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Automated in vivo enzyme engineering
accelerates biocatalyst optimization

Enrico Orsi 1, Lennart Schada von Borzyskowski 2, Stephan Noack 3,
Pablo I. Nikel 1 & Steffen N. Lindner 4,5

Achieving cost-competitive bio-based processes requires development of
stable and selective biocatalysts. Their realization through in vitro enzyme
characterization and engineering is mostly low throughput and labor-
intensive. Therefore, strategies for increasing throughput while diminishing
manual labor are gaining momentum, such as in vivo screening and evolution
campaigns. Computational tools like machine learning further support
enzyme engineering efforts bywidening the explorable design space. Here, we
propose an integrated solution to enzyme engineering challenges whereby
ML-guided, automated workflows (including library generation, implementa-
tion of hypermutation systems, adapted laboratory evolution, and in vivo
growth-coupled selection) could be realized to accelerate pipelines towards
superior biocatalysts.

The development of tailored and efficient bio-based processes is
essential for applications as diverse as biopharmaceutical produc-
tion, industrial biotechnology, food technology, crop improvement,
and bioremediation. To establish such profitable bio-based pro-
cesses, biocatalysts that can perform substrate-to-product conver-
sions with high volumetric productivities (gproduct L

−1 h−1), yields
(gproduct gsubstrate

−1), and selectivities (enantiomeric excess) are
essential1. To reach improvements in these performance indicators
and optimize chemical conversions, enzyme engineering has been
developed as one of the pillars of synthetic biology2, realizing
enzyme optimization and development from the single reaction step
to entire metabolic pathways2,3.

Current efforts in bioengineering aim at designing biological
systems that provide enzymatic activities beyond what has been
developed and optimized by nature2,4,5. Implementing these innova-
tions can further develop abio-based economy6–8. Hence, it isdesirable
to design novel, new-to-nature enzymatic activities as the key parts
needed to assemble complete synthetic pathways2,9 or used in enzyme-
driven catalysis applications directly in synthetic processes (e.g., in the
striking case of in vitro conversion of CO2/H2 or methanol into
starch10). However, creating and optimizing such new-to-nature

reactions is a challenging task, for which the use of rational protein
design accompanied by in vitro enzyme activity measurements or
adaptive laboratory evolution (ALE) might not be sufficient11,12.

At this point, directed evolution comes in handy, as it allows to
performDarwinian evolution in a test tube by increasingmutation and
recombination rates within a target gene13,14. Two types of directed
evolution approaches arepossible anddiffer in the environmentwhere
the evolution takes place. In vitro-directed evolution occurs outside a
living organism, whereas in vivo evolution takes place within living
systems. Both strategies have pros- and cons- which have been dis-
cussed elsewhere15,16. In recent years, in vivo-directed evolution
approaches have emerged as promising tools to use in protein engi-
neering campaigns11,16. The use of these approaches combined with
growth-coupled selection (meaning coupling the enzymatic activity of
interest to microbial fitness) has been applied for different optimiza-
tion strategies17,18. At the same time, automated biofoundries are
becoming pivotal in supporting high-throughput efforts for engi-
neering biology19–22. Hence, the use of these infrastructures for protein
engineering is gaining momentum23. Moreover, the use of artificial
intelligence (AI) and machine learning (ML) is aiding important
endeavors in the design of new biological systems, from protein- to
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organism level24–27. Therefore, we are witnessing a paradigm shift in
our ability and capacity to engineer biological systems. A combination
of these technologies might result in the establishment of self-driving
labs and workflows, which potentially accelerate scientific discoveries
and innovation while reducing human errors28–30. In this article, we
discuss how the integration of ML, in vivo continuous evolution, and
the use of automated biofoundries will accelerate the generation of
new and competitive biocatalysts capable of supporting the transition
towards a circular bio-based economy. Definitions of the most
important technical terms used within the text are described in the
Box 1.

An integrated workflow for accelerating in vivo enzyme
engineering
To enable the workflow proposed in this article, different fields of
expertize need to be integrated (Fig. 1). In brief, ML is used as input for
(i) predicting the modifications required for engineering the target
enzyme(s) and (ii) supporting thedesignof auxotroph selection strains
by suggesting target genes to delete. Then, these selection strains are
created through gene deletions. Subsequently, in vivo hypermutators
can be exploited to increase the mutation rate within the target gene.
Following the principle of growth-coupled selection, high-throughput
and continuous cultivation platforms can be used for enriching the
microbial population with clones containing the evolved target
enzyme(s). Finally, sequencing of the enriched clones can inform the
success of the evolution campaign. This step can also benefit from the
use of ML-guided computational tools. If necessary, this pipeline can
be iterated through several rounds.

The abovementioned steps should be intended as stand-alone
workflows, which can be integrated by mobile robot units (Fig. 1). In
the following sections of the manuscript, we dive more in-depth into
the different aspects of this pipeline, eventually suggesting their
integration using state-of-the-art automated workflows. Finally, we
discuss caveats and limitations of this concept.

Enzyme engineering generates improved biocatalysts
Mastering enzyme engineering is vital to enable the optimization of
existing bioprocesses or the exploration of new ones. Here, we cannot
give a comprehensive overview of this large and rapidly developing area
of research, but rather present key approaches and concepts. For amore
detailed summary, the reader is referred to the existing literature4,31–33.

The targets for enzyme engineering are highly diverse. To
broaden the substrate range, the active site must be opened and
remodeled; to improve the substrate specificity or enantioselectivity,
the active site must be altered to only accommodate one type of
desired substrate or intermediate33; to develop novel catalytic func-
tions, general principles of catalysis and transition state stabilization
have to be applied to modify a suitable scaffold enzyme. To increase
the thermal stability of enzymes and allow the catalysis of industrial
processes at high temperatures, enzymes must be modified by intro-
ducing additional hydrogen bonds and salt bridges, rigidizing flexible
residues, creating a more compact core region, or decreasing surface
area hydrophobicity34,35. Computational tools and predictions canhelp
in identifying relevant aminoacid residues and regions of interest to be
mutated36,37. Prediction of relevant residues to be mutated can be
supported by experimentally determined protein structures, or—in
their absence—by the data-driven protein structure prediction tool
AlphaFold38, which has made high-quality protein structure models
easily available for the global research community since 2021.

Previously established techniques of enzyme engineering, such as
rational mutagenesis based on in silico predictions or structure ana-
lysis, semi-rational mutagenesis (i.e., the combination of site-directed
mutagenesis with random mutagenesis or directed evolution39), and
directed evolution of a suitable parent enzyme13,40, can provide the
starting points for screenings of improved biocatalysts and iterative

cycles of enzymedevelopment (Fig. 2). However, efficiently enhancing
catalytic properties of enzymes requires maneuvering through com-
plex and rugged fitness landscapes, where the relationship between
enzyme sequence (genotype) and functional characteristics (pheno-
type) is difficult to predict. This means that optimization trajectories
frequently result in diminishing returns (i.e., additionalmutations only
result in minimal improvements of an enzyme) and undesired tradeoff
effects (e.g., substrate specificity is improved, but enzyme turnover
number is strongly decreased)41,42. When the abovementioned meth-
ods no longer yield enhancements, it often remains uncertain if an
enzyme has already reached its maximum catalytic efficiency, or if
there are other possible combinations of mutations that could gen-
erate further improvements43. Therefore, the construction of large
combinatorial enzyme libraries is a key approach in enzyme engi-
neering (Fig. 2). By introducing diversity into enzyme sequences,
libraries can be screened or selected for desired properties. High-
throughput screeningmethods, including droplet-basedmicrofluidics
and fluorescence-activated cell sorting (FACS), enable the isolation
and identification of enzymes with improved features, as long as a
suitable readout is available (Fig. 3).

In addition to the previously discussed methods, ML approaches
arenowbeingmorecommonlyemployed to identify data patterns that
aid in forecasting protein structures, enhancing enzyme stability,
solubility, and function, predicting substrate specificity, and facilitat-
ing rational de novo protein design27,44,45.

BOX 1

Definitions

In vivo engineering: optimization of enzymes or pathways within a
living organism. It allows for direct application of in vivo genetic tools
to increase enzyme variance and test them within their natural cel-
lular context. When enzymatic activities can be coupled to growth
the technique can strongly enhance the testing phase of DBTL cycles
and allow selection of improved variants.

DBTL cycle: iterative workflow in bioengineering that involves the
design of e.g., enzyme variants, building the according enzyme
library, testing functionality of the library, and learning from the
results obtained as the foundation for the next iteration. Ideally, this
cyclical process allows the development of desired functionalities
that can be further optimized by using several cycles.

Selection strains: mutant strains obtained through gene deletions
that display an auxotrophy towards one or more essential metabo-
lites (i.e., a biomass precursor) or an impaired general metabolic task
(e.g., redox cofactor regeneration).

Hypermutator: synthetic biology tools used to enhance the rate of
mutations within a gene of interest. In the context of this manuscript,
we refer to in vivo hypermutators to describe tools capable of
increasing the mutation rates in the in vivo context of a living
organism.

Biofoundry: infrastructure capable of performing molecular biol-
ogy operations and phenotyping through an automated Design-
Build-Test-Learn pipeline. It includes robotic liquid handling, high-
throughput analytics systems, and software for the analysis of the
large amount of data generated.

Machine learning: a subset of artificial intelligence that self-
develops algorithms for, e.g., enzyme engineering by analyzing data
from previous experiments for its training. This training enables it to
improve performance on a specific task over time without pro-
gramming, allowing the systems to learn from data and make
informed predictions or decisions.
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De novo enzyme design complements enzyme engineering
The aim of de novo enzyme design is the development of novel
enzymes with desired functions from scratch, without relying on
naturally occurring enzymes as starting points. Various protein design
algorithms, such as Rosetta46,47 (https://www.rosettacommons.org/),
have been developed to predict and optimize enzyme sequences
based on desired functions. Rosetta relies on the mechanistic model-
ling of proteins using energy fields to guide the design process and

explore the vast sequence space for enzyme engineering31. Already 15
years ago, the first high-profile designer enzymes, e.g., for the catalysis
of retro-aldol reactions, were reported48. Some current highlights in
this rapidly growing field include the de novo design of an eight
stranded β-barrel protein that functions as a retro-aldolase, whose
activity and stereoselectivity were further improved using directed
evolution49, and the creation of artificial luciferase enzymes from
scratch, whose catalytic efficiency is comparable to that of natural

Fig. 2 | Enzymeengineering is applied to improve the properties of biocatalysts
in a desiredway. This includes increasing enzyme activity, substrate specificity, or
enantioselectivity, introducing novel reactivities, or improving protein stability,
among other goals. Methods that are applied for this purpose range from rational

mutagenesis of key amino acids to semi-rational approaches anddirected evolution
of gene sequences from DNA libraries. De novo enzyme design can be applied to
generate biocatalysts that are free from the constraints of existing enzymes. Cre-
ated with BioRender.com.

Fig. 1 | Conceptual overview of the pipeline proposed in this article. This
workflow aims at generating superior catalysts by combining the use of machine
learning, growth-coupled selection, in vivo hypermutators, and high-throughput

cultivations. Each part can be envisioned as a stand-alone module, which can, in
principle, be connected using mobile robot units. Created with BioRender.com.
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luciferases, while having a much higher substrate specificity and very
high thermostability50. The de novo design of enzymes that bind
complex cofactors, such as heme irons, is also not an obstacle any-
more: recently, the creation of a heme enzyme with a tunable
substrate-binding pocket and its further engineering into an efficient
carbene transferasewas reported51. The combination of protein design
with iterativemutagenesis for efficient enzyme engineering should not
be underestimated. A good example is the conversion of a designed
enzyme with modest activity for carbon-carbon bond formation
between aldehydes and enones52 into a highly efficient biocatalyst via
fourteen rounds of both local and global mutagenesis, coupled to
high-throughput spectrophotometric assays as time-efficient
readout53.

It seems likely that de novo protein design will be feasible and
widely used for all types of enzymes in the near future. The fine-tuning
of the deep learning neural network RoseTTAFold54 on protein structure
denoising tasks resulted in RFdiffusion, a generative model of protein
backbones with outstanding performance on protein monomer design,
enzyme active site scaffolding (Fig. 2), andmetal-binding protein design,
which only requires simple molecular specifications as input55.

Computational enzyme design is especially valuable to realize a
novel metabolic pathway in which a natural enzyme for one reaction

step is lacking56. Here, de novo design can supply enzyme candidates
that catalyze the desired conversion, often only with initially low
activities. These enzymes can subsequently be improved by muta-
genesis and directed evolution, making it possible to implement effi-
cient new-to-nature bioconversion routes.

ML-supported pathway design increases the engineering
design space
Thedesign and implementationof non-naturalmetabolic pathways is a
complex and highly time-consuming task. ML can alleviate this chal-
lenge by automating several stages of the pathway design process24.
Specifically, ML algorithms can efficiently predict and analyze meta-
bolic reactions, aiding in retrobiosynthesis approaches (i.e., the iden-
tification of potential pathways for the production of specific, desired
compounds57–59). Furthermore, ML is a powerful tool that can effi-
ciently detect patterns in large sets of data. It has been extensively
employed for analyzing datasets obtained through high-throughput
technologies in order to create data-based models for intricate bio-
processes. The integration of ML with the Design-Build-Test-Learn
cycle commonly applied in synthetic biology can accelerate the
development process26. It can also assist in optimizing the metabolic
engineering process, by intelligently exploring and designing different

Fig. 3 | Comparisonof in vitro and in vivo approaches for enzymeoptimization.
The figure shows and scores the properties of the two methods for several key
performance indicators (KPIs). Moreover, the use of additional technical

improvements to the approaches is included, such as random mutagenesis (RM),
directed evolution (DE), hypermutators and adaptive laboratory evolution (ALE).
The impact of these improvements on the KPIs is also depicted in the figure.
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combinations of enzymes and genetic modifications to enhance
pathway efficiency and yield.

A goodexampleof this isMETIS, aflexible activeMLworkflow that
enables the efficient optimization of biological targets with minimal
experiments60. The effectiveness of this approach was demonstrated
across a range of applications, such as cell-free transcription and
translation, genetic circuits, and a synthetic carbon dioxide fixation
cycle with 27 variables. The performance of these systems was
enhanced by one to two orders of magnitude. Moreover, the workflow
identified the relative importance of individual factors in system per-
formance, uncovering previously unknown interactions and bottle-
necks. It can be expected that similar workflows will realize the easy
optimization and prototyping of diverse genetic and metabolic net-
works by a broad user base in the near future.

Since characterization, structure prediction, and de novo design
of enzyme function as well as drafting and prototyping of metabolic
pathways, largely benefit from the plethora of innovative methods
summarized above, the possible design space of biological engineers
vastly increases in size. Therefore, in vitro testing and screening of
enzymes and metabolic pathways might be limited in capacity with
consequent constraints in the optimization process of engineered
biological systems (Fig. 3).

Selection strains allow high-throughput in vivo enzyme
screening
As discussed above, an alternative to in vitro testing for enzyme or
pathway screening is represented by in vivo assessment using auxo-
troph sensor strains (henceforth referred to as selection strains), sys-
tematic growth-coupling designed by modeling61, or using
antimetabolite selection strains62. These rely on the selective pressure
generated by metabolite analogs which inhibit growth. As a

consequence, growth restoration is possible via enhanced enzyme
production or synthesis of the target molecules62. However, it is
important to note at this stage that in vivo selection might not be
possible to exploit if the enzyme to be optimized cannot be linked to
the metabolism of the host cell in a suitable way to enable growth-
coupling, or when it does not produce an antimetabolite.

In the context of this article, we focus on auxotroph selection
strains as a platform for enabling in vivo enzyme screening and evo-
lution. In general terms, these selection strains are obtained through
gene deletions which interrupt the host’s metabolic network. In other
words, in such strains, the biosynthesis of key biomass precursors or
essential metabolic functions is blocked63,64. Growth of these strains
can be restored when supplying the “missing” biomass building blocks
or when introducing metabolic modules (i.e., enzymatic reactions of
interest) that reestablish the biosynthesis of essential metabolites.
Hence, growth becomes a straightforward readout of the module’s
activity63,64. Multiple selection strains can be generated for the same
auxotrophy so that such a demand can cover different ranges of sen-
sitivity (i.e., pulling force of the selection)65. This feature exhibits the
advantage of creating different intensities of selective pressure, which
can be exploited for screening purposes. In other words, selection
strains are convenient platforms to explore for enzyme evolution
purposes17,18, and their throughput is limited only by the transforma-
tion efficiency66,67.

Selection strains can be categorized into two main groups,
depending on how the auxotrophy is designed (Fig. 4a): to the first
group belongs to strains presenting metabolic “isolation” or “dissec-
tion”, whereas the second one includes strains deficient in a universal
metabolic task (i.e., cofactor regeneration or provision of amino
groups). The first group includes strains that cannot generate an
essential biomass precursor molecule or an intermediate metabolite

Fig. 4 | Adopting dedicated selection strains supports efficient enzyme
screening. aDifferent types of auxotrophic selection strains can be used for in vivo
enzyme evolution. The first group includes isolation and dissection strains; both
strains are incapable of synthesizing essential biomass precursor(s) by blocking or
isolating specific metabolic nodes. The second group is represented by strains
unable to produce universal biomass intermediates (e.g., synthesis of NAD(P)H or
amines). Red arrows indicate the auxotrophy generated. b Effect of reaction rates

on selection strain’s growth profile. A selection strain produces two different
enzyme variants capable of replenishing synthesis of a key biomass precursor
through their enzymatic activity. The two enzyme variants display different reac-
tion rates (µmolmin−1). These different reaction rates will impact the in vivo
selection, as the two selection strains canbedistinguishedby their different growth
rates (h−1). Created with BioRender.com.
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responsible for the synthesis of a biomass precursor molecule (isola-
tion strains). This type of strain was crucial for, e.g., the stepwise
implementation of the different modules of the reductive glycine
pathway prior to the demonstration of full formatotrophy68,69. Simi-
larly, “dissection” strains are incapable of synthesizing a key biomass
component or one of its precursors. Moreover, in this case, the seg-
mentation of the metabolic network is not limited to a single key
metabolite but rather to a whole metabolic region (including several
biomass precursor molecules). Such a broader selection range
requires a higher enzymatic activity to support growth. Several studies
are based on the use of dissection strains, and include, e.g., the gen-
eration of a hemi-autotrophic and an autotrophic E. coli growing
through the Calvin-Benson-Bassham cycle70,71, full formatotrophic
growth via the reductive glycine pathway72, test of shunts for the
ribulose monophosphate73 or the Gnd–Entner–Doudoroff74 cycles.
Another striking example of this type of selection strains is a
3-phosphoglycerate sensor that can respond to several orders of
magnitude of 3-phosphoglycerate concentrations65.

The second group of selection strains includes mutants unable to
perform ametabolic function common tomultiple biochemical blocks
(Fig. 4a). Examples of this sort are mutants deficient in cofactor
regeneration, either in the form of NADH75 or NADPH76. A plethora of
growth-coupled selection strategies have been developed using this
type of auxotrophy, both for enzyme screening and for directed evo-
lution campaigns at different throughput levels66,77–83. Strains that lack
the ability to fix ammonium to make amino acids and other essential
amine metabolites also belong to this category. These can be used to
select for a broad range of amine-generating reactions, e.g., for the
exploration of alternative amination routes84 or for supporting the
directed evolution of amine-related enzymes85.

Once the selection strains are equipped with the module of
interest, growth restoration works as a proxy for the module’s enzy-
matic activity63,64. In particular, the growth rate µ (h−1) can be used as a
coarse-grained proxy for the reaction rate (µmolˑmin−1) of the target
enzyme in in vivo, i.e., in the context of a dedicated selection strain
(Fig. 4b). For example, a selection strain expressing two different gene
variants encoding for the same enzymatic activity (e.g., unevolved and
evolved) might present a different growth rate for the two clones as a
consequence of different reaction rates through the target enzymes
(Fig. 4b).Moreover, changes in expression levels of the geneof interest
(also as a consequence of evolution) might result in an improved
growth rate. In summary, using growth-coupled selection strategies
represents a cheap and resourceful approach for determining enzy-
matic activities in vivo.

Combining growth-coupling to directed evolution for new
phenotypes
When exploring new-to-nature enzymatic reactions (e.g., formyl-
phosphate reductase86 or glycolyl-CoA carboxylase87), it can be use-
ful to expand the solution space of mutations which can be screened.
In this situation, directed evolution becomes a useful tool as it
increases genetic diversity within a sequence of interest, provided that
a high-throughput per experiment can be achieved. Several directed
evolution strategies have been developed through the years. They are
divided mainly into two groups, based on where the diversification
of the starting genetic sequence occurs: in vitro and in vivo muta-
genesis. Both approaches have been extensively reviewed in
literature11,13,14,16,17,23,40,67,88,89.

In vitro mutagenesis approaches generate a library of gene var-
iants in a test tube, which is then transformed into an adequate strain
and screened for a readout of interest. Hence, transformation effi-
ciency becomes the bottleneck for the number of gene variants one
could recover and screen. In aid to this limitation, microfluidics solu-
tions for high-throughput electroporation are becoming available
which circumvent these shortcomings90. The most common in vitro

techniques include (but are not limited to) error-prone PCR, site
saturation mutagenesis and recombination-based DNA shuffling.
In vitro-directed evolution can also be combined with the use of
selection strains for in vivo screeningof the evolved enzymeactivity, as
in the case of a formate dehydrogenase with improved specificity
toward NADP+ 80. We refer to excellent reviews on the topic for more
in-depth comparisons of the in vitro techniques available13,14,23.

The use of in vivo mutagenesis strategies allows to bypass the
bottleneck of transformation efficiency and perform gene diversifi-
cation within the cell. Multiplex automated genome engineering
(MAGE) as well as CRISPR-Cas technologies91 or zinc finger
nucleases92 mediated tools are examples of in vivo directed muta-
genesis based on mediated allelic replacement93. In the case of
MAGE, a pool of single-stranded DNA oligos with degenerated
sequences is transformed into cells, which generates a variety of
genetic modifications in vivo. By iterating this transformation step, it
is possible to enhance library complexity and generate a pool of
mutants which can be screened once plated on e.g., selective agar
plates93. The use of the abovementionedmethods has been extended
to multiple species beyond model laboratory strains94. Altogether,
the creation of genome-edited library strains instead of plasmid-
based ones enables rapid adjustment of the strategy depending on
the results of the preceding iteration.

An additional benefit of in vivo enzyme library generation is the
ability to combine library generationwith techniques that significantly
elevate the mutation rate of the target gene. When employing selec-
tion strains for enzyme development, mutagenesis takes place con-
currently with the selection of the desired phenotypic trait. These
hypermutationmethods facilitate rapid introduction ofmutations into
a gene, increasing the mutation rate (naturally between 10−10 and 10−9

to as high as 10−4)11. Thus, these methods surpass the typical mutation
rates achieved through ALE experiments, enabling the quick genera-
tion of diversified enzyme variants. Moreover, they significantly
reduce the mutation or activation of off-target enzymes that might
circumvent selection in the chosen strain, e.g., by activating silent
genes or by mutating an enzyme to enhance its promiscuous activity.
Hence, these techniques facilitate a more thorough exploration of the
fitness landscape, aiding in the creation of enzyme variants that sur-
pass local fitness maxima.

Several hypermutation techniques have been developed, as
extensively reviewed recently11. Most of these methods are based on
error-prone DNA polymerase (OrthoRep)95,96, nCas9-mediated DNA
nicking combined with error-prone DNA polymerase (EvolvR)97, or
nucleobase deaminase/T7 RNA polymerase (MutaT7)98. These techni-
ques have been continually refined since their inception, with ongoing
development focused on enhancing mutation rates and profiles.
Derivatives of MutaT7 technology include e.g., extension of this
technology to S. cerevisiae99, improvement of its mutation rate100, and
fusion of a newdeaminase combinedwith the introduction of dCas9 to
obtain more control over T7 RNA polymerase101. Further utilization of
OrthoRep allowed, e.g., to evolve custom antibodies to display on
yeast’s surface102 or an improved version of tryptophan synthase for
synthesizing L-tryptophan from indole and L-serine103. Another recent
update of the OrthoRep system claims an improved rate of in vivo
substitution per base (>10−4)104. Also, during the revision of this
manuscript, a new technique was published that relies on an ortho-
gonal DNA polymerase105. In this system, user-defined DNA is intro-
duced into an E. coli cell in such a way that it is selectively copied and
mutated by a distinct replication machinery which is independent
from the one responsible of duplicating the strain’s genome. This
approach resulted in the enhancement of the mutation rate in the
target replicon between two to four orders of magnitude105.

In addition to enzyme-based hypermutator tools, phages have
been utilized as vectors to introduce variations into a target gene. This
approach, known as phage-assisted continuous evolution (PACE), has
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caught significant interest106. In PACE, engineered phages are
employed to introduce sequence variations. Leveraging the remark-
ably short lifecycles of phages, this method accelerates evolution
cycles and enhances mutation rates in a gene of interest in the host
bacterium107.

In conclusion, state-of-the-art directed evolution techniques are
available to develop enzymatic reactions in vivo, simplifying optimi-
zation workflows. Additionally, an expansion of the solution space
beyond prediction, achievable with targeted hypermutator tools,
introduces the necessary genetic diversity. The combination of these
techniques108,109 maximizes the diversity of the library, with its size
theoretically constrained only by the number of cells in the culture.
Finally, the combination of the workflow with ALE promotes the
enrichment of more optimal variants (Fig. 3).

ALE further enhances emerging phenotypes
Once the round(s) of directed mutagenesis enable the emergence of
the activity of interest, it is possible to exploit the power of ALE to
further enhance the target reaction rate. Many excellent reviews dis-
cuss the set of techniques associated with this approach, and we refer
to them for a more thorough read; see for example12,110–113. In the
context of enzyme evolution, the use of ALE in combination with
selection strains has also been described114–116.

To achieve an improved phenotype, 100–500 generations are
generally sufficient112. These can be obtained using mainly three dif-
ferent experimental approaches: (i) serial batch dilutions or con-
tinuous cultivation either as (ii) chemostat or (iii) turbidostat111. In a
serial batch, a growing microbial population is propagated by serial
dilutions over timewhile the stress factor is kept constant or increased.
In this setup, the growth conditions are dynamic throughout the
growth, and the moment of growth chosen for dilution has an impact
on the phenotype that is being selected for. Instead, in a chemostat,
the culture conditions are kept constant throughout the cultivation;
influx and efflux of medium are equal, and the dilution rate sets the
specific growth rate of the microbial population. A steady exponential
growth is imposed on growing cells while a limiting essential nutrient
determines the selective pressure. Subpopulations slower at consum-
ing the limiting nutrient will be washed out from the cultivation and
removed from the bioreactor. In this cultivation setup, both the con-
centration of the limiting nutrient in the feeding and the dilution rate
can be controlled by the user. An overview on the basis of ALE using
chemostats can be found in literature117,118. A turbidostat differs from a
chemostat as its dilution rate is controlled by the turbidity of the
culture. Here, the goal is to maintain the turbidity constant. This sys-
tem allows to select for a population of cells capable of growing at µmax

and does not require the introduction of a limiting nutrient. The use of
turbidostat in studying enzyme evolution has also been reported in
literature119. Hence, depending on the phenotype one wants to select
for, these different cultivation conditions can be used to support ALE
efforts.

One common characteristic of the abovementioned ALE
approaches is the constant selective pressure that is imposed on
the system. An emerging alternative consists of the use of oscil-
lating pressures for traversing different fitness landscapes and
increasing the chances of reaching a global maximum for the
phenotype of interest120. In particular, the use of this strategy
allows the exploration of mutations that would be otherwise
deleterious during constant pressure. This approach allowed e.g.,
a change in cofactor specificity when an NADPH-auxotrophy was
imposed in E. coli116. Therefore, the use of such oscillation in
combination with directed evolution might allow to evolve
enzyme activities through changing rugged fitness landscapes120.
In summary, we posit that ALE should be regarded as a com-
plementary approach supporting directed evolution for the
emergence of novel enzymatic reactions in biocatalysts (Fig. 3).

In the quest for optimal microbial hosts for in vivo enzyme
engineering
While E. coli and S. cerevisiae have been historically used as model
microbial platforms for growth-coupled selection of enzymes and
synthetic pathways, non-canonical hosts have increasingly gained
attention as alternatives. Among bacterial species, E. coli continues to
be a preferred option, and the principle of increased fitness over time
in the presence of selective pressure has been exploited extensively—
epitomized by the classical long-term evolution experiment (LTEE),
where cells evolved to optimize carbon utilization pathways towards
maximizing growth over 50,000 generations121. Building on this
notion, and just to mention some key studies over the last 5 years, E.
coli has been used for the selection and evolution of the activity of
several enzymes (e.g., proteases122, deaminases123 and formate
dehydrogenases80) and enzymes displaying emergent properties
(either natural or engineered, e.g., using non-canonical redox
cofactors124,125). S. cerevisiae has been likewise used to evolve bacterial
enzymes, e.g., an efficient tryptophan synthase from Thermotoga
maritima using OrthoRep103.

While these examples illustrate the value of well-established
microbial hosts, there are enzymes and pathways involving reaction
substrates, intermediates and products that require a more robust
host organism for in vivo engineering. Therefore, environmental bac-
teria thriving in habitats characterized by changing physicochemical
conditions, with multiple abiotic and biotic factors (e.g., presence of
stressors, salinity levels, pH values and interaction with other
microbes) that play a role in shaping their physiology andmetabolism,
might be suitable hosts for future in vivo engineering projects. Pseu-
domonas putida, a non-pathogenic, Gram-negative soil bacterium126,
constitutes an archetypal example of a microbe displaying ‘built-in’
robustness, derived from the extreme environments it can colonize.
P. putida has been used for multiple applications in metabolic engi-
neering, especially towards bioprocesses that require the use of sol-
vents or toxic substrates and products127. Although selection schemes
based on growth-coupling strategies have been implemented in
P. putida128,129, adopting this bacterium as the host for in vivo evolution
of enzymes remains a relatively unexplored endeavor. P. putida could
be an attractive option for the evolution of enzymes generating aro-
matic aldehydes130 and other, similarly reactive intermediates, since
such chemical species are part of its native biochemistry, e.g., as
metabolites within degradation pathways for aromatic xenobiotics.
Moreover, the native metabolic architecture in P. putida KT2440 is
geared towards catabolic overproduction of reducing power in the
form of NADPH131, which could further support evolving reactions that
require large amounts of redox currency.

Similarly, other strains with properties that are relevant for an
automated in vivo engineering process, but not present in E. coli or S.
cerevisiae, could be exploited. The marine bacterium Vibrio natriegens
is the fastest-growingmicrobe described so far. A doubling time of less
than 10minutes on rich medium132 might enable a faster automated
in vivo enzyme engineering process, compared to currently used
model species. Since many genetic tools, including plasmids with
diverse promoters, ribosome binding sites, and resistance markers133,
regulatory parts134, and a system for multiplex genome editing by
natural transformation135, are already available for this bacterium, it is
likely that it will be harnessed as a chassis for in vivo enzyme engi-
neering in the near future.

Given the expanding wealth of synthetic biology tools available
for strain domestication136–139, it is not unthinkable that it will become
possible to choose any bacterium of interest that is naturally suitable
to handle the reaction(s) to be improved or evolved, and use it as a
chassis for automated in vivo enzyme engineering. This approach can
be extended by using a given enzyme engineering host also directly as
a production strain; e.g., the halophilic bacterium Halomonas
bluephagenesis 5 couldbe used to generate an improved enzyme that is
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subsequently applied in the high salt medium for the conversion of
algal biomass into a desired value-added product. Similarly, use of
thermophilic bacteria could be exploited for evolving thermostable
enzyme variants140–142. Moreover, it might be beneficial to use bacteria
that can naturally produce cofactors which are required for an enzyme
of interest for the in vivo enzyme engineering procedure. Relevant
examples include cofactors such as pyrroloquinoline quinone (PQQ;
redox coenzyme in dehydrogenases) or heme (prosthetic group for
oxygen-carrying or electron transfer). PQQ is a common coenzyme
for alcohol dehydrogenases in P. putida143 or Methylobacterium
extorquens144; and while the heme biosynthetic pathway is present in
E. coli145, other bacteria, such as the metal-reducing Shewanella onei-
densis, have many more enzymes that require this prosthetic
group146–148.

Towards the automated generation of optimal biocatalysts
The workflow for in vivo-directed evolution of enzymes can be exe-
cuted through automated setups in a biofoundry. In fact, starting
the proposed in vivo enzyme engineering workflow with a specific
sensor strain, the task of integrating an efficient module to rescue
and enhance cell growth may lead to the requirement of testing

different DNA parts in a combinatorial setup. In particular, when
the module contains two or more enzymes in a reaction sequence,
fine-tuned expression of the underlying genes is required to enable a
balanced high carbon flux to maximize growth rate. The latter
depends upon the right combinations of multiple DNA parts (i.e.,
promoter, ribosomal binding site, gene of interest, terminator) in
functional transcription units149, and the number of strain constructs
to be tested can increase rapidly. To meet this challenge with rea-
sonable personnel, material and time expenditure, the standardiza-
tion, miniaturization and automation of strain engineering workflows
is essential.

Emerging biofoundries around the globe are providing
automation capabilities for setting up such workflows19,20,150 by
transferring and combining available methods for modular DNA
assembly, highly parallel transformation and incubation, image‐
based colony identification and multi‐pin picking, as well as
plasmid library preparation using canonical hosts such as
E. coli151,152 or S. cerevisiae153 as a basis. Recently, robotics-assisted
modular cloning154–158, high-throughput transformation159 and
monoclonal colony cultivation and picking160 have been intro-
duced for other industrially relevant organisms such as P. putida

Fig. 5 | Proposed pipeline for the combined use of machine learning, automa-
tion, in vivo mutagenesis, and growth-coupled selection for the directed
evolution of enzymes using a biofoundry. Sequential numbers indicate the steps
to be taken following the Design-Build-Test-Learn paradigm. MLmachine learning,

RBS ribosome binding site, GOI gene of interest. For the definition of the hyper-
mutators MAGE, MutaT7, OrthoRep, and EvolvR we refer the reader to the main
text. Created with BioRender.com.
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or Corynebacterium glutamicum. The correctness of assembled
and cloned plasmids can be verified easily with high-throughput
using colony PCR or Oxford Nanopore sequencing161.

In the next step, the resulting first-generation selection strainswill
be used for targeted diversity generation with MAGE or other in vivo
hypermutators, where the same standardized modules can be inte-
grated into automated workflows. Most importantly, ML methods can
be employed to enable autonomous exploration of the enzyme fitness
landscape of combinatorial mutagenesis libraries162. In the same vein,
reliable and autonomous growth phenotyping of resulting second-
generation sensor strains has become possible by combining auto-
mated microbioreactor platforms163 with appropriate data processing
tools164.

Asmentioned above, ALE is another important tool to fully exploit
the genetic diversity of sensor strains and enrich the best performing
variants. Depending on the required scale, throughput and additional
selection pressure120, ALE technologies are available for automated
operation at laboratory scale165, small scale166 and single cell level167.
Genome-wide identification of resulting beneficial mutations or awa-
kened latent enzyme activities is also enhanced by automation of
RNASeq technology168. Finally, to confirmmodule activity and identify
competing routes that should be inactivated, miniaturized and
automated 13C-/15N-labeling experiments169 can be performed in com-
bination with highly informative and accurate LC-QToF mass
spectrometry170.

The abovementioned technologies can be combined in an auto-
mated, ML-guided pipeline. We envision that the combination of
in vivo mutagenesis with the screening power of growth-coupled
selection will enable to enhance the throughput of biofoundries for
enzymeengineering campaigns (Fig. 5). Froma technical point of view,
the realization of the depicted pipeline is certainly not feasible on the
basis of a large solitary platform but requires the combination of a
number of customized robot platforms, ultimately connected by
mobile robot units, enabling distributed workflows and complex
scheduling. Moreover, there are still many pitfalls in integrating spe-
cific devices (with different interfaces) into liquid-handling stations,
setting up functional and resource-efficient cloning workflows, and
implementing a flexible and user-friendly digital infrastructure for
running automated experiments, including real-time data processing
for loop closure.

Despite these technical challenges, discussions on the perspective
of self-driving labs have appeared in the scientific literature29,30.
Moreover, there is no evidence of their concrete implementation in
fully automated experimental setups28. We, therefore, expect the
possibility of extending such automated workflows also to the in vivo
engineering of biocatalysts in the coming future.

Outlook and final remarks
In this manuscript, we reasoned on the benefits of combining in vivo
mutagenesis with growth-coupled selection strategies. As mentioned
above, we believe that their use, combined with ML-guided automa-
tion, will accelerate enzyme engineering campaigns in the future.
However, despite being a promising approach, there are caveats
associated with these approaches, which are important to consider
and are addressed in this final paragraph.

Relying on growth-coupled selection for in vivo enzyme screening
displays an inherent limit in the detection threshold. This is dictated by
the minimum enzymatic activity required to replenish the metabolite
pool associated with the auxotrophy (i.e., a biomass precursor or a
generalist metabolic function). Therefore, if the enzymatic activity
is present but at too low level, growth complementationwill not occur,
and thus, it will not be detected. Therefore, alternative methods can
be used, such as transcription factor-based biosensors171,172. In princi-
ple, if the target enzyme activity can be coupled to transcriptional

activation, these types of biosensors could be used as initial step
of high-throughput screening and evolution173 and detect enzyme
activity realizing, e.g., synthesis of a fluorescent protein. Use of
such strains might require some adjustments to the automated pipe-
line presented above, such as the application of FACS to identify and
isolate promising candidates. Moreover, the selective pressure
imposed on the strains during the in vivo selection can induce the
emergence of an underground metabolism or the generation of
mutations which bypass the selection. These activities, although sci-
entifically interesting174,175, provide a risk of experimental failure, which
can be avoided through some measures. These include, i.e., a physio-
logical characterization of the selection strain after its engineering; the
useof strainswith aquantitatively different dependenceon the activity
of interest (in terms of mmol essential metabolite gCDW

−1); use of
RNAseq or proteomics data to identify possible targets responsible for
breaking the selection. Moreover, prior to using the selection strains
for growth-coupled experiments, it is recommended to undergo an
ALE experiment under selective conditions to identify possible
moonlight reactions which can hamper evolutionary campaigns116.
Thesepieces of information can then instruct theMLpipeline to curate
predictions for gene deletions for the construction of new selection
strains.

Besides, some engineering or evolution campaigns might involve
enantioselective enzymes or simply enzymes whose activity cannot be
coupled to growth. In these cases, the use of growth-coupled selection
is not possible, and the approach described in this manuscript would
not lead to the attainment of improved biocatalysts.

Another important caveat is related to the use of in vivo hyper-
mutators. Despite all the benefits mentioned above, some techniques
display an inherent bias towards a certain type of mutation. This can
create diversification in the evolutionary landscape with consequent
constrained capacity for long-term sequence space exploration176.

Finally, it is important to note that the optimized enzyme
obtained at the end of theworkflowmust be tested in the context of its
final purpose. Therefore, other iterativeDesign-Build-Test-Learn cycles
might be required, e.g., in the context of a production strain to assess
the effectiveness of the evolution campaign for biomanufacturing, as
previously suggested in the use of growth-coupled selection for cell
factories optimization64.
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