eunho Suh 1,7 , Isaac J. Stopard 2,7, Ben Lambert 3, Jessica L. Waite1,5,
Nina L. Dennington1, Thomas S. Churcher 2 & Matthew B. Thomas1,4,6

Despite concern that climate change could increase the human risk to malaria
in certain areas, the temperature dependency ofmalaria transmission is poorly
characterized. Here, we use amechanisticmodel fitted to experimental data to
describe how Plasmodium falciparum infection of the African malaria vector,
Anopheles gambiae, is modulated by temperature, including its influences on
parasite establishment, conversion efficiency through parasite developmental
stages, parasite development rate, and overall vector competence. We use
these data, together with estimates of the survival of infected blood-fed
mosquitoes, to explore the theoretical influence of temperature on transmis-
sion in four locations in Kenya, considering recent conditions and future cli-
mate change. Results provide insights into factors limiting transmission in
cooler environments and indicate that increases inmalaria transmissiondue to
climate warming in areas like the Kenyan Highlands, might be less than pre-
viously predicted.

Malaria is a leading cause of morbidity and mortality in many tropical
and sub-tropical regions1. The transmission of malaria parasites is
inextricably linked to the biology of the mosquito vector. Classic
models that estimate the Basic ReproductionNumber (R0) or Vectorial
Capacity2–4 indicate that traits such asmosquito life expectancy, vector
competence, per-mosquito biting rate, and the Extrinsic Incubation
Period (EIP; the duration of sporogony) are important determinants of
malaria transmission. Despite their epidemiological importance, these
traits are poorly characterised for most malaria vectors. A limited
understanding of these traits and their interaction with environmental
variables, such as temperature, constrains our ability to understand
current patterns of transmission or future responses to climate
change.

The EIP describes the time it takes for a mosquito to become
infectious following an initial infected blood meal. This process
involves parasites infecting the midgut, undergoing obligate sexual

and asexual reproduction via multiple life stage transitions and then
migrating to themosquito salivary glands where theymay be secreted
into saliva5,6. Mosquitoes are ectothermic and although the EIP can be
influenced by different biotic and abiotic factors7, the single biggest
known determinant is ambient temperature8–12. For many decades, the
temperature dependence of the EIP for Plasmodium falciparum, the
most important human malaria-causing parasite, has been char-
acterised using a single degree-day model7,13. This model assumes
there is a fixed number of degree-days (D), or heat units, that need to
be accumulated for the completion of sporogony such that,

EIPD =
D

T � Tmin
, ð1Þ

where T is the mean daily temperature and Tmin is the lower tem-
perature threshold for parasite development. For P. falciparum, D was
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estimated over 60 years ago to be 111 with Tmin equal to 16 °C7,13.
Existing climate sensitive malaria models that account for the effects
of temperature on the EIP when predicting malaria endemicity or
transmission intensity commonly rely on this model14–22. Despite its
extensive application, the established degree-day model remains
poorly validated, and several potential limitations have been
identified7,14–22. First, the model was parameterised based on a single
minimally replicated experiment23, with the EIP measured as the first
day at which an individual mosquito was observed to have parasites in
the salivary glands7,13. Recent evidence, however, indicates variation in
the EIP between mosquitoes exposed to the same environment24,25.
Second, there were no empirical measures of the EIP below 19-20 °C,
meaning the degree-day model estimates at cooler temperatures are
based on extrapolation. However, exploratory experimentsmeasuring
EIP below 20 °C indicate this extrapolationmay overestimate the EIP25.
Finally, the original experiment was conducted with Anopheles
maculipennis, a mosquito species complex responsible for malaria
transmission in Eurasia7. The EIP is known to varybetween Plasmodium
species13,26, but it is unclear whether it varies between different
mosquito species7,25 and there has never been an EIPmodel developed
for any dominant vector species in Africa.

Our understanding of the effects of environmental temperature
on other important traits, such as the vector competence (the pro-
portion of mosquitoes successfully develop infectious parasites in the
salivary glands following an initial infectious blood meal) and mos-
quito longevity are similarly incomplete. A limited number of studies
indicate that parasite establishment in the mosquito is sensitive to
temperature27,28. There is, however, insufficient data on subsequent
P. falciparum development in Anopheles gambiae, and mechanistic
modelling studies examining the influence of climate on malaria
transmission tend to either assume the vector competence is tem-
perature invariant, or utilise data from infection experiments using
inappropriate mosquito-parasite pairings such as species of North
American vector infected with P. vivax9,22,29–31. Similarly, data on the
effects of temperature on the survival of key malaria vectors are also
scant, particularly in the field32.

Here, we generate a comprehensive set of experimental infection
data for P. falciparum in the dominant African malaria vector, A. gam-
biae, across a range of temperatures. Mosquitoes are dissected to
determine the presence of different parasite stages, so it is not possible
to observe the parasite population dynamics within single mosquitoes.
To estimate temperature-dependent changes in the EIP distribution,
vector competence and parasite load among the mosquito population,
we fit a mechanistic model33 that simulates the temporal dynamics of
sporogony. We use these estimates, together with data on temperature-
dependent mosquito mortality rate, to parameterise a model of vec-
torial capacity and use this to investigate the effects of temperature on
current and future transmission in four locations in Kenya.

Results
Experimental infection of P. falciparum in A. gambiaemosqui-
toes at different temperatures
We began with a pilot study to refine sample sizes and to better
understand the relationship between gametocytemia (percent game-
tocyte infection in red blood cells) and infection dynamics at different
temperatures. A. gambiae mosquitoes (G3) were fed infectious blood
meals with P. falciparum (NF54) gametocytemia of 0.024% within a
standard membrane feeding assay and then maintained at constant
temperatures of 17, 19, 21, 23, 25, 27 or 29 °C. The maximum oocyst
infection was observed at 25 °C with oocyst prevalence of 45% (95%CI:
23.1–68.5%) and mean oocyst intensity of 5 (95% CI: 1.6–8.4; Supple-
mentary Fig. 1a). However, little or no infection was observed at 17 °C
and 21 °C, and sporozoite infection was low at the temperature
extremes (Supplementary Fig. 1b). In the next two experimental
infectious feeds (referred to herein as Feed1 and Feed2),

gametocytemia in the blood meal and the mosquito sample size were
increased to obtain more robust infection data. In Feed1, gametocy-
temia was adjusted to approximately 0.126% in the bloodmeal and the
fed mosquitoes were kept at 17, 19, 21, 24, 25, 27, or 29 °C throughout.
In Feed2, gametocytemia was increased to 0.139% and the blood-fed
mosquitoes were kept at 18, 19, 20, 23, 25, 28, 29, and 30 °C. In these
two feeds, maximum oocyst prevalence was observed at 23 and 25 °C
for Feed1 (83.3%) and Feed2 (83.7%), respectively. For both feeds the
mean oocyst intensity peaked at 23 °C, with 23.5 (Feed1) and 54.0
(Feed2) oocysts per mosquito with any observed oocysts. The lowest
infection was observed at 17 and 18 °C, with oocyst prevalence of 13.3
to 25%, and mean oocyst intensities of 1.3 and 2.4 oocysts per oocyst-
positive mosquito for Feed1 and Feed2, respectively (Supplementary
Fig. 1a). Sporozoite prevalence estimates from Feed1 & Feed2 are
presented in Fig. 1. There was little effect of parasite load on EIP in a
preliminary study34, which is also consistent with another recent
report35, so data from Feed1 & Feed2 were combined when modelling
the EIP.

Extrinsic Incubation Period
Sporogony varies between individual A. gambiaemosquitoes exposed
to the same temperature, which can be represented by a probability
distribution with a mean and variance. It’s not possible to estimate the
EIP of individual mosquitoes if they are dissected, but the cumulative
increase in sporozoite prevalence with days post infection (DPI) is
indicative of the cumulative distribution function (CDF), which
represents the EIP variation across specimens. We estimate
temperature-dependent changes in the EIP distribution and the
human-to-mosquito-transmission probability (HMTP; the conditional
probability of infection given the mosquito is alive) by fitting a
mechanisticmodel of sporogony to the individualmosquito dissection
data (oocyst intensity [counts] and sporozoite presence [1: any salivary
gland sporozoites; 0: none]) from Feed1 and Feed2, in a Bayesian fra-
mework using Stan’s Markov ChainMonte Carlo (MCMC) sampler. We
fitted two types of model: an independent model, based on models
fitted separately to data from individual temperatures; and a pooled
model, based on a single model fitted to data from all temperatures,
where certain model parameters vary as a function of temperature. In
Fig. 1a, b, we show these model fits to sporozoite prevalence and
oocyst intensity data (among mosquitoes with observable oocysts),
respectively. Except for sporozoite prevalence at 17 °C, the actual vs
fitted plots and R2 or Brier skill scores indicate the model reasonably
predicts the sampled values (Supplementary Fig. 2).

Results indicate that the EIP decreases as temperature increases
(Fig. 2a). Our new EIP model enables us to describe the temporal var-
iation in sporogony among mosquitoes at a given temperature: the
time for 10%, 50% (themedian) and 90% of themosquito population to
become infectious are denoted by EIP10, EIP50 and EIP90. Consistent
with the degree-day model, we see a non-linear increase in the EIP at
lower temperatures. EIP10, for example, increased from 7.6 days (95%
Credible Intervals, CrI: 7.2–8.0) at 30 °C to 49.1 days (95% CrI:
44.2–55.1) at 17 °C (pooled model estimates) (Fig. 2a). The range
between EIP10 and EIP90 decreasedwith increases in temperature: from
21.7 (95% CrI: 17.6–27.6) days at 17 °C to 3.7 (95% CrI: 3.4–4.0) days at
30 °C (Fig. 2a and Supplementary Fig. 3a). Similarly, the EIP distribu-
tion variancedecreasedwith increases in temperature (Supplementary
Fig. 3b). When the EIP standard deviation was normalised by the mean
EIP there were little changes in this quantity with temperature, indi-
cating that the variance scales with the mean (Supplementary Fig. 3c).
The standard degree-day model, however, assumes all mosquitoes
have the same EIP at a given temperature (Fig. 2a).

Using the pooled model fits, we also calculated the probability
that our EIP50 estimates are less than the degree-day model estimate:
p EIP50 < EIPD

� �
=0:95 at approximately 24.6 days and

p EIP50 < EIPD

� �
=0:05 at approximately 27.7 days (Fig. 2b). These
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metrics indicate the established degree-day model provides a rea-
sonable approximation of our EIP estimates at intermediate tempera-
tures but becomes increasingly inaccurate at the temperature
extremes. This finding is consistent with the original empirical data to
which the degree-daymodel wasfitted, which is also lower than the EIP
predicted by the degree-day model at the lowest experimental tem-
perature (Supplementary Fig. 4).

Vector competence
Thepredictedmeanoocyst loadamong infectedmosquitoes (μ) varied
unimodallywith temperature: the pooledmodel peaked at 24.5 °Cwith

a posterior value of 20.3 (95% CrI: 16.9–23.9) oocysts per mosquito
(Fig. 3a). The maximum HMTP determined by the presence of any
oocysts (δO) varied unimodally with temperature: the pooled model
value peaked at 24.8 °C with a posterior value of 83% (95% CrI: 80–86)
(Fig. 3b). The probability thatmosquitoes with any oocysts will mature
any sporozoites (δS; conversionof oocyst to sporozoite infection at the
mosquito scale) is close to 100% at most of the temperatures investi-
gated (Fig. 3c). At temperature extremes (and especially high tem-
peratures), however, this value decreased: at 30 °C, for example, the
pooledmodel posterior estimate is 14% (95%CrI: 9–20). As a result, the
vector competence (we define as the maximum HMTP measured by

28°C 29°C 30°C

21°C 23°C 25°C 27°C

0 10 20 30 40 50

17°C 18°C 19°C 20°C

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0%

25%

50%

75%

0%

25%

50%

75%

0%

25%

50%

75%

Days post infection

S
po

ro
zo

ite
 p

re
va

le
nc

e

a

28°C 29°C 30°C

21°C 23°C 25°C 27°C

0 10 20 30

17°C 18°C 19°C 20°C

0 10 20 30 0 10 20 30 0 10 20 30

0

25

50

75

0

25

50

75

0

25

50

75

Days post infection

M
ea

n 
oo

cy
st

 in
te

ns
ity

(a
m

on
g 

in
fe

ct
ed

 m
os

qu
ito

es
)

b
independent
pooled

Fig. 1 | Mechanistic model of sporogony fits sporozoite prevalence and mean
oocyst intensity. The temporal dynamics of sporogony is first fit to data from
mosquitoes exposed to each constant temperature independently (independent
model; blue lines). Themodel is also fit to all the standardmembrane feeding assay
mosquito dissection data simultaneously by fitting functional forms between
temperature and certain model parameters (the independent model parameter
estimateswere used to guide the choiceof functional forms) (pooledmodel; yellow
lines). The actual (points) and predicted (lines) sporozoite prevalence and mean

oocyst intensity are shown in (a) and (b) respectively. Uncertainty is shown by the
95% credible intervals of the posterior predictive means for the model estimates
and 95% confidence intervals (error bars) for the experimental data, which was
conducted with n = 4195 mosquitoes dissected for sporozoites (a) and n = 520
mosquitoes dissected for oocysts (b). For the binomial proportion data, confidence
intervals were calculated using the Clopper-Pearson method. The facets indicate
the constant temperature at which mosquitoes were maintained.
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Fig. 3 | The relationship between temperature and the fitted model mosquito
infection parameter values. a μ (the mean oocyst load among infected mosqui-
toes),b δO (the human-to-mosquito transmission probability, as determined by the
presenceof oocysts), c δS (the probability amosquito infectedwith any oocysts will
develop any sporozoites at the mosquito scale: conversion), and d δOδS (vector
competence; the human-to-mosquito transmission probability, as determined by
the presence of sporozoites). For (a) and (b) black points show the sampled mean

oocyst load and oocyst prevalence disaggregated by day of dissection with the 95%
confidence intervals respectively, which were estimated from n = 520 dissected
mosquitoes. All mosquitoes were dissected at sufficient days post infection that all
oocysts were expected to have developed. For all plots blue points show the
independent model estimates and yellow lines show the pooled model median
posterior estimates with the 95% credible intervals.
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Article https://doi.org/10.1038/s41467-024-47265-w

Nature Communications |         (2024) 15:3230 4



the presence of any salivary gland sporozoites, δOδS) is unimodal and
left-skewed, with a maximum at ~24.8 °C with a posterior value of 83%
(95% CrI: 80–87; Fig. 3d).

A. gambiae survival
Survival ofmosquitoes fedwith an infected bloodmealwasmonitored
across a range of temperatures from 17 to 30 °C. Cumulative survival
was temperature-dependent (Fig. 4; Kaplan–Meier Log-Rank test for
Feed1: χ2 = 343.1, df = 6, P < 0.0001; Kaplan–Meier Log-Rank test for
Feed2: χ2 = 1464, df = 7, P <0.0001), with median survival increasing as
temperature decreased, at least across the temperature range studied
(Supplementary Table 1). The cumulative survival data were best fitted
by a Gompertz survival function, as indicated by the lowest corrected
Akaike Information Criterion (AICc) values among four different sur-
vival models (Fig. 4, Supplementary Table 2 and Supplementary
Table 3), which indicates the laboratory-based mosquitoes die at a
faster rate as they age (i.e. survival is age-dependent). Survival was
higher in Feed2 at all four temperatures (Kaplan–Meier Log-Rank;
χ2 = 109.3, P <0.0001 for 19 °C; χ2 = 35, P < 0.0001 for 23 °C; χ2 = 32,
P <0.0001 for 25 °C; χ2 = 65.2, P <0.0001 for 29 °C).

Implications for transmission and possible effects of climate
warming
To explore the theoretical implications of our laboratory-derived
parameter estimates formalaria transmission, we investigated how the
Vectorial Capacity (VC) varied given recent and future mean tem-
peratures for four locations in Kenya spanning a wide temperature
range (Kericho, Kitale, Kisumu and Garissa, listed from coldest to
warmest). Estimates of recent mean temperatures (1981–2000) and
downscaled projections for future mean temperatures (2046–2065)
for these locations were obtained from previous malaria-climate
research36 (Table 1). VC is a common transmission metric that
describes the number of infectious mosquito bites arising per infec-
tious human per day assuming complete transmission efficiency and a
susceptible human population37. VC is related to the basic reproduc-
tion number, R0, but comprises a subset of the parameters to provide a
measure of the entomological transmission potential of a mosquito
population. AbsoluteVCestimates requiremeasures of the vector-host
ratio and how the vector-host ratio could change with climate, which
are unknown for our locations. We therefore restrict our analysis to
vector traits we have estimates for and calculate the expected number
of infectious bites per a single mosquito, which we denote as the
relative Vectorial Capacity: rVC. In the original derivation of VC, the
per-capita mosquitomortality rate is assumed to be constant meaning

the age when a mosquito is infected does not affect the results. Given
the observed age-dependent mosquito mortality, the age at which a
mosquito is infected can affect the number of infectious bites made
per mosquito38. We therefore apply our temperature-dependent life
history traits (EIP, age-dependentmosquito survival and biting rate) to
estimate the expected number of infectious bites per infected mos-
quito, z, given it is infected at age tby adapting themethods developed
by Iacovidou et al.38 and conduct a sensitivity analysis for the age at
which mosquitoes are infected (Supplementary Fig. 5). The sensitivity
analysis indicates that adult mosquitoes infected at t0 (i.e., at the
youngest age upon emergence) generate the maximum number of
infectious bites (Supplementary Fig. 5a), so we give estimates of
E zjinfected at age t0
� �

. This quantity does not account for vector
density, but if density remains unchanged then the proportional dif-
ference in rVC estimates between EIP models and/or over time is
equivalent to the proportional difference in absolute vectorial capacity
within a given location. To propagate uncertainty in the EIP and biting
rate estimates, we calculate rVC by sampling posterior parameters and
estimating the EIP using our pooled model or the existing degree-day
model using the recent and future mean temperatures for the four
locations in Kenya. This approach enables us to compare the trans-
mission consequencesofour novelmeasuresof EIPwith the equivalent
estimates from the degree-day model. Given that we did not measure
biting rate in our current study, we estimated temperature-dependent
changes in the posterior biting rates for another malaria vector, A.
stephensi, using data presented in24 (Supplementary Fig. 6) and sam-
pled from these posteriors to calculate the rVC. Further methods and
summary of the analysis are provided in Supplementary Fig. 7 and
Supplementary Table 4 for determining survival distributions.

The predicted estimates for rVC using values of EIP derived from
ourmodel and the degree-daymodel for eachof the locations in Kenya
are presented in Table 1 (upper). Given there were differences in adult
mosquito survival between Feed1 and Feed2, we present results for
these experiments separately. Under recent climate conditions in
Kericho, which is the coldest environment of the four locations, the
rVC using our EIP model was 13 (0:380:03; see these rVC values in Table 1
upper) and 26 (0:790:03) times higher than that of the degree-daymodel for
Feed1 and Feed2, respectively (Table 1 upper). Under warmer condi-
tions the EIPmodels converge, so the differences in predictions of rVC
become progressively smaller from Kitale to Kisumu, regardless of
feed. As temperatures increase further, our EIP estimates are shorter
than the degree-day model, so for the warmest location, Garissa, the
predicted rVC was 0.92 for Feed1 and 0.95 for Feed2 of the equivalent
values derivedusing the degree-daymodel. For the future climates, the
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Fig. 4 | Survival of A. gambiae mosquitoes fed with parasite-infected
blood meals. The cumulative survival was fitted with four representative survival
models which were Gompertz, Weibull, loglogistic and negative exponential to
determine best fit functions (see Supplementary Table 2 for model comparison).

Gompertz model (solid lines) best describes cumulative survival (dashed lines) of
the mosquitoes (see Supplementary Table 3 for parameter values of Gompertz
model). Source data are provided as a Source Data file.
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rVC predictions were qualitatively similar, but because temperatures
are shifted right along the EIP curve, the differences betweenmodels in
Kericho were smaller (rVC based on our EIP model was now just 1.35
and 1.26 times higher than the degree-daymodel for Feed1 and Feed2,
respectively) and slightly larger in Garissa (rVC values using our EIP
model were 0.82 that of the degree-day model for Feed1 and 0.88 for
Feed2) (Table 1 upper, Supplementary Fig. 5a).

To explore the overall implications for climate change, we
examine the relative difference in rVC using the ratio of rVC in recent
and future conditions (Table 1 bottom). Differences between the ratio
of future:recent rVC estimated using our EIP distributions and the
degree-day model were consistently predicted irrespective of age of
mosquito infection (Supplementary Fig. 5b). With the degree-day
model, we estimate transmission intensity to increase 43.1 (40.8–49.6
95% CrI) (Feed1) and 79.0 (75.2–88.8 95% CrI) (Feed2) times in Kericho
due to climate warming. Using our model of EIP, the increase in
transmission is only 3.93 (3.12–5.34 95% CrI) (Feed1) and 3.63
(2.88–5.96 95% CrI) (Feed2) times. These results indicate that the
degree-day model over-estimates increase in future transmission
potential by 11 (Feed1: 43:1

3:93) to 22 times (Feed2: 79:03:63) relative to our EIP
model. For the other locations, there is much better agreement
between EIP models (Table 1 bottom).

Discussion
For over 60 years, the development time of the most deadly human
malaria-causing parasite, P. falciparum, in anopheline mosquitoes has
been approximated using a single fit of a degree-day model13. In this
study, we generated sporogony data for P. falciparum in a dominant
African vector species, A. gambiae. These data were then analysed
using a mechanistic model of sporogony to fully characterise the
kinetics of parasite development across a range of constant tempera-
tures. Our EIP50 estimates align well with the established degree-day
model EIP estimates for constant temperatures between approxi-
mately 24 to 28 °C (Fig. 2). Outside this temperature range, the degree-
day model estimates are not within the 95% CrIs of EIP50; at 17 °C, for
example, while the uncertainty of the pooled model was relatively
large because the low infection rates resulted in poormodel fitting, we
estimated EIP50 as 59 days with a 95% CrI of 53-68 days, whereas the
degree-day model predicts 111 days. The reasons for the marked dif-
ferences between our EIP estimates and those of the degree-daymodel
at cooler temperatures are unclear. The initial study of Nikolaev23 that
was used to fit the degree-day model did not measure EIP below 19-
20 °C so it could be a true difference between the experimental sys-
tems, a consequence of the degree-day model functional form, or
because the model was fitted to limited data. Studies in other systems
suggest non-linear effects of temperature under cool conditionswhich
could violate the linear growth rate assumption of the degree-day
model39,40, and also contribute to the relatively poor fit of our
mechanistic model at the thermal limits. There could also be differ-
ences between mosquito species, or even populations. Preliminary
studies suggest there can be differences in thermal performance of
vector competence and EIP between species ofmalaria vector infected
with the same parasite strain25,41. Our data suggest sporogony can be
completed more rapidly in A. gambiae at cooler temperatures than
predicted by the Detinova degree-day model but other data (albeit
limited) on An. elutus, suggest longer EIP than the Detinova model at
warmer temperatures42. Yet the prevailing assumption within mathe-
matical models has been that the EIP is a property of the parasite
species and temperature alone7. Future studies on other key malaria
vectors are therefore important to further determine the role of vector
species.

Consistent with other recent studies24,25, our research highlights
variation in the EIP among mosquitoes exposed to the same environ-
ment. The mechanisms that generate this variation are unclear but

could include intraspecific variation of individual mosquito char-
acteristics such as body size43, nutritional condition44, or density-
dependent effects among individual parasites45–47. This biological
variation challenges a classic assumption of mechanistic malaria
transmission models that typically assume all mosquitoes become
infectious at the same time point following an infectious bloodmeal37,
and highlights the methodological requirement to sample sufficient
mosquitoes over time to enable estimation of the mean or median
EIP (EIP50).

In addition, our study provides insights into the temperature-
dependence of the HMTP asmeasured by the presence of oocysts and
sporozoites (vector competence). The maximum prevalence of
oocysts and the mean number of oocysts per mosquito both had a
unimodal relationship with temperature, with much less parasite
establishment at thermal extremes. These findings support other
experimental infection studies suggesting the earlier stages of parasite
development are most temperature sensitive27,28,48. Our vector com-
petence estimates also demonstrate a unimodal relationship, with an
optimum of 24.8 °C. The asymmetric nature of this relationship
appears to result in part froma strong effect of higher temperatures on
the probability that an infected mosquito will develop sporozoites. To
our knowledge, this is the first parameterisation of conversion effi-
ciency of oocyst to sporozoite-infection across different constant
temperatures. The conversion efficiency is 100%atmost temperatures,
meaning oocyst prevalence is a good measure of the prevalence of
infectious mosquitoes. Many studies assume that infection prevalence
at the oocyst stage (percent infected) can be used as a proxy for
infection prevalence at the sporozoite stage (percent infectious)27,49–51.
Our data suggest this relationship is not robust at higher or possibly
lower temperatures and could be an important factor determining the
edges of the thermal range for transmission. At high temperatures, for
example, our laboratory strains showed a precipitous decline of this
conversion efficiency to 14%between28 and30 °C (Fig. 3c),meaning at
these temperatures the presence of oocysts might not be an accurate
measure of infectivity. Accurately quantifying sporozoite load is chal-
lenging, so we measured sporozoite prevalence, meaning we could
only model this conversion efficiency at the mosquito scale. Under-
standing conversion probability and the mechanisms involved at the
parasite scale will require further experiments and model fitting, ide-
ally with field-derived sympatric parasite and mosquito strains.

Finally, there is limited research on the effects of temperature on
A. gambiae survival, particularly towards the lower thermal limits of
transmission, or including the influence of infectious blood meals52.
Our data show that across the temperature range studied, survival
increases as temperatures decrease, though at even cooler tempera-
tures it is likely that survival will decrease9,53. Given the controlled
insectary conditions, the differences in survival between Feed 1 & 2
were surprising and could suggest possible interactions between
temperature and blood meal quality (different batches of blood,
human serum etc.) or parasite load within the blood. Regardless, sur-
vivalwas best characterised usingGompertz functions, consistentwith
age-dependent mortality. An increasing number of studies highlight
the importance of considering age-dependent mortality38,54–58,
although most transmission models assume that mortality remains
constant with age. The extent of age-dependent mortality in the field
wheremosquitoes are subject to greater causes of daily mortality (e.g.
predation, swatting during blood feeding, stress associated with
searching for oviposition sights, control tools) remains an important
question58,59.

Incorporating our data into a transmission metric that captures
variability in the EIP and age-dependence of mosquito mortality
reveals important implications for understanding current and future
transmission intensity. Across the four locations in Kenya, rVC is low in
Kericho, which approaches the observed lower thermal limit for
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transmission, increases through Kitale and Kisumu which are at
intermediate temperatures, and thendeclines slightly inGarissa,which
is towards the upper limits for transmission. This pattern is consistent
with a previously identified unimodal thermal performance curve for
transmission9,60. However, our shorter EIPs result in higher rVC than
predicted using estimates of EIP from the established degree-day
model under cooler conditions. This result suggests that all else being
equal, models of transmission that use the standard predictions of EIP
are likely to underestimate transmission intensity in low temperature
environments where differences between EIP models are greatest. At
the other extreme, because there is a cross-over in the EIPmodels, our
results suggest that conventional models will tend to marginally
overestimate transmission at high temperatures. The unimodal rela-
tionship between temperature and transmission is present using either
model of EIP, which means that the effects of climate change are
predicted to be ‘two-tailed’41,61,62, with transmission potential increas-
ing in cooler environments, remaining largely unchanged at inter-
mediate temperatures, and declining inwarmenvironments. However,
the predicted relative increase in transmission in Kericho was 11-22
times greater when using the degree-day estimates of EIP than pre-
dicted by our new estimates of EIP. Numerous studies predict variation
in the dynamics and distribution of malaria due to climate warming,
with increases in transmission of particular concern for colder envir-
onments such as the Kenyan Highlands22,30,63–67. Our results suggest
that current predictions of the impact of climate change likely over-
estimate the increase in transmission risk in cooler areas because the
Detinova degree-day model predicts both slower rates of parasite
development under current conditions, and a greater rate of change in
response to future warming, relative to our model. The quantitative
effect could vary depending on other factors such as the exact pattern
of mosquito mortality in the field or changes in vector density, but
because our temperature-dependent EIP model is flatter than the
degree-day model at the cooler end of the scale, we expect the over-
estimation to be qualitatively robust. Given the potential public health
significance, these insights highlight the need to understand the
effects of temperature at the fringes of transmission.

As in the original empirical work used to parameterise the Deti-
nova degree-day model, our study manipulated temperatures experi-
enced by the adult mosquitoes as these are known to affect parasite
development rate directly. Yet, larval rearing conditions can have
indirect transstadial effects that can further influence vector
competence68–70 and parasite development44. Thus, it could be valu-
able to extend research to include variation in larval conditions, such
as temperature and resource availability, as well as variation in adult
conditions. It should be noted, however, that temperatures in larval
habitats need not be the same as those experienced by the adults71 and
adult mosquitoes in a single feeding and resting location could in
principle derive from diverse larval habitats, adding complexity to
both experimental design and interpretation.

A further potential limitation of our study is that we considered
only one strain of A. gambiae and one strain of P. falciparum, both of
which have been maintained under controlled lab settings for many
generations. However, there could be intrinsic differences between
strains35, or differences as a result of adaptation to local environments;
at present, there is limited research on the extent of thermal adaption
in mosquitoes or parasites, but in principle this could shape the
influence of temperature on local sympatric mosquito and parasite
pairings72. Other factors could also be important, such as the influence
of multiple blood meals on EIP73,74, the effects of daily temperature
fluctuation in addition to mean temperature25,28,71, and possible effects
of parasite loadon infection kinetics in themosquito33 (but see35, which
showed no effect). Nonetheless, our highly resolved sporogony data,
together with data on the temperature-dependence of vector com-
petence and mosquito survival, provide new insights that challenge
current understanding.Ourfindings highlight the importanceof better

characterising the thermal dependence of mosquito and parasite
traits.

Methods
Mosquitoes
Anopheles gambiae (G3 strain) mosquitoes were used throughout the
experiments. Mosquitoes for all developmental stages were reared
under standard insectary conditions at 27 °C ±0.5 °C, 80% ± 5% relative
humidity, and a 12 h:12 h light-dark photoperiod. Larval density and
amount of larval food (ground TetraFinTM; Tetra, Blacksburg, VA) were
standardised to ensure uniform adult size. Adult mosquitoes were
maintained on 10% glucose solution supplemented with 0.05% para-
aminobenzoic acid (PABA). For the infectious feeds, 5-6-day-old female
mosquitoes were randomly aspirated into cardboard cup containers
covered with netting and starved for approximately 6 h before the
infectious feed. Individual containers contained 150-200 mosquitoes.
All experiments were conducted under Penn State Institutional Bio-
safety Committee protocol # 48219, which covers protocols for
handling mosquitoes during rearing, blood feeding and infection. We
used blood from a commercial biospecimen supplier (BioIVT, corp)
that derived from de-identified human donors and was not collected
specifically for our study.

Mosquito transmission and survival studies
In vitro cultured Plasmodium falciparum (NF54 isolate, MR4) was
provided by the Parasitology Core Lab (http://www.parasitecore.org/)
at Johns Hopkins University as described previously28. In brief, game-
tocyte culture in stage four to five (day 14 after gametocyte initiation)
was transported to Penn State overnight, and gametocyte-infected
erythrocytes were maintained > 24 h before the infectious feed to
allow additional maturation of gametocytes.

Mosquitoes were fed on day 16 post gametocyte initiation. The
proportion of erythrocytes infected with mature gametocytes (i.e.,
gametocytemia) generally ranged between 1–3% in the culture. An
infectious blood meal was prepared by mixing gametocyte-infected
erythrocytes with fresh human serum and erythrocytes at 40% hae-
matocrit on the day of blood feeding as previously described28.

All infectious feeds were conducted in a walk-in environment-
controlled chamber. Glass bell jars were uniformly covered with Par-
afilm to serve as membrane feeders and heated to 37 °C with con-
tinuously circulatingwater as described in44. Containers ofmosquitoes
were randomly allocated to bell jars to minimise any effect of position
or feeder. Mosquitoes were fed for 20min at 27 °C after acclimating at
27 °C for an hour, and > 95% mosquitoes were fully engorged in all
infectious feeds. Immediately after blood feeding, mosquitoes were
placed into incubators (Percival Scientific Inc., Perry, Iowa) with
appropriate temperature treatment conditions (90% ± 5% relative
humidity, and 12 h:12 h light-dark photoperiod) and provided daily
with fresh 10% glucose solution supplemented with 0.05% PABA.

Approximately 300 to 1200 mosquitoes in two-to-six containers
(150 to 200 in each container) were fed infectious blood meals
depending on temperature treatment in three independent experi-
ments. In each experiment, seven to eight temperatures were selected
between 17 °C and 30 °C as these temperatures span the temperature
range for P. falciparum infection to beobserved in previous studies25,28.
Two infectious feed experiments (Feed1 & Feed2) were conducted
after an initial pilot trial. In the pilot study, gametocytemia of parasite-
infected blood meal was 0.024% and blood-fed mosquitoes were kept
at constant temperatures of 17, 19, 21, 23, 25, 27, and 29 °C throughout.
This pilot generated little or no infections at lower temperatures. In the
main two infectious feeds (i.e., Feed1 and Feed2) gametocytemia and
mosquito sample size were increased. In Feed1, gametocytemia of
blood meals was adjusted to 0.126% and blood-fed mosquitoes were
kept at constant temperatures of 17, 19, 21, 23, 25, 27, and 29 °C
throughout. In Feed2, gametocytemia was adjusted to 0.139% and
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blood-fedmosquitoeswere kept at constant temperatures of either 18,
19, 20, 23, 25, 28, 29, or 30 °C to further increase the sample size of
infected mosquitoes for low and high temperatures. The air tem-
perature of the incubators (Percival Scientific Inc., Perry, Iowa) was
monitored closely using HOBO data loggers (Onset Computer Cor-
poration, Bourne, MA; error range = ± 0.1 °C) at 15min intervals, and
the accuracy of temperature was maintained at ±0.2 °C. Data loggers
and incubators were rotated throughout all infectious feed experi-
ments to minimise potential equipment effects. The number of mos-
quitoes and containers varied by experiments as presented in
Supplementary Table 5. In general, sample size of mosquito dissec-
tions and number of containers were increased for low and high
temperatures to ensure sufficient sporozoite infections to estimate the
EIP distribution.

To determine parasite infections, mosquitoes were randomly
collected by aspirating into 95% ethanol, and midguts and salivary
glandsweredissected in 1× phosphate-buffered saline solution under a
standard dissecting scope as previously25. Presence or absence of
parasite infection was determined by examining midguts for oocysts
or salivary glands for sporozoites using a compound microscope.
Visible oocysts in midguts were counted. To ensure correct scoring,
oocysts and sporozoites were inspected under 40× magnification and
cross-checked by a second person. Oocyst or sporozoite prevalence
was calculated as the total number of infected mosquitoes divided by
the total number of dissected mosquitoes by combining dissection
data from replicated containers of mosquitoes for each temperature
treatment. Oocyst intensity and prevalence was determined on the
dayswhenmaximum infection is expectedbasedonprevious studies25.
To determine the EIP, ~10–60 salivary glands of mosquitoes were dis-
sected daily (10–15 per container). Dissection days were determined to
capture the first sporozoite infection followed by increase in pre-
valence to maximum within each temperature treatment. Detailed
sample size and dissection days are reported in Supplementary
Table 5.

To obtain survival data, dead mosquitoes were scored daily in
Feed1 and Feed2 experiment until all mosquitoes were dead. The
mosquito containers were rotated daily within each incubator
throughout the experiment to minimise potential effect of container
position on survival.

Estimating the Extrinsic Incubation Period and human-to-
mosquito transmission probability
Mechanistic model of sporogony. Visualising the developmental
stage of Plasmodium parasites typically requires mosquito dissec-
tion (but see ref. 75 for alternative experimental methods to
determine sporozoite infection). The EIP of individual mosquitoes
cannot be estimated from mosquito dissection data because dis-
section kills the mosquito. Consequently, the EIP is typically esti-
mated among the mosquito and parasite populations as a whole
using a statistical or mechanistic model33. In previous work, we
demonstrated how the cumulative increase in sporozoite pre-
valence in standard membrane feeding assays with time, n, can,
however, be used to estimate the CDF (F(n)) of EIPs among indivi-
dual mosquitoes using a mechanistic model that simulates the
development times of individual parasites within the mosquito33. To
estimate the EIP, we modified and fitted this model33. The model
consists of five key parameters: the HMTP (as determined by the
presence of oocysts; δO), the parasite load (as determined by the
number of oocysts per mosquito) distribution, which is described
by the mean (μ) and overdispersion (k) parameters of a zero-
truncated negative binomial distribution, and the parasite devel-
opment time parameters (shape, α, and rate, β, of the gamma dis-
tribution). These development time parameters are constituted by
the sum of two independent development times from inoculation
(G) to first oocyst appearance (O) and from O to salivary gland

sporozoites (S). This model allows the estimation of two quantities
related to parasite development times: (1) the distribution of indi-
vidual parasite development times from inoculation to sporozoite
(parasite numbers are equivalent to the number of oocysts) and (2)
the distribution of development times for individual mosquitoes to
have completed sporogony (EIP distribution). According to this
model the CDF of the EIP distribution, n, is calculated as,

F nð Þ= 1� kk k +μQ α,0,βnð Þð Þ�k

1� k
k +μ

� �k
, ð2Þ

where Q α,0,βnð Þ= Γ α,0,βnð Þ
Γ αð Þ (the regularised gamma function),

Γ αð Þ= R1
0 tα�1e�tdt (the complete gamma function) and

Γ α,0,βnð Þ= R βn
0 tα�1e�tdt (the generalised incomplete gamma func-

tion). The modelled sporozoite prevalence at time, n, therefore
depends on the proportion of infected mosquitoes that are infectious
(F(n)) and the proportion of mosquitoes that are infected. P. falci-
parum infection of A. gambiae is unlikely to increase mosquito mor-
tality because theparasite is highly adapted to this sympatricmosquito
vector41,76, and examination of our raw data provided no evidence of a
decline in sporozoite prevalence observed over time. We therefore
assumed the relative survival of infected to uninfected mosquito
parameter, which fitted in33, was equal to 1. To facilitate model fitting,
an additional parameter that estimates the probability a mosquito
infected with oocysts will develop any observable sporozoites (δS) was
incorporated at the mosquito scale to account for complete clearance
of oocyst infection or complete lack of oocyst bursting, which was
observed for certain temperature treatments. Itwould bepreferable to
account for this observation at the parasite scale: specifically, the loss
of individual oocysts would be modelled, however, sporozoite load
data was unavailable meaning it was not possible to parameterise
this model.

We used a binomial likelihood to fit the probability of observing a
mosquito with salivary gland sporozoites such that,

In ∼Bin Dn, δOδSF nð Þ� �
, ð3Þ

where In is the number of infectious mosquitoes at days post infection
n andD is the number of dissectedmosquitoes at timen.We calculated
the likelihoodof observing amosquito dissectedwith Yoocysts at time
n as,

Pr Yn

��ΓGOðnÞ,δO,n,μ, k
� �

=

1� δO

� �
+ δO

k
k +μ

� �k
� k

k +ΓGO nð Þμ

� �k

�1 + k
k +μ

� �k

0
B@

1
CA, if Y =0

δO

kk ΓGO nð Þμð ÞYn k + ΓGO nð Þμð Þ �Yn�kð Þ �1 + Yn + k

�1 + Yn

� �� �

1� k
k +μ

� �k , if Y ≥ 1,

2
666666664

ð4Þ

where ΓGO is the CDF of the individual parasite development times
from G to O. The appearance of early oocysts was not available for
these data as mosquitoes were all dissected when oocysts were late
stage. This means that the distribution of transition times between G
and O (and its dependence on temperature) was unidentifiable. We
therefore specified informative priors on αGO and βGO such that the
modelled oocyst prevalence peaked prior to the days post infection
mosquitoes were dissected for oocysts. The mean prior values for αGO
and βGO were determined by the corresponding values obtained from
previously published model fits1.

Modelling the effects of temperature on sporogony. To identify
suitable functional forms for the relationship between model
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parameters and temperature, first, we fit the model to data from
mosquitoes exposed to each constant temperature indepen-
dently. The independent model parameter estimates were then
used to guide functional relationships between temperature and
the model parameter values, which were estimated by fitting the
model and temperature-dependent functions to all data (pooled
model). All model fits were checked visually. To incorporate dif-
ferences in development time from G to S, we allowed αOS and βOS

to vary with temperature. In doing so, the model aims to estimate
the complete development time from G to S, but not the con-
stituent times from G to O and O to S. We fitted the model with
the following functional relationships between the model para-
meters and temperature (T):

αOS Tð Þ=aαT
2 +bαT + cα ,

βOS Tð Þ=mβT + cβ,

δOðTÞ= 1

1 + e� aOT2 + bOT + cOð Þ ,

δSðTÞ= 1

1 + e� aST
2 +bST + cSð Þ ,

μðTÞ= d

1 + e
� aμT

2 + bμT + cμð Þ :

ð5Þ

We fitted both the pooled and independent models to
experimentally infected A. gambiae mosquitoes that were dis-
sected for oocysts number or salivary gland sporozoites on dif-
ferent days post infection in a Bayesian framework using the No
U-turn Markov-chain Monte Carlo (MCMC) sampler77, with four
chains each with 5500 iterations (inclusive of 3000 iterations
warmup). Convergence is determined by R̂<1:01 for all para-
meters. Temperature was scaled so that the mean temperature
was 0 and its standard deviation was 1. To account for uncertainty
in the parameter estimates for all quantities, we calculate the
estimates for each MCMC sample and give the median and 95%
credible intervals (CrI) of these values. Independent and pooled
model priors are given in Supplementary Table 6.

Quantifying theEIPdistribution. Differentiating F(n)weobtain the EIP
probability distribution function (PDF; f(n)):

f nð Þ= βe�βn βnð Þα�1k1 + kμ k +μQ α,0,βnð Þð Þ�1�k

1� k
k +μ

� �k
� �

Γ αð Þ ð6Þ

The time for different percentiles, q, of the mosquito population
to have completed the EIP (denoted by EIPq) is given by the inverse
CDF (F�1 tð Þ), which is calculated thus:

F�1ðqÞ=
QI α,0, � qð1�ðk=ðk +μÞÞk Þ�1

kk

� ��1=k
�k

� �
=μ

� �

β
,

ð7Þ

where QI is the inverse of the regularised gamma function.
The mean and variance of the EIP distributions were estimated at

each temperature by numerical integration using the Cuhre algorithm
(R calculus package78): E n½ �= R1

0 nf nð Þdn and Var nð Þ=E n2
	 
� E n½ �ð Þ2

respectively.

Determining survival distribution of A. gambiaemosquitoes fed
with parasite-infected blood meals
To characterise the mosquito survival distribution, the cumulative
survival was fitted with four survival models: Gompertz, Weibull,
loglogistic and negative exponential. Thesemodels have been used to
describe survival curves of a diversity of insects in laboratory and field
settings56,79–84. The correctedAkaike InformationCriterion (AICc) value
for these models were compared, indicating the Gompertz model is
the best fit for all temperature treatments in Feed1 and Feed2. The
equation used for Gompertz model was,

Sg xð Þ= ea
b 1�ebxð Þ ð8Þ

where Sg(x) is cumulative proportion surviving at age x, a is the initial
mortality rate, and b is the age-dependent mortality rate84–86.

Estimating the effects of EIP on expected number of infectious
bites per infected mosquito under recent and future tempera-
ture conditions
To estimate the effects of the different EIP estimates on the relative
vectorial capacity, we adapted the methods developed by Iacovidou
et al.38 to calculate the expected number of infectious bites per
infected mosquito, z, given the mosquito age at infection and a
Gompertz survival model. In all cases, n is the EIP; t0, t1 and t2 are the
mosquito ages at infection, at completion of the EIP and when death
occurs, respectively; a and b are the Gompertz survival model para-
meters; B is the per-mosquito biting rate per day; j is the number of
bites. In the original methods the probability a mosquito survives the
EIP given it is infected at age t0 is calculated thus,

P surviving EIPjinfected at age t0
� �

=
Z 1

n =0
f nð Þ½ �e�a

be
t0b enb�1ð Þdn: ð9Þ

Theprobability amosquito bites z times given it completes the EIP
at age t1 is then calculated,

P z = jjcompletes EIP at age t1
� �

=
Z 1

t2 = t1

Bjðt2 � t1Þj
j!

et2b� t2�t1ð ÞB

ae�
a
bðet2b�et1bÞdt2:

ð10Þ

These equations are combined to estimate the probability a
mosquito bites z times given it is infected at age t0,

And the expectation of P z = jjinfected at age t0
� �

is calculated
thus,

E zjinfected at age t0
� �

=
X1
j =0

jP z = jjinfected at age t0
� �

ð12Þ

We modified this model to calculate the equivalent quantity for
the degree-day model, which assumes all mosquitoes have the same
EIP:

t1 = t0 + EIPD, ð13Þ

P surviving EIPjinfected at age t0
� �

= e�
a
be

t0bðeEIPDb�1Þ, ð14Þ

P z = jjinfected at age t0
� �

=

R1
t1 = t0

P z = jjcompletes EIP at age t1
� �

f t1 � t0
� �	 


e�
a
be

t0bðeðt1�t0 Þb�1Þdt1 if j ≠0,R1
t1 = t0

P z = jjcompletes EIP at age t1
� �

f t1 � t0
� �	 


e�
a
be

t0bðet1b�1Þdt1 + 1� e�
a
be

t0b eðt1�t0 Þb�1ð Þ� �
if j =0:

8<
: ð11Þ
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P z = jjinfected at age t0
� �

=

P z = jjcompletes EIP at age t1
� �

e�
a
be

t0bðeðt1�t0 Þb�1Þ if j ≠0

P z = jjcompletes EIP at age t1
� �

e�
a
be

t0bðet1b�1Þ + 1� e�
a
be

t0b eðt1�t0 Þb�1ð Þ� �
if j =0

:

8<
:

ð15Þ

E zjinfected at age t0
� �

is an estimate of the lifetime number of
infectious bites per mosquito (what we call rVC). To quantify
temperature-dependent changes in transmission risk, we calculate
how this quantity changes given the temperature-dependent changes
in the constituent parameters estimated in the laboratory. We do not
have measures of vector-host densities but assume the vector-host
ratios and per-mosquito biting rates remain the samewithin a location.
The predicted future mean temperature for one location, Garissa
(30.7 °C), is marginally above our experimental range, so predicted
future mean temperature for this location we used the upper tem-
perature limit for which we have empirical data (30 °C). Analytical
solutions in the integrands in Eqs. 9, 10, 11 and 15 were not available, so
these were integrated numerically using the Cuhre method with an
absolute tolerance of 10−7 (calculus R package78).

Since the temperatures we used in our studies do not align
exactly with the estimates of temperature in the field settings, to
parameterise mosquito survival when calculating the
E zjinfected at age t0
� �

, we fit temperature-dependent functions to
the survival model parameter estimates, which we fit to data from
each temperature independently. As mosquito survival differed
between experiments, we estimate transmission potential separately
for Feed1 and Feed2. To estimate the number ofmosquitoes alive, we
interpolate the Gompertz survival distributions to estimate daily
cumulative survival rate at different temperatures. Values of para-
meter a (initial mortality) of the Gompertz functions were fitted to a
quadratic function,

GqðTÞ= b0 +b1T + b2T
2 ð16Þ

where Gq(T) is parameter a of Gompertz function at a given tem-
perature, T. Values of parameter b (age-dependent mortality rate) fit-
ted to a linear function,

GlðTÞ= y+ sT ð17Þ

where Gl(T) is parameter b of Gompertz function at a given tempera-
ture,T. From thesemodelled quadratic and linear functions, Gompertz
survival distributions were estimated for each temperature in the four
Kenyan locations under current and future climate change scenarios.

For daily biting rate, we used individual mosquito gonotrophic
cycle length data from a previously published study conducted on A.
stephensi24. The temperature-dependence of the biting rate was esti-
mated by fitting a Brière function,

BðTÞ= cTðT � T0ÞðTm � TÞ12, ð18Þ

to these data, where B(T) is biting rate at given temperature, T, T0 and
Tm are the lower and upper threshold temperatures of biting rate,
respectively. To do so, we assumed complete gonotrophic con-
cordance and calculated the predicted gonotrophic cycle length as the
inverse of the predicted per mosquito biting rate. We fitted the Brière
function parameters in a Bayesian framework, assuming that the
gonotrophic cycle lengths were geometrically distributed with the
mean 1/B(T), using the Stan MCMC sampler (four chains each with
2500 iterations inclusive of 1250 warmup iterations; convergence was
determined by R̂< 1:01 for all parameters and by visually checking the
trace plots). For the biting rate parameters, we assume weakly infor-
mative normal priors with the means equivalent to the values

estimated byMordecai et al.9 (c ~ normal (0.000203, 0.01),T0 ~ normal
(11.7, 4.5) and Tm ~ normal (42.3, 4.5)). The Brière function forces the
biting rate to decline at temperature extremes, which is uncertain as
the empirical data show no marked decline over the temperature
range used. We note that A. stephensi is a different species, but this
earlier research was conducted in the same insectary and rearing
conditions as the current study, and biting rate is applied equivalently
to the different models in any case.

Statistical analysis
Mosquito survival was analysed using Kaplan–Meier Log Rank test
to determine median survival and the effect of temperature on the
survival (JMP 8.0, SAS). The mosquitoes collected for dissection
were censored in the survival analysis. Least square estimation was
used (Prism 8.02, GraphPad) for determining best fit survival
function on survival data from Feed1 and Feed2 and for modelling
temperature dependency of parameter values of the Gompertz
survival functions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data are available from the manuscript or https://
github.com/IsaacStopard/mSOS_gambiae_only (https://doi.org/10.
5281/zenodo.10688356). Source data are provided with this paper.

Code availability
Code for the modelling study is available from https://github.com/
IsaacStopard/mSOS_gambiae_only (https://doi.org/10.5281/zenodo.
10688356).

References
1. Organization, W. H. World Malaria Report 2022 (World Health

Organization, Geneva, Switzerland, 2022).
2. Garrett-Jones, C. & Shidrawi, G. R. Malaria vectorial capacity of a

population of Anopheles gambiae: an exercise in epidemiological
entomology. Bull. World Health Organ. 40, 531–545 (1969).

3. Macdonald, G. The Epidemiology and Control of Malaria (Oxford
University Press, 1957).

4. Ross, R. Some quantitative studies in epidemiology. Nature 87,
466–467 (1911).

5. Beier, J. C. Malaria parasite development in mosquitoes. Annu. Rev.
Entomol. 43, 519–543 (1998).

6. Baton, L. A. & Ranford-Cartwright, L. C. Spreading the seeds of
million-murdering death: metamorphoses of malaria in the mos-
quito. Trends Parasitol. 21, 573–580 (2005).

7. Ohm, J. R. et al. Rethinking the extrinsic incubationperiodofmalaria
parasites. Parasit Vectors 11, 178 (2018).

8. Tesla, B. et al. Temperature drives Zika virus transmission: evidence
from empirical and mathematical models. Proc. Biol. Sci. https://
doi.org/10.1098/rspb.2018.0795 (2018).

9. Mordecai, E. A. et al. Optimal temperature for malaria transmission
is dramatically lower than previously predicted. Ecol. Lett. 16,
22–30 (2013).

10. Mordecai, E. A. et al. Thermal biology of mosquito-borne disease.
Ecol. Lett. 22, 1690–1708 (2019).

11. Mordecai, E. A. et al. Detecting the impact of temperature on
transmission of Zika, dengue, and chikungunya using mechanistic
models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).

12. Shocket, M. S. et al. Transmission of West Nile and five other tem-
perate mosquito-borne viruses peaks at temperatures between
23 °C and 26 °C. Elife https://doi.org/10.7554/eLife.58511 (2020).

Article https://doi.org/10.1038/s41467-024-47265-w

Nature Communications |         (2024) 15:3230 11

https://github.com/IsaacStopard/mSOS_gambiae_only
https://github.com/IsaacStopard/mSOS_gambiae_only
https://doi.org/10.5281/zenodo.10688356
https://doi.org/10.5281/zenodo.10688356
https://github.com/IsaacStopard/mSOS_gambiae_only
https://github.com/IsaacStopard/mSOS_gambiae_only
https://doi.org/10.5281/zenodo.10688356
https://doi.org/10.5281/zenodo.10688356
https://doi.org/10.1098/rspb.2018.0795
https://doi.org/10.1098/rspb.2018.0795
https://doi.org/10.7554/eLife.58511


13. Detinova, T. Age-grouping Methods In Diptera Of Medical Impor-
tance, With Special Reference To Some Vectors Of Malaria. Vol. 47
(World Health Organization, 1962).

14. Yamana, T., Bomblies, A. & Eltahir, E. Climate change unlikely to
increase malaria burden in West Africa. Nat. Clim. Change 6, 1009-
1013 (2016).

15. Gething, P. W. et al. Modelling the global constraints of tempera-
ture on transmissionof Plasmodium falciparumandP. vivax. Parasit.
Vectors 4, 92 (2011).

16. Craig,M. H., Snow, R.W. & le Sueur, D. A climate-based distribution
model of malaria transmission in sub-Saharan Africa. Parasitol.
Today 15, 105–111 (1999).

17. Hoshen, M. B. & Morse, A. P. A weather-driven model of malaria
transmission. Malar J. 3, 32 (2004).

18. Ermert, V., Fink, A. H., Jones, A. E. & Morse, A. P. Development of a
new version of the Liverpool Malaria Model. II. Calibration and
validation for West Africa. Malar J. 10, 62 (2011).

19. Tompkins, A. M. & Ermert, V. A regional-scale, high resolution
dynamical malaria model that accounts for population density,
climate and surface hydrology. Malar J. 12, 65 (2013).

20. Garske, T., Ferguson,N.M.&Ghani, A.C. Estimating air temperature
and its influenceonmalaria transmission across Africa. PLoSONE8,
e56487 (2013).

21. Weiss, D. J. et al. Air temperature suitability for Plasmodium falci-
parum malaria transmission in Africa 2000-2012: a high-resolution
spatiotemporal prediction. Malar J. 13, 171 (2014).

22. Caminade, C. et al. Impact of climate change on global malaria
distribution. Proc Natl Acad Sci USA 111, 3286–3291 (2014).

23. Nikolaev, B. P. [On the influence of temperature on the develop-
ment ofmalaria plasmodia in themosquito]. Trans. Pasteur Inst. Epi.
Bact. Leningrad 2, 1–5 (1935).

24. Shapiro, L. L. M., Whitehead, S. A. & Thomas, M. B. Quantifying the
effects of temperature on mosquito and parasite traits that deter-
mine the transmission potential of human malaria. PLoS Biol. 15,
e2003489 (2017).

25. Waite, J. L., Suh, E., Lynch, P. A. & Thomas,M. B. Exploring the lower
thermal limits for development of the human malaria parasite,
Plasmodium falciparum. Biol. Lett. 15, 20190275 (2019).

26. Vaughan, J. A. Population dynamics of Plasmodium sporogony.
Trends Parasitol. 23, 63–70 (2007).

27. Noden, B. H., Kent, M. D. & Beier, J. C. The impact of variations in
temperature on early Plasmodium falciparum development in
Anopheles stephensi. Parasitology 111, 539–545 (1995).

28. Suh, E. et al. The influenceof feedingbehaviour and temperatureon
the capacity of mosquitoes to transmit malaria. Nat. Ecol. Evol. 4,
940–951 (2020).

29. Parham, P. E. & Michael, E. Modelling climate change and malaria
transmission. Adv. Exp. Med. Biol. 673, 184–199 (2010).

30. Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. &
LaBeaud, A. D. Climate change could shift disease burden from
malaria to arboviruses in Africa. Lancet Planet Health 4,
e416–e423 (2020).

31. Villena, O. C., Ryan, S. J., Murdock, C. C. & Johnson, L. R. Tem-
perature impacts the environmental suitability for malaria trans-
mission by Anopheles gambiae and Anopheles stephensi. Ecology
103, e3685 (2022).

32. Siria, D. J. et al. Rapid age-grading and species identification of
natural mosquitoes for malaria surveillance. Nat. Commun. 13,
1501 (2022).

33. Stopard, I. J., Churcher, T. S. & Lambert, B. Estimating the extrinsic
incubation period of malaria using a mechanistic model of spor-
ogony. PLoS Comput. Biol. 17, e1008658 (2021).

34. Stopard, I. J. The Importance Of The Extrinsic Incubation Period For
Malaria Transmission, Surveillance And Control. Ph.D. thesis
(Imperial College London, 2023).

35. Guissou, E. et al. Intervention reducing malaria parasite load in
vector mosquitoes: No impact on Plasmodium falciparum extrinsic
incubation period and the survival of Anopheles gambiae. PloS
Pathogens https://doi.org/10.1371/journal.ppat.1011084 (2023).

36. Paaijmans, K. P. et al. Downscaling reveals diverse effects of
anthropogenic climate warming on the potential for local environ-
ments to support malaria transmission. Climate Change. 125,
479–488 (2014).

37. Smith, D. L. et al. Ross, macdonald, and a theory for the dynamics
and control of mosquito-transmitted pathogens. PLoS Pathog. 8,
e1002588 (2012).

38. Iacovidou, M. A. et al. Omitting age-dependent mosquito mortality
in malaria models underestimates the effectiveness of insecticide-
treated nets. PLoS Comput. Biol. 18, e1009540 (2022).

39. Stinner, R. E., Gutierrez, A. P. & Butler, J., G. D. An algorithm for
temperature-dependent growth ratee simulation Can. Entomol.
106, 519–524 (1974).

40. Zhou, G. & Wang, Q. A new nonlinear method for calculating
growing degree days. Sci. Rep. 8, 10149 (2018).

41. Murdock, C. C., Sternberg, E. D. & Thomas, M. B. Malaria transmis-
sion potential could be reduced with current and future climate
change. Sci. Rep. 6, 27771 (2016).

42. Kligler, I. & Mer, G. Studies on the effect of various factors on the
Infection rate of Anopheles elutus with different species of Plas-
modium. Ann. Trop. Med. Parasitol. 31, 71 (1937).

43. Lyimo, E. O. & Koella, J. C. Relationship between body size of adult
Anopheles gambiae s.l. and infection with the malaria parasite
Plasmodium falciparum. Parasitology 104, 233–237 (1992).

44. Shapiro, L. L., Murdock, C. C., Jacobs,G. R., Thomas, R. J. & Thomas,
M. B. Larval food quantity affects the capacity of adult mosquitoes
to transmit human malaria. Proc. Biol. Sci. https://doi.org/10.1098/
rspb.2016.0298 (2016).

45. Mendes, A. M. et al. Infection intensity-dependent responses of
Anopheles gambiae to the African malaria parasite Plasmodium
falciparum. Infect. Immun. 79, 4708–4715 (2011).

46. Sinden, R. E. et al. Progression of Plasmodium berghei through
Anopheles stephensi is density-dependent. PLoS Pathog. 3,
e195 (2007).

47. Vaughan, J. A., Noden, B. H. & Beier, J. C. Population dynamics of
Plasmodium falciparum sporogony in laboratory-infected Ano-
pheles gambiae. J. Parasitol. 78, 716–724 (1992).

48. Okech, B. A. et al. Resistance of early midgut stages of natural
Plasmodium falciparum parasites to high temperatures in experi-
mentally infected Anopheles gambiae (Diptera: Culicidae). J. Para-
sitol. 90, 764–768 (2004).

49. Birkholtz, L. M., Alano, P. & Leroy, D. Transmission-blocking drugs
for malaria elimination. Trends Parasitol. 38, 390–403 (2022).

50. Stone, W. J. et al. The relevance and applicability of oocyst pre-
valence as a read-out for mosquito feeding assays. Sci. Rep. 3,
3418 (2013).

51. Eling, W., Hooghof, J., van de Vegte-Bolmer, M., Sauerwein, R. V., &
Gemert, G. J. Tropical temperatures can inhibit development of the
human malaria parasite Plasmodium falciparum in the mosquito.
Proc. sect. Exp. Appl. Entomol. Neth. Entomol. Soc. 12,
151–156 (2001).

52. Lunde, T. M., Bayoh,M. N. & Lindtjørn, B. Howmalariamodels relate
temperature to malaria transmission. Parasit. Vectors 6, 20 (2013).

53. Bayoh, M. N. Studies On The Development And Survival Of Ano-
phelesGambiae Sensu Stricto At Various Temperatures AndRelative

Article https://doi.org/10.1038/s41467-024-47265-w

Nature Communications |         (2024) 15:3230 12

https://doi.org/10.1371/journal.ppat.1011084
https://doi.org/10.1098/rspb.2016.0298
https://doi.org/10.1098/rspb.2016.0298


Humidities (PhD thesis) Doctor of Philosophy thesis, (University of
Durham, 2001).

54. Styer, L. M., Carey, J. R., Wang, J. L. & Scott, T. W. Mosquitoes do
senesce: departure from the paradigm of constant mortality. Am. J.
Trop. Med. Hyg. 76, 111–117 (2007).

55. Dawes, E. J., Churcher, T. S., Zhuang, S., Sinden, R. E. & Basáñez, M.
G. Anopheles mortality is both age- and Plasmodium-density
dependent: implications for malaria transmission. Malar J. 8,
228 (2009).

56. Bellan, S. E. The importance of age dependent mortality and the
extrinsic incubation period in models of mosquito-borne disease
transmission and control. PLoS ONE 5, e10165 (2010).

57. Novoseltsev, V.N. et al. An age-structuredextension to the vectorial
capacity model. PLoS ONE 7, e39479 (2012).

58. Ryan, S., Ben-Horin, T. & Johnson, L. Malaria control and senes-
cence: the importance of accounting for the pace and shape of
aging in wild mosquitoes. Ecosphere 6, 1–13 (2015).

59. Lambert, B., North, A. & Godfray, H. C. J. A Meta-analysis of long-
evity estimates of mosquito vectors of disease. bioRxiv https://doi.
org/10.1101/2022.05.30.494059 (2022).

60. Parham, P. E. & Michael, E. Modeling the effects of weather and
climate change on malaria transmission. Environ. Health Perspect.
118, 620–626 (2010).

61. Thomas, M. B. Epidemics on the move: climate change and infec-
tious disease. PLoS Biol. 18, e3001013 (2020).

62. Lafferty, K. D. The ecology of climate change and infectious dis-
eases. Ecology 90, 888–900 (2009).

63. Siraj, A. S. et al. Altitudinal changes in malaria incidence in high-
lands of Ethiopia and Colombia. Science 343, 1154–1158 (2014).

64. Pascual, M., Ahumada, J. A., Chaves, L. F., Rodó, X. & Bouma, M.
Malaria resurgence in the East African highlands: temperature
trends revisited. Proc. Natl Acad. Sci. USA 103, 5829–5834 (2006).

65. Paaijmans, K. P., Read, A. F. & Thomas, M. B. Understanding the link
between malaria risk and climate. Proc. Natl Acad. Sci. USA 106,
13844–13849 (2009).

66. Parham, P. E. et al. Modeling the role of environmental variables on
the population dynamics of the malaria vector Anopheles gambiae
sensu stricto. Malar J. 11, 271 (2012).

67. Parham, P. E. & Hughes, D. A. Climate influences on the cost-
effectiveness of vector-based interventions against malaria in
elimination scenarios. Philos. Trans. R. Soc. Lond. B Biol. Sci.https://
doi.org/10.1098/rstb.2013.0557 (2015).

68. Alto, B. W., Lounibos, L. P., Mores, C. N. & Reiskind, M. H. Larval
competition alters susceptibility of adult Aedes mosquitoes to
dengue infection. Proc. R. Soc. B-Biol. Sci. 275, 463–471 (2008).

69. Westbrook, C. J., Reiskind, M. H., Pesko, K. N., Greene, K. E. & Lou-
nibos, L. P. Larval environmental temperature and the susceptibility
of aedes albopictus skuse (diptera: culicidae) to chikungunya virus.
Vector-Borne Zoonotic Dis. 10, 241–247 (2010).

70. Okech, B. A., Gouagna, L. C., Yan, G. Y., Githure, J. I. & Beier, J. C.
Larval habitats of Anopheles gambiae s.s. (Diptera: Culicidae)
influences vector competence to Plasmodium falciparum para-
sites. Malar. J. 6, 7 (2007).

71. Paaijmans, K. P. et al. Influence of climate on malaria transmission
depends on daily temperature variation. Proc. Natl Acad. Sci. USA
107, 15135–15139 (2010).

72. Sternberg, E. D. & Thomas, M. B. Local adaptation to temperature
and the implications for vector-bornediseases. TrendsParasitol.30,
115–122 (2014).

73. Shaw,W.R. et al.Multiple blood feeding inmosquitoes shortens the
Plasmodium falciparum incubation period and increases malaria
transmission potential. PLoS Pathog. 16, e1009131 (2020).

74. Kwon, H., Simões, M. L., Reynolds, R. A., Dimopoulos, G. & Smith, R.
C. Additional feeding reveals differences in immune recognition

andgrowthof plasmodiumparasites in themosquito host.mSphere
https://doi.org/10.1128/mSphere.00136-21 (2021).

75. Guissou, E. et al. A non-destructive sugar-feeding assay for parasite
detection and estimating the extrinsic incubation period of Plas-
modium falciparum in individual mosquito vectors. Sci. Rep. 11,
9344 (2021).

76. Ferguson, H. M. & Read, A. F. Why is the effect of malaria parasites
on mosquito survival still unresolved? Trends Parasitol. 18,
256–261 (2002).

77. Carpenter, B. et al. Stan: a probabilistic programming language. J.
Stat. Softw. https://doi.org/10.18637/jss.v076.i01 (2017).

78. Guidotti, E. calculus: high-dimensional numerical and symbolic
calculus in R. J. Stat. Softw. 104, 1–37 (2022).

79. Harrington, L. C. et al. Analysis of survival of young and old Aedes
aegypti (Diptera: Culicidac) from Puerto Rico and Thailand. J. Med.
Entomol. 38, 537–547 (2001).

80. Pujol-Lereis, L. M., Rabossi, A. & Quesada-Allué, L. A. Lipid profiles
as indicators of functional senescence in themedfly. Exp. Gerontol.
47, 465–472 (2012).

81. Damos, P. & Soulopoulou, P. Do insect populations die at constant
rates as they become older? Contrasting demographic failure
kinetics with respect to temperature according to the weibull
model. PLoS ONE 10, e0127328 (2015).

82. Brady, O. J. et al. Modelling adult Aedes aegypti and Aedes albo-
pictus survival at different temperatures in laboratory and field
settings. Parasit. Vectors 6, 351 (2013).

83. Srygley, R. B. Ontogenetic changes in immunity and susceptibility
to fungal infection in Mormon crickets Anabrus simplex. J. Insect.
Physiol. 58, 342–347 (2012).

84. Wilson, D. L. The analysis of survival (mortality) data: fitting Gom-
pertz, Weibull, and logistic functions. Mech. Ageing Dev. 74,
15–33 (1994).

85. Pitchaimani, M. & Eakin, T. Unique estimation of Gompertz para-
meters with mortality deceleration rate. Math. Comput. Model. 47,
104–114 (2008).

86. Gompertz, B. On the nature of the function expressive of the law of
humanmortality and on a newmodeof determining the value of life
contingencies. Philos. Trans. R. Soc. 115, 513–585 (1825).

Acknowledgements
We thank Deonna C. Soergel and Janet L. Teeple for technical
assistance. This study was supported by NIH NIAID grant #
R01AI110793 and National Science Foundation Ecology and Evolu-
tion of Infectious Diseases grant (DEB-1518681) awarded by M.B.T.;
I.J.S. was supported by PhD funding from the Natural Environment
Research Council (NE/P012345/1) administered through the Quan-
titative Methods in Ecology and Evolution Centre for Doctoral
Training. I.J.S. & T.S.C. received support from Wellcome Trust
(226072/Z/22/Z) and the MRC Centre for Global Infectious Disease
Analysis (reference MR/X020258/1), funded by the UK Medical
Research Council (MRC). This UK funded award is carried out in the
frame of the Global Health EDCTP3 Joint Undertaking; and
acknowledges funding by Community Jameel. The funders had no
role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Author contributions
E.S., I.J.S., B.L., J.L.W., T.S.C. and M.B.T. designed the research; E.S.,
J.L.W. and N.L.D. conducted the experiment; E.S. and I.J.S. analysed the
data; and E.S., I.J.S., B.L., T.S.C. and M.B.T. wrote the manuscript with
inputs from J.L.W. and N.L.D.

Competing interests
The authors declare no competing interests.

Article https://doi.org/10.1038/s41467-024-47265-w

Nature Communications |         (2024) 15:3230 13

https://doi.org/10.1101/2022.05.30.494059
https://doi.org/10.1101/2022.05.30.494059
https://doi.org/10.1098/rstb.2013.0557
https://doi.org/10.1098/rstb.2013.0557
https://doi.org/10.1128/mSphere.00136-21
https://doi.org/10.18637/jss.v076.i01


Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-47265-w.

Correspondence and requests for materials should be addressed to
Eunho Suh.

Peer review information Nature Communications thanks Isobel Rou-
tledge, Miranda Teboh-Ewungkem and the other, anonymous,
reviewer(s) for their contribution to the peer review of this work. A peer
review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-47265-w

Nature Communications |         (2024) 15:3230 14

https://doi.org/10.1038/s41467-024-47265-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Estimating the effects of temperature on transmission of the human malaria parasite, Plasmodium falciparum
	Results
	Experimental infection of P. falciparum in A. gambiae mosquitoes at different temperatures
	Extrinsic Incubation�Period
	Vector competence
	A. gambiae survival
	Implications for transmission and possible effects of climate warming

	Discussion
	Methods
	Mosquitoes
	Mosquito transmission and survival studies
	Estimating the Extrinsic Incubation Period and human-to-mosquito transmission probability
	Mechanistic model of sporogony
	Modelling the effects of temperature on sporogony
	Quantifying the EIP distribution
	Determining survival distribution of A. gambiae mosquitoes fed with parasite-infected blood�meals
	Estimating the effects of EIP on expected number of infectious bites per infected mosquito under recent and future temperature conditions
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




