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Cell Painting-based bioactivity prediction
boosts high-throughput screening hit-rates
and compound diversity

Johan Fredin Haslum1,2,3, Charles-Hugues Lardeau4, Johan Karlsson5,
Riku Turkki5, Karl-Johan Leuchowius 5, Kevin Smith1,2 & Erik Müllers 3

Identifying active compounds for a target is a time- and resource-intensive task
in early drug discovery. Accurate bioactivity prediction using morphological
profiles could streamline the process, enabling smaller, more focused com-
pound screens. We investigate the potential of deep learning on unrefined
single-concentration activity readouts and Cell Painting data, to predict
compound activity across 140diverse assays.Weobserve an averageROC-AUC
of 0.744 ± 0.108 with 62% of assays achieving ≥0.7, 30% ≥0.8, and 7% ≥0.9. In
many cases, the high prediction performance can be achieved using only
brightfield images instead of multichannel fluorescence images. A compre-
hensive analysis shows that Cell Painting-based bioactivity prediction is robust
across assay types, technologies, and target classes, with cell-based assays and
kinase targets being particularly well-suited for prediction. Experimental vali-
dation confirms the enrichment of active compounds. Our findings indicate
that models trained on Cell Painting data, combined with a small set of single-
concentration data points, can reliably predict the activity of a compound
library across diverse targets and assays while maintaining high hit rates and
scaffold diversity. This approach has the potential to reduce the size of
screening campaigns, saving time and resources, and enabling primary
screening with more complex assays.

Drug discovery campaigns typically rely on high throughput screening
(HTS) for hit finding i.e., the process of identifying and selecting che-
mical compounds with biological activity towards a target and the
potential to be developed into a drug. Such screens can involve
probing millions of compounds. Although the throughput of these
types of experiments has significantly increased thanks to technolo-
gical advancements in automation and robotics, it is still a time and
resource intensive process. Because of this, hit finding is generally
done with simple assays such as biochemical assays to enrich the
compound set before more resource-intense assays can be used fur-
ther down the cascade. Because the initial screening assays are often

very simple representations of the target biology, they run the risk of
producing false positive and negative results. Whereas false positives
can be identified and removed by further probing with follow-up
assays, false negatives can be problematic as they can filter out
potentially interesting compounds. Thus, there is an interest in using
as biologically relevant assays as possible early in the screening
cascade.

One strategy to accelerate hit finding is to use computational
methods to prioritize and select compounds deemedmore likely to be
active. Predicting bioactivity has beenused to enrichcompound sets in
HTS assays1,2. These types of approaches promise to efficiently enrich
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likely hit compounds into focused compound sets. Because these
focussed compound sets containmuch fewer compounds than the full
compound libraries, they could enable earlier use of assayswith higher
biological relevance, e.g., iPSC-derived, or primary cells, which are
typically restricted to later stage drug discovery due to cost and/or
scarcity of biological material.

So-called structure activity relation (SAR) models are a family of
computational methods, used to make bioactivity predictions or
property predictions i.e., using computationalmethods andmodels to
estimate bioactivity or properties of chemical compounds. These
models rely on compound structure information to make predictions
of compound activity on a particular target. Recently, alternatives to
structure representations have been explored2–5 for prediction of
bioactivity6 or toxicology7. One such example is the use of phenotypic
profiles6. Phenotypic profiles are derived from cells, tissues, or even
whole organisms, and contain information on the characteristics or
behaviors of these complex biological systems in response to pertur-
bations with small molecule compounds or other drug modalities.
Phenotypic profiles can encompass a wide range of biological
responses, including changes in cell morphology, proliferation, gene
or protein expression, and physiological functions. Compound
bioactivity prediction and compound property prediction by pheno-
typic profiling have emerged as attractive alternatives to SAR as they
have proven to be capable of enriching compound sets while at the
same time alleviating some of the drawbacks of structure-based
models, such as low structural diversity and limited scaffold-hopping
potential.

While it has been shown that information present in phenotypic
screens can be used to predict bioactivity in unrelated targets6,8, pre-
vious approaches have relied on dose-response data and/or multiple
data points per compound as activity readouts. However, in practice,
such data are usually not available at the scale required at the early hit
identification stage – where the machine learning approaches pro-
posed in these works can be meaningful applied.

In this work, we adopt amore practical setting, that better reflects
the reality of early hit finding, utilizing unrefined single-concentration
activity readouts which are relatively cheap and easy to produce and
are often readily available at the early hit identification stage. In
combinationwith these data, we rely on Cell Painting images of the full
set of compounds – an additional cost – but one which only needs to
be produced once and can then be reused across all the different
assays and targets wewant to predict (Fig. 1a). We employ a large-scale
general purpose Cell Painting screen to capture phenotypic profiles of
a library of available compounds and train a model using small,
focused bioactivity assay readouts for specific targets. The trained
model is then used to predict the bioactivity of the compounds in the
entire compound library, enabling the selection of compounds most
likely to modulate the intended target (Fig. 1a). This approach has the
potential to reduce the number of compounds to be screened, as well
as the number of assays and experiments required in early drug
screening cascades. As only a few hundred activity data points are
needed to train the predictive model for a particular target and assay,
assays of higher complexity and biological relevance could potentially
be used. Furthermore, we explore different input modalities for
bioactivity prediction, including fluorescence images, brightfield
images, and image features extracted from the fluorescence images
using classical image analysis approaches. Comparing these image-
based approaches to traditional structure-based approaches, we
demonstrate that Cell Painting-based compound bioactivity predic-
tion can outperform structure-based approaches in their predictive
performance as well as the structural diversity of the top ranked
compounds. To further strengthen thepracticality of our approach,we
analyze prediction performance and robustness across various assay
types, technologies, and target classes to identify specific targets and
assays that are particularly well-suited for bioactivity prediction.
Finally, we confirm the validity of our predictions through a series of in
vitro follow-up experiments which demonstrate that the bioactivity
predictions of our models are reliable and consistent.
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Fig. 1 | Using phenotypic screening for bioactivity prediction. a The envisioned
approach utilizing phenotypic screening for bioactivity prediction. A single High
Content Imaging screen using Cell Painting is used to generate phenotypic repre-
sentations of each compound in the compound librarym ~ 106. Small scale screens,
n ~ 104 for a target of interest are then used to generate activity readouts for a set of
compounds used to train a machine learning model (green active, blue inactive).
Thismodel is then used to rank compounds for probability of activity andprioritize
compounds for further screening (green predicted active, blue predicted inactive).
b Boxplot of ROC-AUC performances of each assay in each cross-validation test-
split (n = 6 splits), ranked in order of median ROC-AUC performance, center value

defining median with boxes indicating the IQR and whiskers extending to extreme
points or maximally ±1.5 × IQR. Highlighted assays in green are investigated in
secondary screens. cBoxplot of ROC-AUCperformance of each assay in each cross-
validation test-split (n = 6 splits) for the JUMP-CP data, ranked in order of median
ROC-AUCperformance, center value definingmedianwith boxes indicating the IQR
and whiskers extending to extreme points or maximally ±1.5 × IQR. d Receiver
Operating Characteristic curve of two example assays. The dark blue line repre-
sents the average ROC-curve, the shaded area represents the standard-deviation
intervals and the faded lines ROC-curves of individual cross-validation splits.
Source data are provided as a Source Data file.
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Our results demonstrate the capability of models trained on
phenotypic data combined with a few hundred single-concentration
data points, to predict compound activity reliably and efficiently
across diverse targets in a realistic drug screening scenario.

Results
Phenotypic bioactivity prediction across 140 diverse assays
We selected a structurally diverse set of 8,300 compounds to be
representative of a larger HTS screening library. This subset was
screened in a Cell Painting assay, an optimized high-content micro-
scopy assay that utilizes a set of six fluorescent dyes to label different
cellular components, including the nucleus, nucleoli, endoplasmic
reticulum, mitochondria, cytoskeleton, Golgi apparatus, plasma
membrane, actin filaments, as well as cytoplasmic and nucleolar RNA9.
For each compound we also extracted corresponding single-point
bioactivity data from the AstraZeneca HTS database. In this context,
each activity label is based on a single data point, representing a
unique compound at a specific concentration in a single microwell
from an HTS screen. The resulting dataset consisted of 8,300 com-
pounds with Cell Painting images of compound-treated cells and
associated single concentration bioactivity data in one or more of 140
unique assays, see Supplementary Fig. 1 formore assay details. Each of
those assays had at least 50 active compounds. The label matrix,
according to compounds and assays, had a 47.8% fill rate and an
average of 3% of the known compounds labeled as active (for more
details of the data selection see Materials and Methods).

We split the data into six folds, with each compound appearing
only in a single fold. Compounds that were structurally similar, based
on ECFP-4 clustering, were assigned to the same fold to measure the
ability of the model to identify actives in unknown regions of the
compound space. This practice is commonly performed in Structure
Activity Relationship (SAR) modeling. We applied nested cross-
validation to the data, training a ResNet5010 in a supervised multi-
task learning setup. The model was pretrained using ImageNet11 and
modified to accept 5-channel fluorescence images as input. It was then
trained to predict bioactivity readouts for each of the 140 assays. In the
cross-validation process, four of the data folds were used to train the
model, one fold was used as validation to tune hyper-parameters, and
one fold was used as a test set to evaluate performance (see Materials
and Methods for details on training and hyperparameter selection).

The performance of the model, averaged across the six folds, was
measured at a ROC-AUCof 0.744 ±0.108. Performance varied between
the assays (Fig. 1b) and we found a slight correlation between perfor-
mance and number of known compounds and actives (Supplementary
Fig. 2). Whereas predictions for many assays showed low correlation,
predictions for some assays were correlated or anti-correlated (Sup-
plementary Fig. 3), which appeared unrelated to the predictive per-
formance, assay type, technology, or target type. 62% of the assays
achieved an ROC-AUC of 0.7 or more, which we deem good perfor-
mance, while 30% reached 0.8 or higher (indicating very good per-
formance), and a further 7% reached0.9or higher (indicating excellent
performance). Overall, these results indicated that Cell Painting data
contains valuable information related to bioactivity for a wide range of
target and assay types. This relationship can be learned by a deep
learning model using small sets of single-concentration activity
readouts.

To validate the reproducibility of our approach, we applied the
same predictive framework to two publicly available datasets. Initially,
we assessed our framework’s performance on a dataset established by
Hofmarcher and colleagues8, demonstrating end-to-end learning with
convolutional neural networks (CNNs) for biological assay prediction
from Cell painting images. This dataset included 209 assays compris-
ing 10,574 compounds8,12, where binary activity data was derived from
dose-response curves (IC50/EC50) of each compound in a given assay.
Employing identical cross-validation splits, our model exhibited an

average performance of 0.731 ± 0.198 ROC-AUC across these 209
tasks, with 116 assays achieving ≥0.7, 84 reaching ≥0.8, and 68 sur-
passing ≥0.9 (Supplementary Fig. 4). Notably, our results align closely
with the performance reported for the supervised ResNet model by
Hofmarcher et al. (0.731 ± 0.19 ROC-AUC)8 and the linear probing
contrastive learning model (CLOOME) recently reported on the same
dataset (0.714 ± 0.20 ROC-AUC)12. Subsequently, we created a dataset
employing a subset of the recently published JUMP-CP dataset13, in
combination with activity data from ChEMBL14. This subset encom-
passed 29 assays comprising 10,660unique compounds (SeeMaterials
and Methods 1.3. JUMP consortium and ChEMBL datasets for details).
The average performance for these 29 assays was 0.660 ±0.094 ROC-
AUC. Detailed performance for each of the 29 assays can be found
in Fig. 1c.

Comparing bioactivity predictions using different input
modalities
As described above, we observed encouraging results using a multi-
plexed fluorescence Cell Painting screen to capture phenotypic pro-
files of a library of compounds. As it has been shown that brightfield
images can be used to predict Cell Painting features15, we wanted to
investigate if the information content in the imageswould be sufficient
to predict bioactivity of compounds. Brightfield imaging has some
advantages compared to Cell Painting-stained cells as it can be per-
formed on live cells and does not require staining of the cells and can
be performed on simpler microscopes. These factors could sig-
nificantly reduce the cost of the assay and enable kinetic assays,
although potentially at the expense of less informative image data.

We also wanted to investigate whether the end-to-end features
learned by the neural network in our setup had an advantage over
hand-crafted features. To this end, we extracted hand-crafted image
features, hereafter referred to as Cell-Features, using the Columbus
image-analysis software. Similar features could be extracted using free
software such as CellProfiler16. We compared the performance of the
neural network trainedwith Cell Painting images (labeledWhole Image
Fluorescence) versus a similar network trained with brightfield images
(Whole Image Brightfield), aswell as a neural network trained on hand-
crafted cell features (labeled Cell-Features). These image-based mod-
alities were then compared against a standard structure-based
approach using Extended Connectivity Fingerprints17 (labeled Struc-
ture). Each model was assessed using the same cross-validation splits
as described above. Thefluorescenceandbrightfield imageswereused
to train ResNet50 models, while the cell-features and structure-based
data were used to train multi-layer perceptrons (See Materials and
Methods for details).

Evaluation on the held-out test sets revealed that the predictive
performance of the whole image fluorescence-based approach out-
performed all other approaches (Fig. 2a). This approach reached an
average ROC-AUC of 0.744 ±0.108 compared to the cell-feature based
model at 0.726 ±0.115. Both fluorescence-based approaches (Whole
Image Fluorescence and Cell-Features) outperformed the brightfield
model at 0.704 ±0.107 ROC-AUC. The structure-based approach per-
formed the worst at 0.686 ±0.100. Statistical analysis using Friedman
rank sum test with the assay as blocking factor revealed significant
performance differences (p = 4.47 × 10−19) between the modalities
(Fig. 2a). Applying a post-hoc Nemenyi’s test, we find that the perfor-
mance differences are significant between all modalities except for
brightfield and structure. Although the brightfield image-based
approach was outperformed by the fluorescence-based approach, it
was still able to predict 49% of the assays with a ROC-AUC above 0.7
and even 5% above 0.9. This shows that the information captured in
brightfield images can be linked to bioactivity in a wide range of assays
and targets, which may justify using brightfield images in some cases
despite their slightly inferior performance. We also tried to combine
the brightfield images with the fluorescence images to see if it would
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offer any improvements; however, we sawno significant improvement
in the predictive performance, indicating that the brightfield images
contained little complementary information to the fluorescence
images.

A natural question to ask when predicting bioactivity of a com-
pound library is: how chemically diverse are the top predictions? For
each bioactivity prediction approach, we compared the structural
diversity of the 20 top-ranked compounds to the known actives in the
training set. Our analysis revealed that compounds predicted from
images showed lower structural similarity i.e., greater chemical diver-
sity, than structure-based approaches. A Friedman rank sum test
reveals a significant difference in the distribution of compound
diversities (p = 4.21 × 10−12). A Nemenyi’s post-hoc test showed that the
chemical diversity of structure-based predictions was significantly
lower than image-based predictions (Fig. 2b).

Overall, theCell Paintingfluorescence-based approachperformed
best both in terms of correctly predicting bioactivity (measured by
ROC-AUC) and in terms of increased chemical diversity (measured by
Tanimoto similarity). The Cell-Features approach, using extracted
image features, resulted in a slightly lower performance than the
Whole-Image Fluorescence approach. The Whole-Image Brightfield
approach also resulted in a slightly lower performance. However, it

may still be an attractive alternative because the slight drop in pre-
dictive performance can be justified by other benefits compared to the
Cell Painting assay.

The impact of assay and target characteristics on performance
As seen in Fig. 1b, the predictive performance of the Cell Painting
fluorescence-image based model varied widely from assay to assay,
ranging from 0.96 to 0.48 ROC-AUC. We wanted to understand the
factors influencing this performance variation and to identify which
conditions are particularly suited for bioactivity prediction. Therefore,
we conducted a detailed analysis, breaking down the results to
examine how various assay characteristics contribute to perfor-
mance (Fig. 3).

The general trend we found was that the predictive performance
was consistently good for different assay types. Likewise, predictive
performance was consistently good across target types, therapy areas,
and assay technologies. Nevertheless, some noteworthy insights
emerged: the fluorescence-based methods were better at predicting
cell-based assays than biochemical assays, and the structure-based
method was better at predicting biochemical assays than cell-based
assays (Fig. 3a). Among molecular target subtypes, kinase targets
appeared to benefit the most from our Cell Painting-based approach,

Fig. 2 | Variations in predictive accuracy and prediction diversity between
inputmodalities. a Box plot of eachmodality type’s average ROC-AUC computed
over each assay. Each dot represents the average ROC-AUC performance of an
individual assay (n = 140 assays), center value defining median with boxes indi-
cating the IQR and whiskers extending to extreme points or maximally ±1.5 × IQR.
b Box plot of average Tanimoto Similarity of top 20 ranked compounds to the
closest known active in respective training set for each modality. Each dot

represents the averageTanimoto similarity scoreper assayover all cross-validation
splits. Only assays with average performance above 0.6 ROC-AUC in all modalities
were included (n = 87 assays), center value defining median with boxes indicating
the IQR and whiskers extending to extreme points or maximally ±1.5 × IQR. Sta-
tistical analysis was done using Nemenyi’s-Friedman post-hoc test, two-sided, **
representing 10−3 < p < 10−2, *** representing 10−4 < p < 10−3. Source data are pro-
vided as a Source Data file.
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performing significantly better than other molecular target subtypes
(Fig. 3d). The increased performance on kinase targets could be
attributed to the known promiscuity of kinase inhibitors, which can
affect multiple cellular pathways, leading to stronger phenotypic
responses that are more readily identified by the model. In terms of
assay technologies (Fig. 3f), predictions were especially accurate in
chemiluminescence assays, and less so in assays using spectro-
photometry. Among the therapy areas covered in our experiments,
performance in oncology assays was significantly better than other
areas, possibly due to a higher fraction of kinase targets in that ther-
apy area.

Follow-up assays validate fluorescence-based predictions
Previous studies that have aimed to predict bioactivity from image-
based assays have limited their analysis to a single primary assay. But
biological and technical noise in the process can lead to inaccurate and
potentially overoptimistic resultswhen the experiment is repeated.We
put the predictions of our Cell Painting-based model to the test by
running secondary assays for the same targets. We selected follow-up
assays that were used in the screening cascades as secondary assays to
triage HTS hits, spanning different assay technologies and different
target classes: a methyltransferase, a polymerase, an oxidoreductase,
and a serine kinase. The follow-up assays were chosen to represent a
range of performances in the primary assay, from a low ROC-AUC of
0.68 ± 0.032 up to a very high performance of 0.91 ± 0.031. The assays
selected for follow-up are marked in Fig. 1b. In each of the selected
follow-up assays, a ranked list of predicted bioactivities was produced
by our model. The majority of the top-ranked 5% of compounds were
randomly sampled and included in the follow-up assay, along with

selection of compounds selected uniformly at random (at least 1000
compounds in total). The ROC-AUC reported in our experiments was
computed using only the randomly selected compounds to keep the
values comparablewith theprimary assay. The top-ranked compounds
were included to make meaningful measurements of enrichment as it
was expected that few of the randomly selected compounds would be
active, due to the low assay hit rates (i.e., out of 500 randomly selected
compounds, only 5-10 were expected to be active).

We found the ROC-AUC values in the follow-up assays to be
consistent with the values from the primary assays. In fact, two out of
the four follow-up assays performed slightly better than their respec-
tive primary assays (Fig. 4a and Supplementary Table 1). Our results
suggested that not only do themodel predictions carry over to follow-
up experiments, but that the expected range of performance is con-
sistent as well.

While ROC-AUC helps understand the predictive performance of
the model, ultimately, what we care about is how the model can be
used to enrich the compound sets. To calculate enrichment, using
bootstrapping we probed the top 5% of ranked compounds for each
assay (accordingly, the theoretical maximum enrichment from this
experiment is 20x). Overall, the follow-up assays showed enrichment
values in line with their predictive performance, often better (Fig. 4b
and Supplementary Table 1). The serine kinase assay, which had the
highest predictive performance (ROC-AUC 0.91) showed an astound-
ingly high enrichment of 14x in the follow-up, representing a sig-
nificant improvement and suggests this assay could focus on a small,
highly targeted set of compounds. The other assays, Oxidoreductase,
Polymerase, and Methyltransferase, all had follow-up enrichments in
line with the primary assay (6.4x, 4.6x, and 1.6x respectively). The

Fig. 3 | Predictive performance variations across assay characteristics. Pre-
dictive performance of various assays carried out in our experiments, grouped by
assay characteristics. Shown as box plots, center value defining median with boxes
indicating the IQR and whiskers extending to extreme points or maximally ±1.5 ×
IQR. a The predictive performance of the image-based Fluorescence model com-
pared to the structure based, when grouped by Test Material Type. Comparison of
Assay performance of the image-based Fluorescence model grouped by assay

characteristics: b Biological Activity, c Molecular Target Type, d Molecular Target
Subtype, e Ligand Type, f Assay Technology and g Therapy Area. R&I Respiratory &
Immunology, CVRM Cardiovascular renal metabolism. Significance values calcu-
lated using Kruskal-Wallis test, followed by Conover pair-wise test, * representing
10−2 < p < 5*10−2, ** representing 10−3 < p < 10−2, *** representing 10−4 < p < 10−3, ****
representing p < 10−4. Source data are provided as a Source Data file.
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follow-ups for Oxidoreductase and Polymerase showed higher
enrichment than the primary assay, while the follow-up for Methyl-
transferase showed a slightly lower enrichment. However, it should be
noted that the ROC-AUC was consistent between the primary and
secondary. The weaker enrichment may be explained by the high
baseline bioactivity in the Methyltransferase follow up assay, which
limited the theoretical maximum enrichment of this assay to
approximately 6×.

Several of the top ranked compounds were shown to be highly
potent (low nM potency), indicating the quality of our predicted hits
washigh.Moreover, several compoundswerepredicted tobe active by
the model and were confirmed to be active, despite them having been
labeled as inactive in the original HTS data. Their activity could be
further confirmed in orthogonal assays, highlighting the robustness of
our predictions, and indicating that our model offers opportunities to
rescue false-negative compounds. In summary, the assays probed in
our follow-up experiments showed that the model performance was
conserved through replication, even perhaps slightly better than what
was expected. This indicates that themodel’s predictions are driven by
the targets and phenotypes, and not significantly affected by biases
and noise in the assays. Furthermore, the enrichment levels we
observedwere high enough to reduce cost and speed up the screening
process by filtering in silico compounds according to the ones the
model predicts to be active.

Discussion
Hit finding in early drug-discovery is timeand resource intensive, often
relying on target-specific HTS campaigns to identify diverse, bioactive

compounds.We assessed the possibility of rationalizing the hit finding
process using phenotypic-basedbioactivity predictionmodels, trained
with unrefined single-point activity data. These types of data are rela-
tively inexpensive to produce and can therefore readily be used as a
basis for training the prediction models for targets. This facilitates the
practical useof these types ofmodels in earlydrugdiscovery pipelines,
enabling the creation of focussed compound sets containing com-
pounds predicted to be bioactive.

Our results show that amodel trained using phenotypic data from
a single general-purpose Cell Painting screen can predict bioactivity in
a wide range of assays, outperforming commonly used SAR models in
terms of both predictive performance and structure diversity. We
validated the model’s performance in follow-up experiments in sec-
ondary assays. The results showed that Cell Painting-based bioactivity
prediction using morphological profiles was feasible for a wide range
of targets. Our approach has the potential to reduce the number of
compounds screened, aswell as the number of assays and experiments
required in drug screening cascades, which in turn could allow for
early screening of focused compound sets in assays of higher biolo-
gical relevance. In addition, our results show that even a brightfield-
based model can perform slightly better than structure-based pre-
dictions, while also identifyingmore diverse compounds. This is in line
with previous work showing that much of the information content of
fluorescence images can be inferred from brightfield images15,18,19 and
recent work by Harrison et al. that found largely correlated predictive
performance for fluorescence and brightfield20. While the predictive
performance of brightfield images does not fully reach the level of
fluorescence images, brightfield offers a cheaper alternative for
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Fig. 4 | Validatingmodel prediction in secondary screen.Model validation using
follow-up screens in four of the assays. Top ranked compounds suggested from the
fluorescence image-based models were screened in corresponding secondary
assays (see text for full description).aReceiver operating curves for the four assays,
primary HTS (green) and follow-up (blue), shaded area represents standard-
deviation interval. ROC-AUC values for each of the four assays were calculated
using the randomly sampled subset of compounds, green showing the average

performance in the original HTS assays and blue representing the performance
when using secondary screen activity readouts. b Enrichment values of the top 5%
predicted compounds for each of the four assays. Enrichment was calculated for
the HTS (green) and secondary (blue) activity readouts. Box plots (n = 100 boot-
strapped), center value definingmedianwith boxes indicating the IQRandwhiskers
extending to extreme points ormaximally ±1.5 × IQR. Source data are provided as a
Source Data file.
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phenotypic profiling. Moreover, the use of brightfield images also
opens the possibility of live cell imaging to include temporal infor-
mation of compound effects in cells.

Previous work by Simm et al. and Hofmarcher et al. established
the information link between phenotypic screening data and assay
activity6,8. These early studies employed binary activity data derived
from dose-response curves, expressed as pXC506 or IC50/EC508 of the
given compound in the given assay. In these cases, each activity label is
often supported by multiple data points (usually 10–20), significantly
enhancing the confidence in the labels. In addition, the previous
approaches evaluated assays at 3–4 thresholds of pXC50/IC50/EC50.
Consequently, a relatively low level of noise in the labels is expected.
Our results extend this by demonstrating the capacity to learn from
small sets of readily available, but relatively noisy, unrefined single-
point activity readouts. Here each binary activity label is based on a
single data point froma single concentrationof a compound in a single
well of a bioassay, as is common in high-throughput screens. We
demonstrate efficient learning despite the inherent noise in single-
point activity data. Our approach could significantly reduce the size of
screening campaigns, saving time and resources, and enabling primary
screening with more complex assays or scarce material.

While structure-based bioactivity prediction is attractive as it
requires no in vitro data, alternative input representation can avoid the
problems SAR models have with scaffold hopping and increasing the
diversity amongst predicted hits. Previous work using activity4,5,
transcriptomics-21 and phenotypic fingerprints6,8 are examples of such
approaches.

There has been limited work comparing models based on che-
mical structure and those based on imaging data22. Concurrent work
has shown that cell feature-based model performance is often
comparable23 or slightly superior24, aligning with our observations.
Several factors appear to influence these models’ comparative per-
formance such as the compound set and associated data splitting
strategy, and the specific assay characteristics.Our image-basedmodel
on average outperforms a structure-based model. Nonetheless,
noticeable performance variations exist among different assay and
target types, as illustrated in Fig. 3a. The performance difference
between structure- and image-basedmodel is significant for cell-based
assays but does not reach significance for biochemical assays. Recent
advancements in structure-based modeling, including techniques like
Graph Neural Networks (GNNs)25 and Transformer-based models26,
hold the potential for further enhancing performance.

Recently there hasbeen a strong interest in combining compound
structure information with activity fingerprints leading to improved
performance in bioactivity prediction4. The samewas shown to be true
for cell state, where gene-expression and phenotypic data provided
complementary information boosting performance prediction27. More
recent work has also explored the use of phenotypic data combined
with othermodalities in supervised or contrastive learning settings for
better bioactivity prediction24,28, toxicity prediction29, and Mechanism
of Action prediction30,31. Beyond the inclusion of auxiliary input mod-
alities, performance can likely be improved by employing more pow-
erful deep learning model types32,33, for example, state-of-the-art deep
learning networks such as Vision-Transformers, which have showed
improved performance in medical imaging tasks34. Other training
strategies such as Self-Supervised Learning pretraining could also have
the potential to further improve performance.

To validate our predictions and understand the level of enrich-
ment and its relation to the primary assay, we selected four diverse
assays with predictive performance ranging from a low ROC-AUC of
0.68 to a very high performance of 0.91. We sampled and tested at
least 1,000 compounds for each assay, encompassing the majority of
the top-ranked 5% of compounds, along with at least 500 compounds
selected uniformly at random. Employing bootstrapping, we con-
sistently observed enrichment ranging from a moderate 1.6-fold to a

high 14-fold, correlatingwith the predictive performance of the assays.
In a prior study by Simm et al., 342 top-ranked compounds were vali-
dated for a kinase target in oncology and 141 top-ranked compounds
were validated for a non-kinase enzyme in a CNS indication. Both
assays exhibited a very highpredictive performanceof ROC-AUC>0.9.
Simm and colleagues reported a 50-fold and 280-fold increase in the
hit rate of their validation compared to the HTS hit rate6. It is worth
noting that sampling a larger fraction of compounds imposes limits on
the maximum achievable enrichment with the bootstrapping
approach. For instance, by sampling the top 5% the maximum
achievable enrichment rate is 20-fold. Conversely, sampling only the
top 0.5% themaximum achievable enrichment rate would be 200-fold.

While phenotypic-based bioactivity prediction requires in vitro
data, such datasets do not need to be expensive to generate; the Cell
Painting assay protocol was designed to be rich in information while
low-cost to perform9. Notably,wedemonstrate the directprediction of
bioactivity from brightfield images. This successful prediction from
brightfield images underscores the substantial phenotypic informa-
tion related to compound perturbations present in these images.
Consequently, this implies that fluorescent images may not be a pre-
requisite, thus reducing the need for staining reagents and the use of
advanced microscopes. This broadens the applicability of our meth-
odology and holds the potential for a significant reduction in imple-
mentation costs. In a drug discovery setting, the initial expenses for a
single Cell Painting HTS would be easily recouped, as traditional HTS
assays could be reduced and replaced by bioactivity predictors using
the phenotypic data generated, combined with smaller, focused
screens. We provide a comprehensive analysis and guidance on which
assays, technologies and targets are especially suited for phenotypic
bioactivity prediction. Notably, kinase targets and cell-based assays
exhibited strong performance, and additional trends can be recog-
nized albeit at small sample size (Fig. 3).

In summary, we have shown that phenotypic screening data
combined with readily available single concentration data can be used
for bioactivity prediction in a wide range of assays, with high perfor-
mance across different target classes, assay technologies, and disease
areas. Beyond the use of fluorescence data, we have also shown that
brightfield data can reach a performance level comparable to or better
than structure-based predictors, highlighting that staining the cells
might not be necessary, but that it does provide slightly better pre-
dictions. Overall, the results paint a positive picture for phenotypic-
based bioactivity models to complement structure-based predictors,
where data can be generated in a cost-effective manner and with sev-
eral use-cases.

Methods
Generation of the Cell Painting and HTS dataset
A set of 8,300 compounds was selected and screened in the Cell
Painting assay. The compounds set was selected based on chemical
diversity, known annotations, compound availability, and on general
representation in historical HTS screens.

Cell Painting. The Cell Painting staining and imaging procedure was
performed according to the protocol by Bray et al.9 with some
adjustments to stain concentrations and methodology as described
recently18,35. Briefly, U-2 OS cells (ATCC Cat# HTB-96) were cultured in
McCoy’s 5 A media (Fisher Scientific, #26600023) with 10% (v/v) fetal
bovine serum (Fisher Scientific, #10270106) at 37 °C, 5% (v/v) CO2, 95%
humidity. Cells were seeded in CellCarrier-384 Ultra microplates
(Perkin Elmer, #6057300) at 1500 cells per well 24 h prior to com-
pound addition. Cells were treated with compounds at 10μM for 48 h
and then stained with 500 nM MitoTracker (ThermoFisher, M22426)
for 30minutes. Cells were then fixed with 3.2% v/v formaldehyde in
PBS for 20minutes and washed using a BlueWasher centrifugal plate
washer (BlueCat Bio, Neudrossenfeld, Germany). Cells were
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permeabilized for 20min at room temperature using 30 µL of 0.1% (v/
v) Triton X-100 in HBSS (Sigma Aldrich, #T8787). Following this, 15μL
of a stain solution was applied, consisting of 5μg/mL Hoechst 33342
(ThermoFisher, H3570), 1.5μg/mL Wheat-germ Agglutinin Alexa Fluor
555 conjugate (ThermoFisher, W32464), 10μg/mL ConcanavalinA
Alexa Fluor 488 conjugate (ThermoFisher, C11252), 5μL/mL Phalloidin
Alexa Fluor 568 conjugate (ThermoFisher, A12380), and 9μM SYTO14
(ThermoFisher, S7576) to eachwell. After 30min incubation cells were
washedwith HBSS. The plates were sealed and subsequently subjected
to imaging.

Cell imaging was conducted using a CellVoyager CV8000 (Yoko-
gawa, Tokyo, Japan) equipped with a 20× water-immersion objective
lens (Olympus, Tokyo, Japan; NA 1.0). Five channels were employed to
visualize the various fluorescent stains: DNA (excitation: 405 nm;
emission: 445/45 nm), ER (excitation: 488 nm; emission: 525/50nm),
RNA (excitation: 488 nm; emission: 600/37 nm), AGP (excitation:
561 nm;emission: 600/37 nm), andMito (excitation: 640 nm; emission:
676/29 nm). Brightfield images were obtained at 3 focal planes of 4 µm
distance. Four fields of view were captured per well.

Activity data. Corresponding activity data were extracted from an
internal HTS assay database. Historical HTS data were annotated as
binary active/inactive using thresholds individually determined for
each assay during assay development. Data were not available for all
the selected compounds in all available historical screens, and we set a
threshold of a minimum number of 50 active and 50 inactive data-
points required for a screen to be included. The included screens
covered a diverse range of assay technologies, target types, ther-
apeutical areas, etc. Following these criteria, the resulting dataset
included around 70,000 images, covering 8,300 compounds with
associated activity data in 140 unique assays. The label matrix had a
47.8%fill rate and an averageof 3%of the known compounds labeled as
active.

JUMP consortium and ChEMBL datasets
Cell Painting Images. Publicly available Cell Painting data was col-
lected from the JUMP consortium dataset13, CPG0016 available from
the Cell Painting Gallery on the Registry of Open Data on AWS. The
compounds subset of the dataset contains Cell Painting data for over
115,000 unique compounds. These have been imaged following the
protocol described in13, using U-2 OS cells, treated with compounds at
10μM. Compound data from source 11 was selected as it contained the
largest overlapping subset of data with sufficient activity data, see
following subsection of activity data information.

ChEMBL activity data. Publicly available activity data was collected
from ChEMBL14. The compounds found in the JUMP-CP dataset were
cross-referenced with those available with activity Potency readouts in
the ChEMBL database (version 33). Using the activity flag field binary
labelswere assigned for each compound-assay datapoint.With [active]
and [Active] treated as active and [inactive] and [Inactive] as inactive.
The majority of overlapping compounds were found to come from
source 11 of the JUMP-CP dataset and to reduce the impact of varying
imaging settings between sources, data from other sources were dis-
regarded. Following this, only assays with enough activity data among
the remaining compoundswere kept (more than 50active and inactive
compounds). Amounting to 10,660 in 29 distinct assays. To access the
dataset, we provide a script along with a comprehensive step-by-step
guide for the automated download and pre-processing, available at
https://github.com/cfredinh/bioactive

Bio-activity prediction setup and evaluation
Data splits and cross-validation. Using a cross-validation setup, we
split the data into 6 different folds with each compound only included
in one-fold. For each cross-validation setting 4 splits were used as

training, 1 for validation and 1 left out as test. The model and hyper-
parameter selection were done using only the training and validation
splits, while the test set was only used to report final performance.

The distribution of compounds between different splits was done
based on structural similarity.

Using RDKit36, all compound SMILES representations were con-
verted to ECFP4 1024Bit. Using RDKit Butina ClusterData function, the
ECFP4 representations was used to group the data into unique clus-
ters. These clusters were divided into 6 unique folds of similar size
such that structurally similar compounds, belonged to the same fold.

Prediction setup. Depending on the inputmodality, differentMachine
Learningmodelswereused.Multi-Layer Perceptrons (MLPs)were used
for the cell-feature-based model and the structure-based, described
below in section ‘Cell-feature model’ and section ‘Structure finger-
prints model’ For the Fluorescence and Brightfield images ResNet50s
were used.

All models were trained to predict if a compound was active or
inactive in each of the unique 140 assays as a multi-label binary pre-
diction task. All networks were trained with 140 output neurons
representing the 140 unique assays. A sigmoid activation function was
used to normalize the range of values for each output neuron indivi-
dually to the range of [0,1].

The models were trained with Binary Cross-Entropy combined
with Focal Loss37. Both propagate a loss signal from each of the output
neurons of the network. Given the fact that not all compounds have
been tested in all assays, the label matrix is incomplete. Thus, the
activity of many of the compounds are unknown and no loss signal
backpropagated from those neurons.

Area Under the Receiver Operating Characteristic Curve (ROC-
AUC) was used to evaluate the model’s ability to separate the actives
from inactive. Since many activity labels are missing, the performance
is only calculated for compounds with known activity values.

The final performance is calculated based on the per-compound
averaged prediction, where the output predictions for each image of
the same compound is averaged using the mean. We report both the
mean ROC-AUC over all assays as well as the individual ones.

Approach
Fluorescence image-based model. Fluorescent microscopy images
were stored as 16-bit TIFFs of size 1992×1992. The images were pre-
processed and normalized such that the top and bottom 1 percentile
intensity values were clipped for each image to remove noise and
outliers.

Before being sent to the network as input during training, the
images were augmented, including spatial down sampling, z-normal-
ization, random cropping, horizontal and vertical flipping, random90-
degree rotations and color shifting.

A ResNet5010 model was used as a feature extractor, using
448×448 pixel image crops as input. Transfer learning was done by
utilizing a ImageNet pre-trained network, downloaded from torch-hub
see He et al.10 for details regarding the pre-training.

The network was adapted to allow 5 channel input images by
adding two channels to the input convolutional filter, done by
repeating the two first channels of each convolutional filter (Supple-
mentary Fig. 6). The linear layer of the pre-trainedmodel was replaced
with a re-initialized one with 140 output neurons tomatch the number
of assays.

All models were trained on two NVIDIA-Tesla 32Gb GPUs, using
pytorchDDP38. A hyper-parameter searchwas performed using nested
cross-validation in each one of the cross-validation splits, using three
splits for training, one for nested validation and one for nested testing.
Searching for optimal learning rate, weight decay, and optimizer. The
identified hyper-parameters were then used to train the pre-trained
ResNet50 for 100 epochs, using early stopping based on the validation
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ROC-AUC performance and learning rate stopping on plateau. The
best identified parameters were learning Rate 0.2/256, Optimizer SGD,
weight decay 10−4. Amodel was trained for each of the cross-validation
splits, with the best performingmodel checkpoint based on validation-
set performance being used to predict the likelihood of activity for the
respective test set split.

The model used on the publicly available data followed the same
steps, with someminor changes to adapt to some slight differences in
data. The images areof size 1080×1080pixels and Pre-Processingdone
with the DeepProfiler package39. Once again, the hyper-parameter
tuning was performed using the same setup as described above.
Searching for optimal learning rate, weight decay, and optimizer. The
best performing settings were learning rate 1e−3, weight decay 1e−4 and
SGD. See Supplementary Fig. 7 for loss curves.

Brightfield image-based model. Brightfield microscopy images were
stored as 16-bit TIFFs of size 1992×1992 with three images captured at
different focal planes at each site (+/−4 µmaround the central Z plane).
The images were pre-processed and normalized such that the top and
bottom 1 percentile values were clipped for each image to remove
noise and intensity outliers.

The Brightfield image-based model was trained following the
same procedure as for the fluorescent image-based model, although
the default setting of three channels as input was used, stacking the
three focal planes into one image. Hyper-parameter tuning and eva-
luation were done following the same procedure as for the fluorescent
images. The best identified parameters were the same across splits
learning rate 0.2/256, Optimizer SGD, weight decay 10−4.

Cell-featuremodel. Single-cell image featureswere extracted for each
plate using the Columbus software package (v 2.9.1, PerkinElmer).
Features such asnucleus size, cell radius, average nuclei intensity, were
extracted. In total 1,176 features were used for each cell. This was done
for each cell and averaged per well. The averaged data were normal-
ized by z-normalization per plate using DMSO controls using feature-
wise median and median absolute deviation. Features with a variance
below 1.0 were deemed uninformative and removed.

Following feature normalization and removal, the remaining fea-
tures were used as model input. A Multi-layer perceptron (MLP) was
used for prediction. Like the previous two model types, binary-cross
entropy combined with focal loss was used to train the model.

Due to the more manageable size and computational require-
ments of the feature-based model, a larger hyper-parameter tuning
was done using nested cross-validation in each of the cross-validation
splits. Searching for optimal, model-depth, layer-width, weight-
decay, learning rate and optimizer. The identified hyper-parameters
were then used to train MLP for 150 epochs, using early stopping
based on the validation ROC-AUC performance and learning rate
dropping on plateau. The best identified parameters were 3-hidden
layers, 1024-layer width, weight decay 0.0, learning rate 5.0, SGD. A
model was trained for each of the cross-validation splits with the best
performingmodel checkpoint, based on validation-set performance,
being used to predict the likelihood of activity for the respective test
set split.

Structure fingerprints model. Each of the 8,300 compounds were
represented using the commonly employed Extended Connectivity
Fingerprints (ECFP) with a compound component diameter of 4. Using
RDKit36, all compound SMILES40 representations were converted to
ECFP4. The ECFP4 representation was done using 1024-dimensional
bit string, which was used as input to the activity prediction model.

A Multi-layer perceptron (MLP) was used for the predictions,
using the 1024-dimensional ECFP4 representation as input and pre-
dicting activity in each of the 140 assays as output. Binary-cross
entropy combined with focal loss was used to train the model.

Like the Cell-feature model, a full hyperparameter tuning was
done using nested cross-validation in each of the cross-validation
splits. Searching for optimal, model-depth number of hidden layers,
layer-width, weight-decay and learning rate. The identified hyper-
parameters were then used to train MLP for 150 epochs, using early
stopping based on the validation ROC-AUC performance and learning
rate dropping on plateau. The best identified parameters were (3-
hidden layers, 512-layer width, weight decay 0.0, learning rate 2.0). A
model was trained for each of the cross-validation splits with the best
performing model checkpoint, based on validation-set performance,
being used to predict the likelihood of activity for the respective test
set split.

Statistics and reproducibility
Performance variations between model types were analysed using
Friedman rank sum test, using the assays as blocking factors. This was
calculated using Friedman-Chi-Square test using SciPy41 stats package
followed by Nemenyi’s-Friedman post-hoc test.

Performance differences depending on assay characteristics was
analysed using one-way ANOVA with post-hoc tests, calculated using
Kruskal-Wallis test in SciPy stats package41, followed by Conover pair-
wise test to determine if there were any statistically significant differ-
ences between sub-groups.

The sample size used was not determined based on any statistical
method, all data available was included. No data were excluded from
the analysis and the investigators were not blinded.

Diversity evaluation
Tanimoto similarity42 between the ECFP4 fingerprints of compounds
was used to determine how structurally similar each compound pair
was. To assess the diversity of the top ranked compounds according to
each predictive model, the top 20 ranked compounds in each test set
were compared to the known actives in their respective training set.
Each top ranked compoundwascompared to all the knownactives and
the most similar one was identified for each of the 20 compounds,
meaning the one with highest Tanimoto Similarity was then assigned
as the most similar.

Follow-up screening and calculation of enrichment
Top ranked compounds in four of the assays were selected for follow-
up validation in secondary screening. These compoundswere selected
based on their activity scores in the test set. This allowed us to select
the top compounds from the full dataset without data leakage. The
Fluorescence Whole Image based model type was used to assign
activity scores for each compound. The top ranked 5% of compounds
were randomly sampled for each of the four follow-up assays, with
varying numbers of compounds selected for each of the assays. In
addition, a random subset of compounds was also sampled for follow-
up screening and used to calculate ROC-AUC metrics in the follow-up
assays.

In each of the available follow-up assays a baseline estimate of
assay activity was established by probing at least 500 randomly sam-
pled compounds. This gives an estimate of the overall hit rate in
each assay.

The likelihood of activity for each of the compounds in all six test-
splits were combined and ranked together, based on the prediction of
the Cell Painting Fluorescent Whole Image ResNet50. For each follow-
up assay, the top 5% of compounds deemedmost likely to be active in
the corresponding HTS assay, were randomly sampled. These com-
bined with the randomly sampled set for each of the assays, were
screened in their respective follow-up assays.

The ROC-AUC values in the follow-up screen were then evaluated
using the randomly sampled compounds. The randomly sampled
compounds were also used to assess the baseline hit rate for each of
the assays, which was used for the enrichment analysis. The
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enrichments at different percentiles were then calculated using boot-
strapping of the activity values of the compounds above that percen-
tile. See Supplementary Table 1 for further details.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw HTS datasets generated and analysed in this study are pro-
tected and are not available due to them being AstraZeneca proprie-
tary information. The publicly available Cell Painting data used in this
study are available from the JUMP consortium dataset13, CPG0016
available fromtheCell PaintingGalleryon theRegistryofOpenData on
AWS. (https://registry.opendata.aws/cellpainting-gallery/). The com-
pound activity data used in this study are available from the ChEMBL14

database version 33 (https://www.ebi.ac.uk/chembl/). We provide a
script along with a comprehensive step-by-step guide for the auto-
mated download and pre-processing of the Cell Painting/ChEMBL
dataset, available at https://github.com/cfredinh/bioactive. Source
data are provided as a Source Data file. Source data are provided with
this paper.

Code availability
The code is available on github at https://github.com/cfredinh/
bioactive.
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