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Extracellular DNA traps in a ctenophore
demonstrate immune cell behaviors in a non-
bilaterian

Lauren E. Vandepas 1,2,3,4,6 , Caroline Stefani 3,6, Phillip P. Domeier 3,
Nikki Traylor-Knowles5, Frederick W. Goetz2, William E. Browne 4 &
Adam Lacy-Hulbert 3

The formation of extracellular DNA traps (ETosis) is a first response mechan-
ism by specific immune cells following exposure to microbes. Initially char-
acterized in vertebrate neutrophils, cells capable of ETosis have been
discovered recently in diverse non-vertebrate taxa. To assess the conservation
of ETosis between evolutionarily distant non-vertebrate phyla, we observed
and quantified ETosis using the model ctenophore Mnemiopsis leidyi and the
oyster Crassostrea gigas. Here we report that ctenophores – thought to have
diverged very early from the metazoan stem lineage – possess immune-like
cells capable of phagocytosis and ETosis. We demonstrate that both Mne-
miopsis and Crassostrea immune cells undergo ETosis after exposure to
diversemicrobes and chemical agents that stimulate ion flux.We thus propose
that ETosis is an evolutionarily conserved metazoan defense against
pathogens.

Response to invading microbes is a primary physiological task for all
metazoans. In vertebrates, specialized immune cell types such as mac-
rophages and neutrophils detect the presence of microbes. These
immune cells perform specific behaviors like phagocytosis or secretion
of antimicrobial compounds to sequester and eliminate microbial
invaders1,2. The release of extracellular DNA traps (ETs) is a relatively
recently described immune cell behavior – a morphologically and
molecularly distinct cell death process called ETosis – during which
immune cells cast filamentous nets composed of nuclear chromatin
material or mitochondrial DNA into the surrounding extracellular space,
trapping and killing invading microbes3–6. Initially believed to be a
behavior exclusive to vertebrate neutrophils, studies have highlighted
ETosis as an anti-microbial response in non-vertebrate taxa7–13. Intrigu-
ingly, ETs have been reported as a mechanism of anti-microbial defense
in social amoebas14 and some plant species15. Whether this cellular
behavior has evolved independently in divergent lineages or represents
a shared immune behavior in diverse eukaryotes is not clear.

In mammalian cells, ETosis and other immune responses are often
initiated by pattern recognition receptors (PRRs) that bind tomolecular
motifs on microbes commonly referred to as pathogen-associated
molecular patterns (PAMPs)16. PRR protein sequences and domain
architectures can vary between taxa, as they evolve to detect host
specific pathogens17–19. For example, mussels have a radiation of TLRs
thatmay recognize a suite of specific pathogens20, whileDrosophila uses
Toll receptors to identify the protein Spätzle21. Despite these broad
patterns of clade-specific immune receptor diversity, the signaling cas-
cades and effectors downstream of PRRs have been shown to be well
conserved22, including intracellular signaling pathways involving cal-
cium, MAP kinases, and reactive oxygen species (ROS)23–25. In vertebrate
leukocytes, exposure to cytokines, microbes, PAMPs, or pharmacolo-
gical agents activate specific cellular pathways involved in ET formation,
such as a response to ion imbalance (calcium, potassium) or reactive
oxygen species (ROS) burst26,27. Although the detailed mechanisms of
these pathways remain unknown in non-vertebrates6,8,26,28,29, genes
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involved in vertebrate immune cell signaling cascades have been iden-
tified in diverse metazoans, including non-bilaterians30–34.

Non-vertebrate ETosis has been best studied in molluscan model
systems, particularly in bivalves like the model oyster Crassostrea
gigas8,9,11,29,35,36. However, attempts to stimulate production of ETs in
Crassostrea via exposure to somemicrobial signatures as well as ETosis-
stimulating drugs has yielded variable results29. For example, robust
ETotic response in oyster hemocytes was observed following challenge
with Vibrio9; in contrast, induction of ETosis with PAMPs or other
microbes has been either modest or not observed29. Without a con-
sensus assessment of ETosis stimulation, the conservation of ET
induction in non-vertebrates and whether ETosis represents a funda-
mental metazoan immune response remains unclear8,9,29.

Ctenophores, also known as “comb jellies,” are a clade of gela-
tinous planktonic marine animals that represent one of the earliest-
branching metazoan lineages37–40. Ctenophores have two distinct
germ layers (ectoderm and endomesoderm) separated by a jelly-like
layer of collagenous mesoglea and lack a circulatory system.
Understanding functional attributes of ctenophore physiological
systems has provided fundamental insights into the conservation of
animal cell types and signaling pathways, as well as revealing
mechanisms for the emergence of evolutionary novelties32,41–44. Cur-
rently, the ctenophore immune system remains almost entirely
undescribed32,45. Specific immune cell types have not been explicitly
identified in ctenophores, though they possess motile amoebocyte-
like cells that are abundant in the mesoglea and are capable of
phagocytosis32,46. Whether ctenophores have additional cellular
immune mechanisms has not been reported.

Here we demonstrate that the model ctenophore Mnemiopsis
leidyi possesses immune-like cells capable of ETosis in response to

diverse stimuli known to activate conserved signaling cascades in
vertebrate immune cells. To rapidly and accurately quantify ETosis we
developed an automated imaging pipeline to identify ETs. We applied
this imaging pipeline to comparatively assess ET production in Mne-
miopsis and the bivalve mollusk Crassostrea gigas, a model for inver-
tebrate ETosis.Our data frombothnon-vertebrate species suggest that
cells undergoing ETosis following a range of stimuli may represent
evolutionarily conserved anti-microbial defense mechanisms in
metazoans.

Results
Isolated ctenophore cells display immune-like behaviors
To investigate whether the model ctenophore Mnemiopsis leidyi pos-
sesses cell types capable of specialized immune functions, we
mechanically disassociated whole Mnemiopsis and examined isolated
cells47,48. We observed morphologically distinct motile cell types dis-
playing prominent intracellular granules and/or vesicles, including
amoebocyte-like cells with relatively short pseudopodia and stellate
cells with long pseudopodia (Fig. 1A–C, Supp. Movie 1). Time-lapse
microscopy shows that some stellate cells have a dynamicmorphology
and can rapidly vary the length and number of pseudopodia (Supp.
Movie 2). These motile cells are highly active in primary cell cultures
and their morphologies and scavenging behaviors are reminiscent of
immune cell types, such as macrophage-like cells, that have been
described in diverse metazoans1.

A major role for macrophage-like cells is host defense against
microbes. We therefore assessed whether the motile cells present in
Mnemiopsis exhibited fundamental immune cell behaviors in response
to bacteria. Mnemiopsis cells were incubated with killed fluorescently
labeled Escherichia coli and imaged by combinedDIC and fluorescence
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Fig. 1 | Stellate and amoebocyte-like Mnemiopsis cells display immune
behaviors. ADIC image of a highly granular amoebocyte-like cell.BDIC image of a
granular stellate cell displaying multiple processes. C DIC image of a stellate cell
with pseudopodia.DMerged brightfield and fluorescent image of a liveMnemiopsis
motile, stellate cell that has phagocytosed fluorescent E. coli (green). Nuclei are
labeled with Hoechst (blue). Lysosomes are labeled with Lysotracker-redDND99

(red). E, F Combined DIC and fluorescent images of live granular cells with pseu-
dopodia that have phagocytosed fluorescent E. coli. G Still images from Movie S2
showing a motile stellate cell retracting its processes, undergoing nuclear rotation
(spinning), and extruding its nuclear contents after exposure to E. coli. Scale bar is
10 μm in all images.
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microscopy. We found that Mnemiopsis cells exhibiting diverse
morphologies internalized fluorescent E. coli32,49; these included
motile stellate and amoeboid cells (Fig. 1D–F; Supp. Movie 3). Fur-
thermore, timelapse DIC microscopy revealed that amoeboid
cells actively maneuvered their pseudopodia to engulf nearby
bacteria, supporting a potential role in sensing and removingmicrobes
(Supp. Movie 4).

Following exposure to E. coli, a conspicuous subset of stellate cells
changed their morphology dramatically by retracting their pseudo-
podial processes and undergoing nuclear rotation, followed by a rapid
expulsion of cellular material (Fig. 1G; Supp. Movie 5). This behavior is
remarkably similar to vertebrate monocyte behavior preceding
extracellular DNA trap (ET) formation26,50. This led us to speculate that
some ctenophore immune-like cellswere producing ETs in response to
the presence of microbes.

Ctenophore immune-like cells produce extracellular traps
composed of chromatin
In vertebrates, ETs are released in response to recognition ofmicrobial
components, and protect against infection by immobilizing and killing
invading microbes1. To test whether incubation with microbes

promoted extrusion ofDNA fromMnemiopsis cells, we stained isolated
cells with Hoechst to label DNA. In isolated cells incubated in seawater
media, we observed intact nuclei with concentrated Hoechst labeling
(Fig. 2A). After treatment with heat-killed fluorescent E. coli we
observed networks of Hoechst-stained DNA filaments cast in large
areas around some individual Mnemiopsis cell bodies. Three-
dimensional rendering of confocal z-stacks showed that Mnemiopsis
cells extruding DNA had bacteria entangled in the DNA networks,
consistent with ETs (Fig. 2B; Supp. Movie 651;).

In vertebrate immune cells, ETs can originate either from the
cell nucleus or from mitochondria52,53. To assess the organellar
origin of the extruded DNA, we stained Mnemiopsis cells with an
antibody that recognizes an array of nuclear histone proteins (H1,
H2A, H2B, H3, H4). Nuclei of non-ETotic Mnemiopsis cells were
labeled with this histone antibody, which showed stereotypical
patterns of concentrated DNA and histone labeling, confirming
the specificity of this antibody in Mnemiopsis cells (Fig. 2C)54,55.
Notably, in cells that have undergone ETosis, the extracellular ET
DNA also stained with this pan-histone antibody, demonstrating
that the extruded DNA filaments are composed of chromatin
(Fig. 2C, arrows). These data show that some Mnemiopsis cells
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Fig. 2 | Ctenophore immune cells undergo ETosis when exposed to microbes.
A–CConfocal images ofMnemiopsis cell nuclei stainedwith Hoechst.A Left—nuclei
of unstimulatedMnemiopsis cells. Right—a cell exposed to fluorescent TxRed-E. coli
has undergone ETosis; a large web-like pattern of chromatin has been extruded
from the cell. Individual E. coli can be seen enmeshedby chromatin filaments (white
arrowheads). B Still images from a 3D projection of Mnemiopsis ET. C Confocal
image of Mnemiopsis extracellular traps composed of DNA and histones. Histone
11-4 antibody (green) and Hoechst (white) staining are visible in intact and ETosed
Mnemiopsis cells treated with the potassium ionophore nigericin.White arrowhead
marks extracellular DNA+histone chromatin nets. D Fluorescent microscope

(Cytation) images of Hoechst-labeled Mnemiopsis cells. Representative images of
intact nuclei are outlined in white dotted lines, while boundaries of ETs aremarked
with blue dotted lines. Scale bar is 10 μm in all images. E Incubation with S. aureus,
E. coli, and zymosan significantly induced ETosis inMnemiopsis cells. Data
expressed as median. n = 24 images from 4 animals and 6 technical repeats per
animal (>100 cells per image). Representative of 3 independent experiments.
Unpaired Student’s t test, untreated-E. coli (p =0.0205), untreated-S. aureus and
untreated-Zymosan (p <0.0001). *p <0.05, ****p <0.0001. Source data are pro-
vided as a Source Data file.
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form extracellular net-like structures composed of chromatin that
can ensnare bacteria6.

Ctenophore ETosis is an immune response to microbial
exposure
To assess whether the formation of ETs inMnemiopsis is a response to
microbial challenge, we measured ET production after incubation of
Mnemiopsis cells with E. coli and two additional microbial particles:
heat-killed gram-positive S. aureus, and the yeast cell wall extract
zymosan. We found that all three microbial particles stimulated ET
formation in Mnemiopsis cells when compared with untreated cells
incubated with media alone (Fig. 2D). Numbers of ETotic cells were
manually quantified based on release of Hoechst-positive material by
fluorescent microscopy (Fig. 2E). Exposure to S. aureus and zymosan
promoted considerably higher rates of ET formation (mean increases
of 98.2% and 117.7% over control respectively) than E. coli (43.7%)
(Fig. 2E). These data demonstrate that production of ETs represents a
cellular response to the presence of microbes in Mnemiopsis.

Ctenophore ETs form filamentous networks that capture
microbes
Scanning electronmicroscopy (SEM) is commonly used to confirm the
structure of ETs, and is informative in distinguishing ETosis from DNA
release secondary to other forms of cell death such as necrosis or
apoptosis56. To examine the structure of the extruded DNA in Mne-
miopsis cell cultures, weperformedSEMon isolated cells that hadbeen

incubated with S. aureus or with seawater media alone. Images of
untreated Mnemiopsis cells confirm the presence of diverse morpho-
logical cell types observed by DIC, including stellate cells (Fig. 3A;
Supp. Fig. 1). Following incubation with S. aureus, we observed long
filamentous networks surrounding some Mnemiopsis cells (Fig. 3B, C;
Supp. Fig. 1), which are similar to ETs produced by vertebrate and
crustacean immune cells3,8,57,58. We also observed a close association
between individual S. aureus and the filamentous nets produced by
Mnemiopsis cells, providing further evidence that these structures are
able to capturemicrobes, a critical function of ETs (Fig. 3B, C insets)59.
Together, these data identify that some Mnemiopsis cells produce
bona fide extracellular DNA traps.

PMA induces ETosis in Mnemiopsis
We hypothesized that ETosis in ctenophores may be initiated by
engaging evolutionarily conserved signaling pathways known to pre-
cede ETosis in othermetazoans. For example, phorbol 12-myristate 13-
acetate (PMA) is commonly used to induce ETproduction in vertebrate
immune cells through activation of NADPH-mediated ROS26. This
pathway has been proposed to induce ET formation in immune cells in
annelids and crustaceans8,10, suggesting that it may be evolutionarily
ancient and well conserved inmetazoans.We treatedMnemiopsis cells
with PMA for four hours, stained DNA with Hoechst, and visualized
cells by fluorescence microscopy. We observed the extrusion of DNA
after PMA treatment, which was similar to ETs produced following
micobial challenge (Figs. 2D and 4A).

Importantly, exposure to PMA can also trigger non-ETotic cell
death pathways60, raising the possibility that the extracellular DNA we
observed was a result of cell rupture and release of DNA secondary to
cell death. To distinguish between these possible scenarios, we used a
combination of two DNA dyes: Hoechst, which is a membrane-
permeable dye that labels DNA in both live cells and dead cells, and
SytoxGreen, a non-permeable cell stain that selectively labels DNA in
cells with compromised cell membranes, as observed in cells under-
going cell death (Fig. 4A). Both DNA dyes label ETs8,61, and ETotic cells
have diffuse gradients of both Hoechst and Sytox staining (Fig. 4A, B).
We then developed a semi-automated imaging analysis approach that
allowed us to measure Hoescht and SytoxGreen labeling in individual
cell nuclei and accurately quantify both ETosis and cell death simul-
taneously (Fig. 4B; Supp. Fig. 2). ET production has been successfully
identified and quantified in neutrophils using a combination of
machine learning and high-throughput imaging62,63, and we deployed
similar techniques to assess ETosis in ctenophore cells. An approach
similar to those implemented in flow cytometry analyses was used in
which we plotted the intensity of SytoxGreen fluorescence against
Hoechst signal for each individual cell (Fig. 4B, C). This allowed for the
identification of three distinct populations in PMA-treatedMnemiopsis
cells: Hoechsthigh/ SytoxGreenlow live cells that shownoDNA release and
intact cell membranes; Hoechstlow/ SytoxGreenlow cells which display
diffuse extracellular Hoechst and SytoxGreen fluorescence, repre-
senting ETotic cells8,61; and SytoxGreenhigh cellswith a range of Hoescht
staining, which are dead or dying non-ETotic cells.

To confirm that the image analysis pipeline accurately dis-
tinguishes non-ETotic cell death from ETosis, we induced death in
Mnemiopsis cells by exposure to a moderate osmotic shock
(dilute saline solution, 2X PBS). We measured a significant
increase in non-ETotic dead cells compared with normal seawater
media controls (Fig. 4C). Notably, dying cells were clearly sepa-
rated from cells undergoing ETosis. Using this pipeline, we then
quantified ETosis and cell death in cells treated with PMA. Con-
firming our initial observations by microscopy, PMA promoted
significant induction of ETosis, with a mean increase of 57.2% over
cells incubated with seawater media alone (Fig. 4C, D). We also
observed a modest but statistically significant increase in non-
ETotic cell death following PMA incubation (Fig. 4D).
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Fig. 3 | SEM ofMnemiopsis ETs. Scanning electron microscopy (SEM) images of
isolatedMnemiopsis cells.A Images of untreatedMnemiopsis stellate cells showing
multiple pseudopodial processes. B, C Mnemiopsis cells incubated with S. aureus
produce extracellular traps composed of long filamentous networks surrounding
the cells. Individual S. aureus bacterium can be seen closely associated with the
filaments. Insets show high magnification of S. aureus closely associated with the
Mnemiopsis ETs. (S. aureus are pseudocolored in high magnification for clarity).
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Wesought to establish that the automated image analysis pipeline
could detect ETosis induced by microbial exposure. Because we
observed clear ETs with SEM following S. aureus challenge, we then
applied this automated imaging approach to the microbial stimulus.
Samples that are incubated with microbes contain more background
fluorescence due to Hoescht and Sytox labeling of S. aureus nuclear
material; however, we observed a clear increase in ETosis following
S. aureus challenge using automated imaging analysis, as well as an
increase in non-ETotic cell death (Fig. 4C, D). Together, these data
confirm that PMA induces ETosis in Mnemiopsis. Further, the semi-
automated image analysis pipeline presented here can accurately
detect and quantify invertebrate ETosis and distinguish ETosis from
total cell death.

ETosis inMnemiopsis is initiated by agonists that induce ion flux
In vertebrates, ET formation can be induced by membrane ion flux
triggered by exposure to bacterial toxins that act as ionophores26,55,64.
Because stimulation of ETosis via ion flux has limited reports in non-
vertebrates27,29, we assessed whether well-characterized bacterially-
derived ionophores nigericin (potassium ionophore) and calcimycin
(A23187; calcium ionophore) could also elicit ETosis in Mnemiopsis
cells. We incubated Mnemiopsis cells with the K+ ionophore nigericin
and observed amean increase of 367% over untreated cells (Fig. 5A, B).
Incubation with the Ca2+ ionophore calcimycin resulted in a mean
increase of 225% over untreated control cells (Fig. 5A, B). Furthermore,

although incubation with either ionophore also significantly increased
Mnemiopsis cell death, consistent with their effects in vertebrate
cells65–67, our image analysis pipeline was able to clearly distinguish
ETosis from other forms of cell death. These data therefore support
evolutionarily conserved signalling pathways for ET formation in
response to immune stimulation or cellular damage.

Microbes, PMA, and calcium ionophore stimulates ETosis in
Crassostrea gigas hemocytes
Our observations that ET formation inMnemiopsis can be triggered by
similar signaling pathways to those involved in mouse and human
immune cell ETosis raise the possibility that ETosis may represent an
evolutionarily ancient response to infection or cell damage activated
by intracellular signaling pathways that are widely conserved
throughout animals68–70. However, stimulation of ETosis has not been
widely assessed outside of vertebrates27,29, nor compared between
phyla. To compare stimulation of Mnemiopsis cells with another
non-vertebrate metazoan in which ETosis has been established, we
extended our analysis to the bivalve mollusc, Crassostrea gigas, a
marine non-vertebrate bilaterian with a circulatory system possessing
specialized immune cells (hemocytes). Some hemocyte cell types have
been shown to display immune behaviors such as phagocytosis71. We
incubated isolated hemocytes with fluorescent E. coli for 4 h to assess
whether C. gigas cells were responding to the presence of bacteria by
phagocytosing the E. coli (Fig. 6A, B) or undergoing ETosis (Fig. 6B,
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Mnemiopsis cells that are incubatedwith PMAgram-positive S. aureus in vitro. Total
cell death increases significantly after incubation with dilute saline compared to
seawater control, while detection of ETosis events is unchanged. Data expressed as
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inset). When observing hemocytes by confocal microscopy, we found
that some hemocytes are highly phagocytic, with individual cells
ingesting multiple bacteria (Fig. 6A). Fluorescent imaging also identi-
fied networks of extracellular DNA surrounding some hemocytes after
exposure to microbial particles, similar to previous reports of bivalve
ET formation9 (Fig. 6B, insets).

While ETs have been reported in multiple bivalve species, suc-
cessful induction of ETosis in hemocytes following incubation with
either microbial stimuli or pharmaceuticals has varied8,9,29. To directly
compare ET production in oyster hemocytes with observations in
Mnemiopsis, we assessed ETosis in C. gigas hemocytes using the same
panel of microbes. We first confirmed that Crassostrea immune cells
undergo ETosis in response to microbial stimulation using our auto-
mated imaging analysis pipeline (Fig. 6C, D). Hemocytes were incu-
bated with heat-killed E. coli, S. aureus, or zymosan, and then assessed
using the automated image analysis pipeline for quantification of
ETosis. We found that ETosis increased after exposure to all three
microbes, compared to hemocytes incubated in vitro with seawater
media alone (Fig. 6C, D). Crassostrea hemocytes undergo ETosis in
response to bacterial challenge with both gram-negative E. coli and
gram-positive S. aureus with mean increases of 52.3% and 41.5% over
untreated hemocytes, respectively (Fig. 6D). The fungal PAMP zymo-
sanalsoelicited a significant ETotic response in oyster hemocytes,with
amean increase of 112% over seawater media controls. Interestingly, S.
aureus stimulation didnot stimulate significant increases in non-ETotic
cell death in hemocytes (Fig. 6D), in contrast to what we observed in
Mnemiopsis cells (Fig. 2D, E). Hemocyte total non-ETotic cell death
increased significantly with either E. coli or zymosan exposure.

We also measured ETosis in Crassostrea hemocytes after four-
hour incubations with PMA, nigericin, calcimycin, or seawater media
controls (Fig. 6E, F). Exposure to PMA induced significant ET produc-
tion in isolatedCrassostreahemocytes,with a relativemean increaseof
95.7% (Fig. 6F). A large proportion of Crassostrea hemocytes also
produced ETs after exposure to calcimycin, with a mean increase of
209% over controls (Fig. 6F). These results are similar to the robust
response reported in prior studies of bivalve hemocytes to Ca2+ iono-
phore stimulation29. In contrast to Mnemiopsis cells, incubation of
hemocytes with the K+ ionophore nigericin showed no significant
induction of ETosis (compare Figs. 2D, E and 6F). Notably, non-ETotic
cell death does not increase in C. gigas hemocytes following drug
incubation. Unexpectedly, both PMA and calcimycin treatment resul-
ted in a relatively minor, but statistically significant, decrease in non-
ETotic cell death.

Discussion
Identifying core molecular mechanisms of immune cells and their
evolutionary origins is critical for understanding the evolution of
metazoan immune cell function and behavior. Here we report that
ctenophores, which diverged very early from the metazoan stem
lineage, have immune cells capable of ETosis, a cellular response to
microbes first described in mammalinan neutrophils. We also show
that cells isolated from the model ctenophore Mnemiopsis leidyi
undergo ETosis following exposure to diverse microbial components,
and stimulation of intracellular signaling cascades known to precede
ETosis in vertebrates. For example, we find that incubation with the
potassium ionophore nigericin stimulates ETosis in Mnemiopsis cells,
as has been reported for mammalian neutrophils, suggesting that K+

efflux may be an evolutionarily conserved trigger for ETosis. Based on
our results, we propose that ETosis represents a integralmechanismof
cellular immune defense in metazoans (Fig. 7).

Since the first description of neutrophil extracellular traps1, mul-
tiple pathways involved in the generation ofmammalian ETs have been
identified26. However, the intracellular actors necessary for ET forma-
tion in non-vertebrate taxa are not well understood. For example, gene
homologs for proteins known to be essential for ETosis in mammalian
neutrophils, such as peptidylarginine deiminase 4 (PAD4), neutrophil
elastase, myeloperoxidase (MPO) and pannexin-1 are absent outside of
vertebrates. There is strong evidence for the presence of multiple
ETosis pathways in non-vertebrates that can be activated via stimula-
tion with microbial signatures, parasites, PMA, A23187, and UV
light8–12,29. Potassium ion efflux, for example, is classically associated
with cellular damage, including during bacterial infection72. Calcium
flux has been implicated in ET formation in vertebrates either as a
component of immune receptor-mediated signaling or as an activator
of downstream effectors that drive DNA condensation preceding
ETosis73. In addition to intracellular ion flux, components of vertebrate
ETosis pathways, such as ERK, p38, or Akt, are foundational compo-
nents of metazoan intracellular signaling68–70.

Our ability to make further direct comparisons of the molecular
mechanisms of ETosis between vertebrates and Mnemiopsis is cur-
rently hampered by a lack of tractable forward genetic approaches and
is therefore largely restricted to pharmacological perturbation. How-
ever, our data supports considerable apparent conservation of ET
formation; firstly, bacterial and fungal components (E. coli, intact S.
aureus and fungal particles) significantly stimulated ETosis in Mne-
miopsis and Crassostrea hemocytes in our study. These results are in
agreement with work in other non-vertebrates and supports the
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concept that ET formation is a fundamental component of metazoan
anti-microbial defense8–12,29. We also demonstrate that ETosis in Mne-
miopsis and Crassostrea is stimulated by PMA, which in mammalian
cells stimulates protein kinase C and Ca2+ flux, and also by the Ca2+

ionophore A23187. These findings align with observations in verte-
brate neutrophils26 supporting a role for Ca2+ transients in metazoan
ETosis. Finally, the K+ ionophore nigericin promoted robust ETosis in
Mnemiopsis, indicating additional conservation of K+ sensing and sig-
naling pathways. Interestingly,Crassostreahemocytes did not produce
ETs in response to nigericin, raising the possibility that the nigericin-
stimulated pathway is lost in this mollusc species. Signaling pathway
inhibitors optimized for marine invertebrate cells will be useful for
future studies of molecular actors involved in immune responses.

Within other non-bilaterian clades, ETosis has been reported in
the sea anemone Actinia equina following stimulation with PMA8, but
there are no reports assessing whether placozoans or poriferans have
cells capable of ETosis (Supplemental Table 1). ETosis has now been
reported in two non-bilaterian clades – Ctenophora and Cnidaria – as
well as in ecdysozoans, spiralians, and deuterostomes; we thus pro-
pose that the most parsimonious hypothesis supports ETosis as a
conserved immune behavior in metazoans. An alternative con-
vergencehypothesis, invoking several independent emergences of this
immune defense, would require a minuimum of two distinct origins
within metazoans alone. Weighing past reports of ETosis across
Metazoa as well as our findings of an additional occurrence of non-
bilaterian ETosis, we do not feel that current data supports multiple
origins formetazoan ET production. Futher, convergent acquisition of
ETosis in ctenophores cannot be robustly assessed at present due to
lack of data fromPorifera and Placozoa.While the evolutionary history

of Ctenophora has been a subject of recent debate37–40,74,75, cteno-
phores represent the earliest-diverging metazoan group in which
ETosis has been reported.

In contrast to vertebrate immune cell nuclear morphologies that
correspond with discrete immune cell functions (e.g., lobed nuclei in
neutrophils and eosinophils76), no obvious differences in nuclear
morphologies have been reported in either bivalve hemocytes or
ctenophore immune-like cells. We did observe that Mnemiopsis cells
that underwent ETosis in vitro after exposure to E. coli did not appear
to have phagocytosed bacteria in large amounts (Supp. Movie 2).
Intriguingly, we also observed other motile cells that had phagocy-
tosed large amounts of bacteria without undergoing ETosis (Supp.
Fig. 2, Supp. Movie 3; Supp. Movie 4). Our functional characterization
of ETosis-competent Mnemiopsis cells suggests that future studies
should assess whether ETosis-competent and highly phagocytic non-
ETotic cells represent discrete immune cell types in ctenophores.

It remains unclear whether non-vertebrate immune cells are
capable of vital (mitochondrial) ETosis, which involves production of
ETs derived frommitochondrial DNA while maintaining cell viability13.
Ctenophores have not previously had specific immune cell anti-
microbial behaviors described beyond phagocytosis32,46. We demon-
strate that Mnemiopsis leidyi possesses cells functionally competent
for ETosis in response to a range of microbial challenges. Our data
demonstrates that both Mnemiopsis leidyi and Crassostrea gigas
immune cells can be stimulated to produce ETs with distinct phar-
maceutical agents that, in vertebrate immune cells, differentially
induce specific intracellular signaling pathways to activate ET pro-
duction. The production of extracellular traps inMnemiopsis suggests
this specific immune cell antimicrobial defense behavior was likely
present early in metazoan evolution, prior to the diversification of
extant metazoan lineages.

Methods
Animal maintenance
This research complies with all relevant animal experimentation reg-
ulations. Laboratory cultures of Mnemiopsis leidyi were maintained as
previously described44. Adult Mnemiopsis cells were isolated from
whole animals following established protocols32,47,48,77. In brief, whole
small adult Mnemiopsis (approximately 3 cm in length) were homo-
genized to a single-cell preparation using a loose-fitting dounce
homogenizer. Cells were mixed with 0.22 µm filtered seawater
(FSW) + 1% penicillin/streptomycin and filtered through a 70 µm sterile
nylon mesh before plating. Crassostrea gigas were maintained under
flowing seawater at approximately 13 °C and hemolymph was extrac-
ted from the adductor muscle with a syringe. Isolated cells from both
taxa were maintained in vitro under sterile conditions in 0.22 µm fil-
tered seawater (FSW) + 1% penicillin/streptomycin.

Scanning electron microscopy (SEM)
Mnemiopsis cells were seeded onto coverslips treated with poly-L-
lysine. Cells were incubatedwith orwithout heat-killed E. coli for 4 h to
induce ET formation. Cells were fixed in ½ strength Karnovsky’s fixa-
tive (2.5% glutaraldehyde, 2% paraformaldehyde in 0.1M sodium
cacodylate buffer, pH 7.3) overnight at 4 °C. Samples were then rinsed
with 0.1M cacodylate buffer and treated with 1% osmium tetroxide for
1 h. The samples were then dehydrated through a graded series of
alcohols and critical point dried (Autosamdri, Tousimis Corp, Rock-
ville, MD). Samples were mounted on stubs, sputter coated with gold/
palladium (Denton Desk IV, Denton Vacuum, Moorestown, NJ) and
imaged on a JSM 6610 LV scanning electron microscope at 5 kV (JEOL,
Tokyo, Japan).

Stimulation of ETosis and imaging
For stimulation and quantification of ETosis, cells were isolated
from 24 individual animals, plated in 96 well plates, and exposed to

Embryophyta

Amoebozoa

Ctenophora

Cnidaria

Vertebrata

Annelida

Mollusca

Crustacea

Hexapoda
Ca  

 io
no

ph
or

e

K 
 io

no
ph

or
e

PM
A

Micr
ob

es

PA
MPs

+ 2+

No Data This Study
Reported ETosis
Reported No ETosis

[14] [14]

[10] [10] [10]

[29] [29] [9,29]

[12]

[8][8]

[12]

[8]

[x]

[8,9,11] [8]

[5] [3,5,26] [5,6,26] [26] [26,28]

[8]

[15]

*

** * * *

*****

References other studies

[29]

Fig. 7 | Summary of reported ETosis phenomena across Eukaryota. The pre-
sence of cells competent for ETosis in diverse non-bilaterian, protostome, and
deuterostome taxa support the production of extracellular DNA traps as an evo-
lutionarily conserved metazoan immune defense mechanism. * – this study. Green
– ETosis reported to occur with this stimulus. Red – ETosis reported to not occur
with this stimulus. Grey –ETosis shown to occur in lineage but stimulus not
reported. White – no data. Numbers denote literature citations. An expanded table
containing othermajor clades inMetazoa, including clades forwhichETosis has not
been reported, can be found in Supplemental Table 1. Species silhouettes are
available via public domain on PhyloPic.org.

Article https://doi.org/10.1038/s41467-024-46807-6

Nature Communications |         (2024) 15:2990 8



pHrodo-E. coli, Staphylococcus aureus, zymosan particles (Sigma
Aldrich), 25μM nigericin (Thermo Fisher Scientific), 1mg/mL PMA
(Sigma Aldrich), or 4μM A23187 (Sigma). Each experimental condition
for each animal was performed in triplicate. Live cell staining was
performed following (2) and live imaging was performed using a JuLI
Stage (NanoEntek). For immunofluorescence, ctenophore cells were
prepared following establishedprotocols47,48,78 and labeledwithmouse
anti-histoneH11–4 (EMDMillipore, cat.MAB3422) at a dilutionof 1:200
and goat anti-mouse Alexa Fluor 488 (Thermo Fisher Scientific, cat.
A28175) at a dilution of 1:500. This specific H11–4 histone antibodywas
selectedbecause it recognizes histonesH1, H2A/B,H3, andH4proteins
across eukaryotic species. Cells were imaged using ×60 objective and
×100 oil objective, on a Nikon Ti (Eclipse) inverted microscope with
Ultraview Spinning Disc (CSU-X1) confocal scanner (Perkin Elmer).
Images were captured with an Orca-ER Camera using Volocity
(Quorum technologies). Post-acquisition analysis such as contrast
adjustment, deconvolution through iterative restoration and coloca-
lization were performed using Volocity software.

For quantification of ETosis and total cell death, cells were treated
with Hoechst 33342 (Sigma Aldrich) and SytoxGreen (Invitrogen) for
20min, before imaging at 20X on an automated imaging plate reader,
Cytation 3 (Biotek, software Gen5 v4.2).

Automated image-based profiling
We analyzed approximately 28,000 total images using CellProfiler
(v4.1.3). Image quality was assessed by calculating a focus score using
two classes Otsu thresholding method, weighted variance on 20 × 20
pixel measurements. We calculated and applied an illumination cor-
rection for eachfluorescent channel (SytoxGreen andHoechst) using a
background illumination function of 50 pixels block size, without
smoothing. Each corrected image was then segmented using a global
robust background method (0.05–50), with a smoothing scale of
1.3488 and a correction factor of 0.89. Clumped objects were identi-
fied and split by shape. For each segmented object we measured the
number and intensity of pixels in eachfluorescent channel. Each image
and each segmented object, along with Metadata, were exported as
csv files by experiment. R (v4.0.5) software with tidyverse (v1.3.1),
dplyr (v1.0.7) and readr (v1.4.0) packages were then used to transform
the datasets (https://github.com/carolinestefani/ETosis-and-death-
automated-pipeline). Data from images and objects were merged,
and measurements from individual images with a Focus Score <0.2
were removed from further analysis. This allowed us to identify and
select only images that were in focus. Surface area, Hoechst intensity
and SytoxGreen intensity per object (nucleus) and per individual ani-
malwere then imported into FlowJo (v10.8.0), and percentages of cells
per delineated population (dead/dying cell, live cell, and ETotic cell)
were calculated. Dying and ETotic cells were gated as indicated on the
figures. Finally, percentages per individual animal surveyed were
combined and tested for statistical significance using GraphPad Prism
(v9.2.0). All statistical tests were performed using two-tailed unpaired
student t-test *p <0.05, **p < 0.01, ***p <0.001, ****p <0.0001.

Statistics and reproducability
No statistical method was used to predetermine sample size. No data
were excluded from the analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The imaging and statistical data generated in this study are provided in
the Supplementary Information/Source Data file. Source data are
provided with this paper.

Code availability
Detailed computationalmethods and associated codemaybe found at
https://github.com/carolinestefani/ETosis-and-death-automated-
pipeline
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