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Multi-level, forming and filament free, bulk
switching trilayer RRAM for neuromorphic
computing at the edge

Jaeseoung Park 1,6, Ashwani Kumar1,6, Yucheng Zhou1, Sangheon Oh1,
Jeong-Hoon Kim1, Yuhan Shi1, Soumil Jain2, Gopabandhu Hota1, Erbin Qiu3,
Amelie L. Nagle4, Ivan K. Schuller3, Catherine D. Schuman 5,
Gert Cauwenberghs2 & Duygu Kuzum 1

CMOS-RRAM integration holds great promise for low energy and high
throughput neuromorphic computing. However, most RRAM technologies
relying on filamentary switching suffer from variations and noise, leading to
computational accuracy loss, increased energy consumption, and overhead by
expensive program and verify schemes. We developed a filament-free,
bulk switching RRAM technology to address these challenges. We system-
atically engineered a trilayer metal-oxide stack and investigated the switching
characteristics of RRAM with varying thicknesses and oxygen vacancy dis-
tributions to achieve reliable bulk switching without any filament formation.
We demonstrated bulk switching at megaohm regime with high current non-
linearity, up to 100 levels without compliance current. We developed a neu-
romorphic compute-in-memory platform and showcased edge computing by
implementing a spiking neural network for an autonomous navigation/racing
task. Ourwork addresses challenges posed by existingRRAM technologies and
paves the way for neuromorphic computing at the edge under strict size,
weight, and power constraints.

As the Moore’s law is coming to an end due to the limitations of phy-
sical scaling of CMOS technology, neuromorphic compute-in-memory
(CIM) approaches have attracted huge attention to keep improving
computing performance1. The CIM has the potential to alleviate the
von Neumann bottleneck, a limitation in computing performance
resulting from significant energy loss and time delays during data
transfer between processors andmemory units in classical computing
systems. While GPUs and tensor processing units excel in parallel
computing compared to CPUs, they are still reliant on static random
access memory, which demands substantial physical space2,3. Emer-
ging non-volatile memory (eNVM) devices including phase change
memory (PCM)4, magnetic random access memory (MRAM)5,

conductive bridge random access memory (CBRAM)6,7, ferroelectric
field effect transistor (FeFET)8, resistive random access memory
(RRAM)9,10, and memristive synapses based on 2D materials11–13 have
been extensively studied for physical implementations of neuro-
morphic CIM platforms. RRAM devices are gaining attention due to
their exceptional density, lower fabrication cost, and back-end-of-line
(BEOL) compatibility with CMOS technology9,14.

RRAM-based reconfigurable systems hold great promise for low
energy and high throughput neuromorphic computing. Neurosynaptic
cores constructed byCMOS-RRAM integration have showndynamically
high-performance reconfigurable dataflow and energy efficiency of 74
TMACS/W15,16. However, threemajor challenges are yet to be addressed
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to scale CMOS-RRAM based accelerators and achieve energy-efficient
dynamic on-chip learning with RRAM crossbar arrays: (i) Most of the
RRAM devices rely on filamentary switching, which suffers from
extensive variations and noise leading to computational accuracy loss
and increased energy consumption17. Programming RRAM into multi-
level resistance states requires expensive read and verify programming
schemes, unsuitable for on-chip training18,19. (ii) LowON-state resistance
of filamentary RRAM increases the power consumption due to high
current read and write operations. As the resistance approaches the
interconnect resistance20, it constrains the array size and parallel mul-
tiply & accumulate (MAC) operations. (iii) Filamentary RRAM requires
high forming voltages to generate a conductive filament, that is not
compatible with advanced CMOS technology nodes. To address all
these challenges, here, we demonstrate systematic engineering of a
trilayer metal-oxide bulk RRAM stack and investigate the switching
characteristics of RRAM devices with varying thicknesses and VO dis-
tributions across the trilayer. Sputtered porous TiOx layer facilitates
modulation of VOdistribution in the switching layerwithout forming VO

filaments (Fig. 1a), enabling bulk switching operations in the megaohm
(MΩ) range, achieving high current nonlinearity, and programming up
to 100 levels without the need for compliance current. Highly linear
MVMsare achievedbyusing the row-differential scheme insteadof non-
differential scheme in fabricatedbulk RRAMcrossbars21.We employ the
fabricated RRAM crossbars to perform control for an autonomous
navigation/racing task using a spiking neural network (SNN) model,
demonstrating compatibility for neuromorphic computing at the edge
applications. Our work tackles the challenges presented by current
filamentary RRAM technologies, clearing a path for neuromorphic
computing at the edge while adhering to stringent size, weight, and
power constraints.

Results
Optimization of trilayer bulk RRAM stack
To systematically investigate switching characteristics of RRAM devi-
ces based on multi-layer stacks, we fabricated RRAM devices in four

different switching layer (Al2O3/TiO2/TiOx) configurations (Table 1).
Our detailed fabrication process is explained in the methods. All
samples include 3 nm Al2O3 as a high bandgap tunnel barrier (Eg
~9.0 eV) layer to limit the current and provide I-V nonlinearity through
tunneling. For S1 and S2, ALDTiO2 layers (S1 = 20 nm, S2 = 40 nm)were
depositedwithout breaking the vacuum. S3 andS4have 3 nmALDTiO2

and sputtered TiOx layers (S3 = 6.5 nm, S4 = 40nm) with varying oxy-
gen stoichiometry (Fig. 1a). As shown in the plane-view and cross-
sectional SEM images, 16×16 crossbar arrays were fabricated using a
via-hole structuredesign (Fig. 1b–d). The via-hole structurewas chosen
to achieve uniform and reliable device switching instead of simple
crossbar structure. The via-hole design with 150nm thick plasma-
enhanced chemical vapor deposition (PECVD) SiO2 insulator elim-
inates the edge effects due to high-field corners or sidewalls22. In
addition, all steps of the fabrication process have low thermal budget
(T < 300 °C) which is perfectly compatible with CMOS BEOL integra-
tion process.

We first tested DC switching characteristics for all samples. Both
S1 (Fig. 1e, Ron = 150Ω, Roff = 400 kΩ) and S2 (Fig. 1f, Ron = 3 kΩ,
Roff = 2 GΩ) exhibit only filamentary switching with significant varia-
tions in set/reset voltages in consistent with the previous research on
the filamentary RRAM using Al2O3/TiO2-x stacks9. The high OFF-state
resistance of S2 is due to thicker TiO2 layer. A 200μA compliance
current is necessary to prevent permanent breakdown during DC set
process for both devices. Although the filamentary RRAM shows
resistance switching behavior, these devices suffer from highly non-
uniform switching characteristics due to the stochastic nature of fila-
ment formation and rupture17. The low ON-state resistance of the
filamentary RRAM also increases the power consumption due to high
energy read and write operations. In addition, the abrupt resistance
jumps during the set and reset processes are not suitable for con-
tinuous synaptic weight updates during online learning where the
multi-level conductance update is needed. RRAM devices including
sputtered TiO2 (S3) or TiOx (S4) layer exhibit bulk switching char-
acteristics (Fig. 1g, h). Surprisingly, S3 shows both filamentary and bulk
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Fig. 1 | RRAM device stack and DC I-V switching characterization. a Illustration
of fabricated RRAM device stack and crossbar arrays. Bulk and filamentary RRAM
switching mechanisms are compared. For bulk switching, the distribution of oxy-
gen vacancies (VO) is modulated between TiOx and TiO2 layers. For filamentary
switching, the VO filament formation and rupture occur near the bottom electrode.
Scanning Electron Microscopy (SEM) images of fabricated b 16×16 crossbar array
c single trilayer RRAM device, and d cross-section of a half-cut RRAM device.

Filamentary switching characteristics of e S1 and f S2. g Coexistence of filamentary
and bulk switching RRAM in S3. They show the opposite polarity due to the dif-
ferent resistance-switching mechanisms. Black arrows show the polarity of fila-
mentary switching, while red arrows show polarity of bulk switching. h Bulk RRAM
DC I-V characteristics of S4 without forming filaments. 50 cycles of DC sweeps
perfectly overlap, showing highly uniform bulk switching.
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switching with a transition from bulk switching to filamentary switch-
ing as DC sweep range is increased from 1 V to 1.5 V. In high voltage DC
sweep range (|V| < 1.5 V) where filamentary switching is observed, it
follows the same switching polarity (a positive set and negative reset
voltage) as S1 and S2 filamentary RRAM devices (Ron = 200Ω,
Roff = 145 kΩ). In low voltage DC sweep range (|V| < 1 V) where bulk
switching dominates, it demonstrates gradual resistance change dur-
ing DC sweep without any sudden resistance jumps that are observed
in filamentary switching (Ron = 76 kΩ, Roff = 180 kΩ). Switching direc-
tion for bulk switching (a negative voltage set and a positive voltage
reset) show opposite polarity to filamentary switching. Although both
filamentary and bulk switching are observed in different voltage
regimes and the opposite polarity, coexistence of both mechanisms is
not desirable for reliable synaptic weight updates23. For the RRAM
devices with a thicker and VO-rich sputtered TiOx layer (S4), only bulk
switching behavior is observed without any filament formation. S4
exhibits, highly reliable bulk switching behavior with excellent uni-
formity over 50 DC cycles (Fig. 1h, Ron = 410 kΩ, Roff = 1MΩ). Further-
more, the bulk switching for S4 exists in the MΩ resistance range in
contrast to bulk switching occurring ~100 kΩ for S3. Therefore, we
decided to further investigate switching characteristics andmulti-level
resistance states for the trilayer bulk RRAM (S4) and chose it for
neuromorphic computing with the crossbar array demonstrations.

To analyze trilayer structure of the bulk switching RRAM, the
transmission electron microscopy (TEM) and scanning transmission
electronmicroscopy - electron energy loss spectroscopy (STEM-EELS)
analyses were performed (Fig. 2). We estimated the composition of Ti

metal layer as TiO1.2 based on the composition analysis. The top Ti
metal layer scavenges the oxygen from the sputtered TiOx layer due to
the lower chemical potential of oxygen in Ti suboxides than that in
TiO2

24. There are previous studies that exploit Ti as a scavenging layer
to reduce underlying oxide layers25,26. For example, for the Nb-based
selector device fabrication, Ti metal plays an important role in stabi-
lizing the underlying NbO2 selector layer without further oxidation to
the thermally stable Nb2O5 composition. The Ti metal also reduces Hf-
based oxides to induce oxygen vacancy defects in it so that the RRAM
device can form the filaments at the lower set voltage. The ALD TiO2

layer has darker contrast in bright field-TEM image, confirming higher
atomic density than the TiOx layer (Fig. 2a). STEM-EELS line-scan pro-
file shows lower oxygen concentration in TiOx layer than ALD TiO2

layer (Fig. 2b). Furthermore, STEM-EELS composition map (Fig. 2c)
shows nm-scale dark areas only in the sputtered TiOx layer pointing to
a porous structure. To further analyze the crystal structure and film
density, grazing incidence X-ray diffraction (GIXRD) and X-ray reflec-
tion (XRR) measurements were conducted (Supplementary Fig. S1).
30 nm ALD TiO2 layer shows crystalline anatase phase while sputtered
TiOx films show an amorphous phase. The grain boundaries are well
known to be the high diffusivity paths of small ions such as oxygens or
hydrogens27,28. Especially in polycrystalline filament RRAMdevices, the
grain boundaries acts an important role in charge transport and VO

accumulation and diffusion29. Due to these diffusivity paths, filament
formation and rupture easily occur in the filamentary RRAM devices
(S1 and S2). In the amorphous phase, however, there are no high dif-
fusivity paths for VO, so the filament formation can be successfully
suppressed. XRR measurements show that the critical angle of sput-
tered TiOx layer (0.52°) is smaller than ALD TiO2 layer (0.55°), sug-
gesting that the film mass density is smaller for the sputtered TiOx

layer. The distribution of VO defects is modulated by the external
electric field in a whole switching layer rather than forming a locally
accumulated VO filaments, so that we can achieve bulk switching
behavior.

Characterization of bulk RRAM switching behavior
Observing uniform and forming free bulk switching in the trilayer
RRAM with oxygen deficient TiOx layer, we investigated the area
scaling of the device resistance to confirm bulk switching (Fig. 3a–d,
Diameter: 3–10μm). For the trilayer RRAM (S4), resistance linearly

Table 1 | Four different multilayer stacks are fabricated
(S1–S4). Only the trilayer with a sputtered TiOx layer (S4)
shows stable bulk switching characteristics without filament
formation

Sample Oxide stack Dominating switching

S1 ALD Al2O3/TiO2 (3 nm/20 nm) Filamentary

S2 ALD Al2O3/TiO2 (3 nm/40nm) Filamentary

S3 ALD Al2O3/TiO2 (3 nm/3nm)
/ Sputter TiO2 (6.5 nm)

Filamentary/Bulk

S4 ALD Al2O3/TiO2 (3 nm/3nm)
/ Sputter TiOx (40nm)

Bulk
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Fig. 2 | Cross-sectional analysis of bulk RRAM device. a Cross-sectional bright-
field Transmission Electron Microscopy (TEM) image of trilayer bulk RRAM. The
bright contrast of TiOx suggests a porous structure for the layer. b Atomic con-
centration profile measured by Scanning Transmission Electron Microscopy –

Electron Energy Loss Spectroscopy (STEM-EELS) along the yellow arrow. All

interfaces were determined based on the ion concentration and contrast in TEM
image. The sputtered TiOx layer shows a smaller oxygen concentration which is
lower than ALD TiO2 layer due to the VO in the layer. c STEM-EELS mapping of red
dotted box region in a.
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scales with the area for both high resistance (HRS) and low resistance
states (LRS) (Fig. 3b), suggesting bulk switching23,30. In the filamentary
RRAM, both HRS and LRS resistances are independent on the device
area because the resistance depends on the width and conductivity of
the filament that can only be modulated by the compliance current
during the SET process31.The device-to-device (D2D) variations of
pristine, HRS, and LRS states show tight distributions in MΩ regime
(Fig. 3c, d), addressing the high variability issue of filamentary RRAM
devices. Perfectly overlapping DC sweeps over 50 cycles (Fig. 1h)
suggest that the trilayer bulk RRAM exhibits minimal cycle-to-cycle
variation.

We systematically studied the conduction mechanism of trilayer
bulk RRAM by fitting DC I-V characteristics with direct tunneling,
Fowler-Nordheim (FN) tunneling and space-charge-limited conduction
(SCLC) models in both HRS and LRS (Fig. 3e–h). To investigate the
conduction mechanism in the bulk RRAM devices, the I-V character-
istics are plotted in a log(I/V2) vs. 1/V form (Fig. 3f). In this plot, there
are two different voltage regime where the direct tunneling and
Fowler-Nordheim (FN) tunneling dominate by the following relations
(Direct tunneling, I∝V/FN tunneling, I∝V2 ∙ exp(−1/V))32,33. We devel-
oped amodel explaining current conduction in our bulkRRAMdevices
(Supplementary note 1) and fitted to experimental results shown in
Fig. 3f, g. To further validate our model, we performed temperature-
dependent I-Vmeasurements on our bulk RRAMdevices and fitted the
measurement results to ourmodel (SupplementaryFig. S2). Ourmodel
based on direct tunneling, Fowler-Nordheim tunneling, and SCLC
shows great agreement with the current voltage characteristics at all
temperatures and voltage ranges.

In the low voltage regime (V <0.06 V), the current of both HRS
and LRS states are linear to the voltage, meaning that the direct tun-
neling is the dominant conduction mechanism. In the high voltage
regime (V > 0.5 V), however, the log (I/V2) is linear to the 1/V, where the
FN tunneling becomes dominant. These tunneling conductions occur

through the high band gap Al2O3 layer which provides the MΩ-level
resistance switching and high nonlinearity (IV/I0.5V = 15 (V = 1.5 V)) of I-V
curves34. Both HRS and LRS states of bulk RRAM devices follow the
same conduction mechanism, whereas the filamentary RRAM or
CBRAM would show ohmic conduction in LRS states because current
conduction occurs through the VO or metal cation filaments35,36. To
study the switchingmechanism, the double-log plot of I-V curves were
fitted with the SCLC theory37–39 (Fig. 3g). In the low voltage regime, the
double-log I-V curves follows a linear relationship due to the dom-
inance of the electron drift across TiOx layer (I∝V). In the high voltage
regime, they follow a power dependency on voltage due to the trap-
limited conduction through the VO deep defects in the sputtered TiOx

layer (I∝Vm+1, m = Tc/T, Tc is the characteristic temperature). Experi-
mental I-V measurement data were fitted using our model (Supple-
mentary note 1), and the trap density (Nt) was extracted. Figure 3h
shows that the trap density is decreased as the device resistance is
increased.

Bulk switching can be better understood by reviewing filamentary
RRAM first. In the filamentary RRAM, VO defects are well known to be
mobile with external electrical and thermal stimuli40. Filamentary
RRAM needs an initial electroforming step which forms the VO defect
filaments between two electrodes. Once the filaments are formed
bipolar switching takes place due to the forming and rupturing of the
filaments. Meanwhile, the grain boundaries are well known to be the
high diffusivity paths of small ions such as oxygens or hydrogens in
crystalline oxides27,28. Especially for our polycrystalline filamentary
RRAM devices (S1, S2), the grain boundaries play an important role in
charge transport and VO accumulation and diffusion. Due to these
diffusivity paths, filament formation and rupture easily occur in the
filamentary RRAM devices.

In our bulk RRAMdevices, we deposited an amorphous, porous,
and VO-rich thick TiOx layer instead of having a crystalline ALD TiO2

layer. Due to the absence of fast diffusion paths or accumulation
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Fig. 3 | Electrical DC characterization of bulk RRAM devices. a DC I-V switching
curves of trilayer bulk RRAM with different diameter cells from 3 to 10 μm.
b Double log plot of resistance vs. cell area. Area-scaling behavior with a slope of 1
suggests bulk switching of RRAM devices. Each size cell data is collected from 40
different devices measured at Vread = 0.1 V. c Cumulative distribution function
(CDF) of bulk RRAMpristine resistance in different size cells. dCDF of LRS andHRS
states programmed with DC sweep using bulk RRAM 5μmdevices. e Band diagram
of trilayer bulk RRAM. Al2O3 3 nm wide gap layer acts as a tunneling barrier where

the direct/Fowler-Nordheim (FN) tunneling happenat small/large voltage region. In
the TiOx layer, space-charge-limited-conduction (SCLC) occurs due to deep-level
VO defects. f Log(J/V2) vs. 1/V curves of high resistance state (HRS) and low resis-
tance state (LRS). Both states show similar conduction mechanisms. g Log J – log V
plot of LRSandHRS states. In lowvoltage regime, current density follows theOhm’s
law (J∝V), while it follows the Mark-Helfrich’s law (J∝Vm+1) in high voltage regime.
h Trap density (Nt) vs. device resistance curve. Nt is achieved by the fitting the
experimentally measured data with our electrical conduction model.
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sites for VO defects in the amorphous phase, the VO defects are not
clustered in specific locations that facilitate filament formation. The
filament formation is effectively suppressed in an amorphous layer
as compared to the crystalline phase in RRAM devices41. VO defects
will drift homogeneously throughout the entire area of the layer
rather than forming defects-clustered filaments, following the
direction of the electric field, enabling bulk switching instead of
filamentary switching. When a positive voltage is applied to the top
electrode, the VO are pushed downwards towards the bottom elec-
trode and the VO concentration in the TiOx layer is reduced. Space-
charge-limited-conduction (SCLC) dominates the conduction in the
TiOx layer. Since the VO concentration in the TiOx layer is reduced,
the SCLC current decreases confirming that the device is reset to a
higher resistance state. Our fitting results shown in Fig. 3g and
reduced trap density shown in Fig. 3h confirms this model for the
bulk switching mechanism. The bulk switching shows the opposite
polarity to the filamentary switching consistent with other previous
reports23,42.

The ability to perform analog weight updates is a crucial feature
in synaptic devices for efficient implementation of learning and
inference in neuromorphic computing applications. Analog weight
update is the most important property in synaptic devices to
achieve successful neuromorphic computing applications. The fila-
mentary RRAM shows abrupt resistance change so that they have
been mainly employed for binary or low-precision implementation
of neural network weights. Programming filamentary RRAM devices
into discrete conductance states require extensive number of pro-
gram and verify operations, not suitable for online learning
applications30. In contrast, for the bulk RRAM devices, it is easier to
achieve gradual weight updates. We first investigated gradual
weight updates using identical pulses in two different conductance
regimes; ~0.8 μS and ~0.12 μS. 32-states are achieved by applying of
identical set and reset pulses for both conductance regimes
(Fig. 4a, b). The long-term potentiation (LTP) and the long-term
depression (LTD) curves show gradual conductance change
(Vread = 0.1 V). We also implemented an incremental pulse scheme.
We optimized the incremental pulse scheme to have linear LTP and
LTD curves with a higher dynamic range and larger number of states
(Fig. 4c). Figure 4d, e shows the gradual current increase/decrease
during the transient set (−2.0 V)/reset (+1.5 V) pulses. We quantita-
tively analyzed the device non-linearity and found that incremental
pulse scheme can improve non-linearity (Supplementary Fig. S3,
Supplementary note 2). The non-linearity could be improved by
further optimizing the pulse amplitude and width for potentiation
and depression. To compensate for the non-linearity effect in
hardware implementation of neural networks, we previously devel-
oped the adaptive quantizationmethod, whichmaps neural network
weights onto the device conductances based on the distribution and
relative importance of the weights43. Various other nonuniform
quantizationmethods have also been adopted by the broader neural
networks community to improve efficiency of neural networks44,45.
Based on all the pulse measurement results, the trilayer RRAM
devices show gradual conductance switching in MΩ regime that can
overcome the drawbacks of filamentary RRAM devices which show
binary resistance states in kΩ regime. We investigated cycling
properties of our trilayer bulk RRAM devices by performing
endurance measurements based on pulse programming. As shown
in Supplementary Fig. S4a, the pulse endurance test results exhibit
stable weight modulation until 2 × 105 cycles under set/reset pulses
(Set: −2.0 V 5ms/Reset: 1.0 V 5ms). We also extracted the variations
(σ) from the endurance cycling tests and the variations were about
1%which is enough to differentiate the different conductance states.
Read disturbance is tested up to 200k cycles and they show no
degradation in device characteristics due to uniform and stable bulk
RRAM switching (Supplementary Fig. S4).

Hardware SNN implementation with RRAM crossbars
For the hardware implementation of neural networks, we first inves-
tigated the effectofONandOFF state resistances (RON andROFF) on the
read and write operations across crossbar arrays using circuit simula-
tions (HSPICE). Supplementary Fig. S5a shows that for ROFF < ~ 10MΩ,
the read margin significantly degrades as the array size increases. For
the write operation, the voltage across individual RRAM cells decrea-
ses with RON (Supplementary Fig. S5b). These results indicate the
importance of MΩ range resistance to maintain read and write accu-
racy for selector-less crossbars. Although MΩ resistance and non-
linearity of trilayer RRAM are great for reliable crossbar operation, a
small dynamic range (RON/ROFF ~ 2.5) is a limiting factor. To address
that, we employed a row-differential encoding scheme (Fig. 5a), where
two RRAMs represent positive and negative weights by utilizing
opposite voltage polarity, i.e., VWL+ = Vref + VREAD, VWL- = Vref –VREAD.
The differential conductance ‘Diff_G’ given by G+-G−, represents both
positive and negative weights. For the differential read of multi-level
RRAM, the effective dynamic range depends on the minimum
achievable conductance difference (Diff_Gmin) as in equation ‘2(Gmax-
Gmin)/Diff_Gmin’ (Fig. 5a). It results in a significantly higher dynamic
range (~170) compared to the non-differential single RRAM scheme
(Fig. 5b) due to the small ‘Diff_Gmin’, helping with mapping a wider
rangeof real-valuedweights. For hardware implementationwithRRAM
crossbar arrays, we developed a neuromorphic compute-in-memory
platform (Fig. 5d). It utilizes a switched capacitor voltage-sensing cir-
cuit to avoid the need for current-sensing schemes relying on high-
power large-area transimpedance amplifiers (Fig. 5e, f)46. We per-
formed read (Fig. 5g) and MVM computations on the trilayer RRAM
crossbar and demonstrated the differential scheme can achieve highly
linear MVM computation.

For neuromorphic computing at the edgewith trilayer bulk RRAM
crossbars, we implemented an SNN trained using Evolutionary Opti-
mization for Neuromorphic Systems (EONS) algorithm47. In EONS
algorithm, randomly generated populations are used as initial seeds
for neural network optimizations. The fitness score, a criterion to
measure neural network accuracy is assessed in each neural network
during the evaluation step. Then, the selected networks through the
tournament methods are used to perform reproduction steps where
various operators occur (e.g., duplication, crossover, andmutation). In
this research, the SNN was specifically trained for a small-scale
autonomous racing task48 using LIDAR sensor data as the input and
producing speed and steering angle as the outputs. For the evolu-
tionary training, the fitness function was defined to evaluate the
spiking neural network and to encourage behaviors for completing the
taskwithout collidingwith awall48. The SNNwas trainedon 5 Formula-1
tracks and tested on an additional 15 tracks (representative tracks are
shown in Fig. 6a) (https://github.com/f1tenth/f1tenth_racetracks),
performing pruning after the training. The pruned SNN consists of 14
input neurons and 30output neurons including recurrent connectivity
across and within the layers (Fig. 6b). For the hardware demo, SNN
weights were quantized into 4-bit precision and mapped onto RRAM
arrays according to the row-differential scheme. Experimentally map-
ped weights onto the crossbar show high consistency with the ideal
(target) weight map (Fig. 6c). Figure 6e, f shows steering angle and
speed calculated based on experimental RRAMweights in comparison
to software simulation during autonomous navigation testing of the
Catalunya map. Quantitative comparison of speed and steering angle
computations during navigation through all 15 racetracks show great
agreement with the ideal software simulation of the SNN (Fig. 6d).

Furthermore, to compare our work to other technologies (i.e.,
HfOx:Si

49, HfOx/TaOy
15, and Al2O3/TiO2

9) at the architecture level, we
simulated the energy consumption by the SNN model trained for the
samenavigation taskswhile implementing the required synapticweights
using thesedifferentRRAMtechnologies. Supplementary Figs. S6 andS7
show total energy needed to navigate all racetracks and individual
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racetracks, respectively. Our results suggest that our trilayer bulk RRAM
substantially (more than order of two) reduces energy consumed by the
synaptic arrays in comparisons to other RRAM technologies.

Discussion
In this work, we successfully demonstrated a forming-free bulk
switching RRAM technology by engineering a trilayer metal-oxide
stack. We systematically optimized the trilayer oxide stacks which
consist of high bandgap tunneling barrier (Al2O3) and different stoi-
chiometric TiO2 and TiOx layers. Due to the highly porous and amor-
phous TiOx layer, VO filament formation was effectively suppressed,

whereas the crystalline TiO2 layer showed filamentary switching
characteristics. The thickness of the Al2O3 tunnel barrier was chosen as
~3 nm to set the device resistance to ~MΩ regime (Supplementary
Note 3, Supplementary Fig. S8a). Thick TiOx layer was needed to
reduce the electric field across the VO-rich SCLC layer so that facile
filament formation due to drift and clustering of VO could be pre-
vented (Supplementary Fig. S8b). We achieved multi-level, uniform
bulk switching in MΩ regime without a compliance current in the bulk
RRAM devices.

We benchmarked our bulk RRAM device against different RRAM
technologies and showed the advantages on several metrics, i.e.,
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Fig. 4 | Multilevel gradual switching characteristics of the bulk RRAM devices
usingpulsemeasurements. aMultilevel switching using an identical pulse scheme
for 32 different states. Set: −2.5 V, 500μs/Reset: +1.5 V, 500μs. b Multilevel
switching using an identical pulse scheme for 32 different states. Set: −2.0 V, 5ms/
Reset: +1.0 V, 5ms. c Multilevel switching using an incremental pulse scheme for

100 states. Set: −0.8 V to −2.78 V (−20mV step)/Reset: +0.3 V to +0.993 V (+7mV
step). The transient current measurements using identical pulses d set (−2V) and
e reset (+1.5 V) operations showing multi-level bulk switching without any abrupt
current jumps (no filaments).
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forming free, multilevel, switching voltages, energy consumption,
BEOL compatibility, and robustness (Supplementary Table S2, Sup-
plementary note 4). The key figures of merit of our bulk RRAM tech-
nology RRAM technology can be summarized as follows; forming-free
operation, CMOS BEOL compatibility, high Ron and Roff that enables
reliable read and write in large scale crossbar arrays and low energy
operation, low switching voltages, high number of conductance states,
endurance comparable to other RRAM technologies, and much lower
total read energy.

Next step for the bulk RRAM technology is scaling device
dimensions to the nm regime. One potential concern could be varia-
bility for nanoscale devices. For memory technologies, the root cause
of the higher variability of characteristics due to cell scaling is related
to the number of charged carriers or particles. For instance, the charge
trapmemory with 10-nm technology node can store only 10 electrons
per device which cause severe variability issues in the device
characteristics50. Therefore, we established a conduction model for
our bulk RRAM devices to extract the number of oxygen vacancy
defects, which demonstrates 1.26 × 1026 VO defects/m3 in the layer.
When we assume the device scales down to 20 nm size with 40nm
thickness, ∼2000 VO defects exist in a single device. The order of VO

defects in a single cell is more than 3 orders higher than the number of
trapped electrons in a 10 nm tech node flash memory devices, so
variability related to the low number of defects is not expected to be a
major problem for our bulk RRAM devices. In addition, the high
variability in the conventional RRAMdevices come from the stochastic
nature of the filaments. Since both set and reset processes are deter-
mined by the stochastic movement of atoms in the switching oxides,
the device-to-device and cycle-to-cycle variability have been a main
problem of filamentary RRAM devices. In our bulk RRAM devices,
resistance is modulated by controlling the defect concentration in the
switching layer so that the variability problem of stochastic 1D

filaments can be resolved. In addition, the previous study about bulk
RRAM devices demonstrated uniform resistive switching character-
istics when the device is scaled down to 60×60 nm2 23. Finally, for the
scaled bulk RRAM devices, the tunnel oxide and the TiOx switching
layer thicknesses could be reoptimized to match MΩ resistance level.

In this work, we developed a neuromorphic CIM platform using
bulk RRAM crossbars by combining energy-efficient switched-capa-
citor voltage sensing circuitswith differential encoding ofweights. The
row-differential weight encoding enabled to increasedynamic rangeof
bulk RRAM devices as well as to give high-accuracy MVM operations.
We successfully mapped weights of SNN network for autonomous
navigation/racing tasks on Formula-1 racetracks onto bulk RRAM
crossbars using the row-differential weight encoding scheme. The fit-
ness score of weight maps on crossbars hardware showed good
agreement with ideal software simulation results, suggesting a com-
putational capability of bulk RRAM crossbars. Our work addresses the
problems of the filamentary RRAMs and offers a promising pathway
towards energy-efficient dynamic on-chip learning with RRAM
crossbars.

Methods
Bulk RRAM fabrication and packaging crossbars
Ti (12 nm)/Au (100nm) bottom electrode was deposited by the sput-
tering on a 4-inch SiO2 (300nm)/Si wafer with bilayer lift-off process
(LOR5B and AZ1512). Plasma-enhanced chemical vapor deposition
(PECVD) SiO2 (150nm) layer was deposited as an insulating interlayer
dielectric layer. Various via-hole sizes (Diameter: 3μm to 10μm) were
patterned with maskless photolithography and inductively coupled
plasma etching process with CF4 atmosphere. The Al2O3/TiO2 (3 nm/
3 nm) atomic layer deposition (ALD) layer was deposited with trimethyl
aluminum (TMA) and titanium chloride (TiCl4) precursor and water
oxidant without breaking vacuum. The sputtered TiOx layer was
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deposited with sputtering under the different oxygen partial pressures
to induce the VO into the film (S3: 100W, O2/(O2+Ar) = 10%/S4: 200W,
O2/(O2+Ar) = 5%). Ti (12 nm)/TiN (22 nm)/Ti (12 nm)/Au (200nm) top
electrode was deposited and patterned analogous to the bottom elec-
trode lift-off process. The switching layer was etched away by plasma
etching processed with O2/CF4/Ar/BCl3 gas chemistry. The Au wire
bonding was done using manual west bond ball bonder equipment.

Materials characterization
For structural characterization, high-resolution X-ray scattering mea-
surements (Grazing Incidence X-ray diffraction and X-ray reflection)
were conducted using in-house X-ray diffraction (Smartlab XRD,
Rigaku). Transmission electronmicroscopy (TEM)-ready samples were
prepared using the in-situ FIB lift-out technique on an FEI Dual Beam
FIB/SEM. The sampleswere cappedwith sputtered Ir and e-Pt/I-Pt prior
to milling. The TEM lamella thickness was ~100 nm. The samples were

imagedwith a FEI Tecnai TF-20 FEG/TEM operated at 200 kV in bright-
field (BF) TEM mode, high-resolution (HR) TEM mode, and high-angle
annular dark-field (HAADF) STEM mode. The STEM probe size was 1-
2 nm nominal diameter.

Electrical characterization and weight mapping on crossbars
The electrical I-V characteristics of the RRAM devices were measured
using a semiconductor analyzer (4155C, Agilent) and switching matrix
(E5250A, Keysight). A pulse generator unit (81110 A, Agilent) and pulse
measurement units with remote amplifiers (4200-SCS with 4225-PMU
and 4225-RPM, Keithley) were used for the pulse generation and
measurements.

The bulk RRAM crossbar arrays were wire-bonded on pin grid
arrays and mounted on custom designed printed circuit board (PCB)
to map the weights on the arrays. Weight mapping process on the
arrays was conducted using connected switching matrix,
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semiconductor analyzer, and a pulse generator unit. We implemented
an Opal Kelly FPGA Board to demonstrate the voltage sensing
scheme46. The conductancewas calculated by drivingWLs to Vpulse and
measuring the time constant of BL charging. Then the absolute con-
ductance was calculated by the following expression.

VBL≈Vref +
gi

PN
k = 1gk

Vpulse, for t≫
C

PN
k = 1gk

ð1Þ

For row differential MVM read-out to obtain expected versus
measured results, we took difference between RRAM devices (G+ and
G−) from two consecutive word-lines (WL+ and WL−) on the same bit-
line (BL). To perform the read-out operation, the ternary inputs
(X = [−1, 0, 1]) are assigned to each differential pair. When the input
Xi = 1, +Vread (Vref +0.1 V) is applied to the WL+ and −Vread (Vref
−0.1 V) is applied to the WL-. In the case of Xi = −1, −Vread (Vref −0.1 V)
is applied to the WL+ and +Vread (Vref +0.1 V) is applied to WL−. If the
input Xi = 0, then Vref is applied to both WL+ and WL−.

The charged voltage on the sampling capacitor is expressed as Eq.
(2).

Vrow�dif f =Vref +

P

i
G+
i � G�

i

� �
×Xi × Vread � Vref

�
�
�

�
�
�

P

i
ðG+

i +G�
i Þ

ð2Þ

where i = [1, 2,…,8] represents thenumberofdifferential pairs andVref
is the pre-charge voltage of sampling capacitor.

The expected MVM values are calculated after inserting the
extracted conductance values and the random sequence ternary input
vector ‘Xi’ in Eq. (2). In this case, first we read the total conductance
valueon the shared/selectedBL and then individual conductancevalue
of each RRAM on the same BL. To obtain the total conductance, we
activated all the WLs with Vread (Vref +0.1 V) and extracted RC time
constant of the charged voltage on a known value sampling capacitor
at selected BL. After deriving total conductance of the BL, the con-
ductance of each cross point is extracted by applying Vread (Vref
+0.1 V) on the targeted WL and Vref on the rest of the WLs. When the
charged voltage on the sampling capacitor reaches saturation, the
measured voltage is proportional to the ratio of individual RRAM
conductance to the total conductance:

V =Vref +
Gtarget

Gtotal
V read � Vref

�
�
�

�
�
� ð3Þ

where Gtotal =
P8

i = 1 G+
i +G�

i

� �
.

On the other hand, to obtain the measured MVM values, we
applied a random sequence of ternary input vector ‘Xi’ to the differ-
ential pairs. For every ternary random input vector, we captured the
charged voltage on the sampling capacitor using commercial 16-bit
resolution successive approximation register analog-to-digital con-
verter (SAR-ADC) (ADS7067, Texas Instruments). We presented these
measurement results as expected MVM vs measured MVM which fol-
low the linear trend as shown in paper (Fig. 5g).

Formula-1 track simulation
We leveraged the TENNLab Neuromorphic Framework software
framework51, along with Evolutionary Optimization for Neuromorphic
Systems (EONS)47 to design a spiking neural network for evaluation in
our hardware. The task that we optimized the neural network for was
autonomous control of a small-scale autonomous race car. We lever-
aged the F1Tenth52 simulation environment for training. In this envir-
onment, the observations provided to the neural network as input are
LIDAR observations from the car, and the actions that can be applied
(that are produced as output by the network) are steering angle
and speed.

We defined discrete values that the network can choose for
steering angles ([0, −0.01, 0.01, −0.03, 0.03, −0.05, 0.05, −0.07, 0.07,
−0.1, 0.1, −0.13, 0.13, −0.15, 0.15, −0.17, 0.17, −0.2, 0.2, −0.23, 0.23,
−0.25, 0.25, −0.27, 0.27, −0.3, 0.3, −0.34, 0.34]) and speed ([1, 1.1, 1.2,
1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2]). Two sets of output neurons are created,
one for steering angle and one for speed, andwithin those sets, one for
each legal value. At each step of the simulated environment, the car
receives as input 10 LIDAR beams, down-selected from the full 960
LIDAR beams by selecting the maximum beam distance in each of ten
equal-sized regions of the 960 beams. Then, the network simulates for
50 time steps, and the output neuron that firesmost for steering angle
corresponds to the selected steering angle value (and similarly for
speed). Observations are taken and actions are applied of 2 milli-
seconds in the simulation. Thus, the network makes decision about
steering angle and speed every 2 milliseconds.

Following methods similar to those in ref. 48, we used EONS to
optimize the parameters (synaptic weights and neuron thresholds)
and structure (number of hidden neurons and connectivity between
neurons) of a single spiking neural network. EONS is an evolutionary
algorithm-based approach that begins with an initial population of
randomly initialized networks. Then, each network is evaluated to
determine a training score. These scores are used with tournament
selection to preferentially select better-performing networks to serve
as parents. Then, new networks are created from those parents
through recombination/crossover and random mutations. The new
population is then evaluated, and this process is repeated for a fixed
number of generations. In this case, we optimized a single network for
200 generations. The training performance of the network that is used
to drive the optimization is the average score across five real-world
Formula 1 tracks, where the score for each track is the percentage of
two laps completedwithout crashing. The testing score of the network
is the average score across fifteen other Formula 1 tracks (i.e., tracks
not used during training). In this previous work, we have seen that the
networks trained in simulation are frequently able to translate to
successfully operate a small-scale physical autonomous car.

Figure 6d–f shows the direct performance comparison between
software and hardware crossbar-based implementation using the
speed (Sp = 1, 1.6, 1.7) and steering angle (An = −0.23, 0, 0.17, 0.23)
values chosen by the network out of all provided 11 speed values and
29 steering angles. EONS algorithm optimized the structure of the
spiking neural network and through the optimization, it determined
themost suitable speed and angle values among all theprovided speed
and angle values needed to perform the task.

Data availability
The data that support the plots and other results of this paper are
available from the corresponding author upon request.

Code availability
The software codes used for this study are available from the corre-
sponding author upon request.
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