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Earthquake forecasting from paleoseismic
records

Ting Wang 1 , Jonathan D. Griffin 2, Marco Brenna 3, David Fletcher4,
Jiaxu Zeng5, Mark Stirling3, Peter W. Dillingham 1,6 & Jie Kang 7

Forecasting large earthquakes along active faults is of critical importance for
seismic hazard assessment. Statistical models of recurrence intervals based on
compilations of paleoseismic data provide a forecasting tool. Here we com-
pare five models and use Bayesian model-averaging to produce time-depen-
dent, probabilistic forecasts of large earthquakes along 93 fault segments
worldwide. This approach allows better use of the measurement errors asso-
ciated with paleoseismic records and accounts for the uncertainty around
model choice.Our results indicate that although themajority of fault segments
(65/93) in the catalogue favour a single best model, 28 benefit from a model-
averaging approach. We provide earthquake rupture probabilities for the next
50 years and forecast the occurrence times of the next rupture for all the fault
segments. Our findings suggest that there is no universal model for large
earthquake recurrence, and an ensemble forecasting approach is desirable
when dealing with paleoseismic records with few data points and large mea-
surement errors.

Large earthquakes are one of the most devastating natural hazards,
not only because they cause a significant number of casualties, but
also because they lead to widespread infrastructure damage.
Researchers from multi-disciplinary backgrounds have been endea-
vouring to understand their underlying mechanisms and forecast
their occurrences. Elastic rebound theory1 forms the basis of the
standard earthquake cycle of strain accumulation and release. This
theoretical basis, combined with analysis of long-term earthquake
records, supports the proposition that the recurrence times of large
earthquakes along the same fault can be modelled with renewal
processes2–6. A renewal process is a statistical model that describes
event occurrences in time, treating each new occurrence as a renewal
in which the system is reset. It assumes that the times between events
(the inter-event time, such as the time between two consecutive
earthquake occurrences) are independent and identically dis-
tributed. Probabilistic Seismic Hazard Analysis7 frequently uses the

Poisson process, which is a special type of renewal process that
describes events effectively occurring randomly in time. Recent
analysis of global paleoseismic records nevertheless suggests that
large earthquake recurrence on individual fault segments is typically
more periodic than expected from a Poisson process8–10. Such peri-
odic patterns can be captured by other renewal processes, such as
the Gamma renewal process. An alternative to renewal processes for
modelling paleoseismic records uses a Long-Term Fault Memory
Model11, which assumes that the timing of future events is dependent
on not only the time elapsed since the most recent event (as in
renewal models) but also the previous inter-event times. However,
when considering global dataset and synthetic earthquake records
there appears to be no significant correlation or anti-correlation
between successive inter-event times for the vast majority of the
earthquake records9,12. Therefore, in this study we only focus on
renewal processes.
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Previous earthquake forecasts using paleoseismic data were
mainly based on one single best-model selected from a number of
candidate models according to an information criterion, such as the
Akaike Information Criterion (AIC13). This approach ignores the fact
that there can bemodel uncertainty, i.e. uncertainty as to whichmodel
is best. If theAIC values for severalmodels are not very different, itmay
be better to use a combination of the forecasts from those models,
rather than rely solely on the forecast from the model with the lowest
AIC. In real-world applications such model uncertainty may have a
dominant effect over uncertainty in the estimates of the parameters in
eachmodel14,15. This becomes a serious limitationwhen the sample size
is relatively small (only 14 out of 93 earthquake records considered in
this study have more than 10 events). Failing to acknowledge model
uncertainty by selecting a single bestmodelmayproduceerroneousor
unrealistically precise forecasts.

In this study, we use five candidate renewal processes to investi-
gate the recurrence patterns of large earthquakes using paleoseismic
records from 93 worldwide fault segments previously compiled in
Griffin et al.9 and supplemented with additional records from other
publications (See Data availability section). We use Bayesian model-
averaging to carry out probabilistic forecasts of future large earth-
quakes to account for model uncertainty. We compare the forecasts
from each single model with that from model averaging. We find that
there is no single best model that universally describes the recurrence
of large earthquakes for the 93 fault segments considered here, nor for
fault segments with the same faulting styles, from the same tectonic
region, or even within the same fault system. We provide the dis-
tribution of the probability that at least one large earthquakewill occur
in thenext 50years along each fault segment.We also carryout a leave-
one-out test to compare the performance of the model-averaged
forecast and the Poisson forecast, as the latter is frequently used in
national hazard models7.

Results
No universal model for large earthquakes
Modelling of large-earthquake recurrence times from paleoseismic
records typically either uses the BPT renewal process, because of its
physical explanation of the earthquake process4,6,16, or selects the best
model among a few candidate renewal processes, based on an infor-
mation criterion3,17. As discussed above, inference based on a single
best model ignores potential model uncertainty.

In order to minimise the impact of model uncertainty we use a
model-averaging approach and consider geological and historical
records of large-earthquake occurrence times from 93worldwide fault
segments (Table 1). Here, we consider a “fault segment” as a section of
a fault that is recognised as being geometrically distinct, and that is
likely to define the boundaries of at least some earthquake ruptures on
the fault. Some models, such as the third Uniform California Earth-
quake Rupture Forecast (UCERF316) and the 2022 New Zealand
National Seismic Hazard Model18, relax the strict fault segmentation
assumption in their earthquake probability model component by
considering interactions between different fault subsections. Never-
theless, for each individual fault subsection the fundamental elastic-
rebound theory part of themodel uses a Brownian passage-time (BPT)
renewal model. Here we focus on the elastic-rebound theory part of
the earthquake probability model component, and thus do not con-
sider interactions between fault segments.Once this layer ofmodelling
is improved, interactions between subsections can be considered in
order to forecast large earthquakes that may rupture multiple fault
subsections and/or faults. Improved forecasts from this layer will
strengthen a holistic hazard model that includes fault models, defor-
mation models, earthquake rate models, and earthquake probability
models.

We select fault segments with records of at least five large earth-
quakes in order to be able to fit two-parameter models to the inter-

event times. We only consider the occurrence times of earthquakes
that left detectable geological evidence9. Earthquakes that leave a
geological signature are assumed tobe large and significant for seismic
hazard, but we do not explicitly consider their magnitudes, or the
magnitude distribution (i.e. characteristic vsGutenberg-Richter) in our
model. The number of large earthquakes in the paleoseismic record of
each fault segment is small, with a maximum of 35 events for the Chile
Megathrust19, only 3 fault segments havingmore than20events, and 14
having more than 10 events. The measurement errors associated with
most dated earthquake ages are large, resulting in 1σ uncertainties of
25 ± 12% for inter-event times in the data considered here. Tomaximise
the reliability from the dataset of all event ages and to make good use
of the measurement errors, we simulate 100 Monte Carlo (MC) sam-
ples from the empirical distribution of the occurrence times for each
fault segment provided in the literature. If any earthquake has more
than one dated age published in the literature, we take the average of
the different age distributions and sample from this averaged
distribution.

The 100 MC samples of occurrence times for each fault segment
form each dataset. We fit five different renewal processes to each
dataset, including the Poisson process, and the Gamma, Weibull, BPT
and lognormal renewal processes (see Methods). In each model, we
allow the parameters to vary for different MC samples from the same
fault, which captures the similarities between the 100MC samples. We
use a Markov Chain Monte Carlo (MCMC) algorithm to generate
samples from the joint posterior distribution of all the model para-
meters for each model. These posterior samples of parameters are
then used to simulate future earthquake occurrence times from each
fault, thereby providing us with forecasts from each model.

For each model fitted to each fault segment, we calculate the
Watanabe-Akaike Information Criterion (WAIC20), a measure of the
prediction performance of a model in Bayesian analysis. For model-
averaging, we calculate the WAIC weight15 for each model for all 93
fault segments (see Methods), as shown in Fig. 1a. Model-averaged
forecasts of future earthquakes for each fault are obtained by com-
bining the forecasts from each individual model using these WAIC
weights (see Methods). For a fault segment with any single model
having weight ≥0.95, the model-averaged forecast is very close to the
forecast from that model (i.e., the single-best model), as we would
expect. The Weibull model best fits 41 (44.1%) fault segments, the
Gammamodel best fits 5 (5.4%) fault segments, the BPTmodel best fits
4 (4.3%) fault segments, and the lognormal model best fits 15 (16.1%)
fault segments. The Poissonmodel has noweight greater than 0.7. The
remaining 28 (30.1%) fault segments have weights < 0.95 for each sin-
gle model, suggesting thatmodel-averaging will be most beneficial for
those fault segments.

WAIC weights provide a numerical comparison of the amount by
which a model is better at prediction than another, as they show how
much weight should be given to the prediction from each of these
models when calculating a model-averaged prediction. Based on the
WAIC weights in Fig. 1a, we can see that the predictive performance of
the Weibull model is not uniformly better than the others. For 33 fault
segments, the WAIC weight for the Weibull model is close to 0, which
suggests that for these fault segments the estimated predictive accu-
racy of the othermodels ismuch better than thatof theWeibullmodel.
Among the 11 San Andreas Fault segments we find three different best-
fitmodels. Although they all suggest that every segment exhibits quasi-
periodic behaviour (see discussion later), segments with larger sample
sizes were best fit by a Weibull model. It is unclear if this is simply an
outcome of sampling or due to real differences in recurrence beha-
viour between the different segments, including how neighbouring
fault segments interact. Variability in observed earthquake recurrence
behaviour at paleoseismic sites on the San Andreas Fault has been
proposed to be (at least partially) due to overlap of ruptures occurring
on neighbouring segments21 and this has been supported by studies
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Table 1 | Probability of at least one event occurring in the next 50 years from the 93 fault segments

ID Fault name N MA forecast prob (%) BM BM forecast prob (%)

1 Alaska PWS Copper 9 0.001(~0,0.006) W 0.001(~0,0.006)

2 Alpine Hokuri Ck South Westland 25 26.898(22.22,32.492) W 26.898(22.22,32.492)

3 Awatere East 10 2.806(2.382,3.254) W 2.806(2.382,3.254)

4 Bree 6 0.042(0.008,0.121) W 0.042(0.008,0.121)

5 Cadell 9 0.038(0.034,0.043) L 0.038(0.034,0.043)

6 Cascadia 19 9.751(7.763,11.329) W 9.751(7.763,11.329)

7 Cascadia Nth 10 6.884(5.369,7.84) W 6.884(5.369,7.84)

8 Cascadia Sth 19 9.676(8.502,10.873) G 9.676(8.502,10.873)

9 Chile Margin 35 30.379(29.116,31.673) W 30.379(29.116,31.673)

10 Cloudy Fault 6 1.618(1.372,1.893) W 1.618(1.372,1.893)

11 Daqingshan Piedmont Hohhot 7 6.136(5.316,6.933) G 6.142(5.423,6.923)

12 Dead Sea Beteiha 11 20.336(18.506,22.139) P 20.424(18.841,22.101)

13 Dead Sea Jordan 12 4.35(3.941,4.798) W 4.336(3.932,4.777)

14 Dead Sea Qatar 10 9.999(8.886,11.035) P 10.095(9.214,11.035)

15 Dead Sea Taybeh 11 6.91(6.234,7.653) L 6.91(6.234,7.653)

16 Dead Sea Yammouneh 12 5.61(4.583,6.942) W 5.61(4.583,6.942)

17 Dunstan 6 0.567 (0.465, 0.685) L 0.567 (0.465, 0.685)

18 East Kunlun Kusaihu 10 ~0(~0,~0) L ~0(~0,~0)

19 East Kunlun Xidatan 6 3.286(2.866,3.758) L 3.286(2.866,3.758)

20 Elashan 5 4.116(3.281,5.041) L 4.108(3.31,4.982)

21 Elsinore Temecula 5 4.029(2.404,5.227) L 4.029(2.404,5.227)

22 Fatigue Wash 6 0.042(0.027,0.061) G 0.04(0.026,0.058)

23 Futugawa 5 ~0(~0,~0) G ~0(~0,~0)

24 Garlock El Paso Peaks 6 3.338(2.892,3.824) W 3.327(2.89,3.784)

25 Garlock Twin Lakes 6 3.991(2.806,5.132) W 3.983(2.804,5.105)

26 Gulang Tianqiaogou 5 3.022(2.518,3.67) W 3.019(2.517,3.666)

27 Haiyuan Middle 7 9.301(6.504,13.88) W 9.301(6.504,13.88)

28 Hayward Tysons 11 42.866(38.168,48.161) W 42.866(38.168,48.161)

29 Helanshan Eastern Piedmont 5 ~0(~0,0.001) W ~0(~0,0.001)

30 Hope 6 19.518(13.297,21.579) B 19.672(17.759,21.652)

31 Hope Conway 5 15.865(12.658,20.142) L 15.939(12.617,20.308)

32 Hyden 5 0.062(0.045,0.078) G 0.064(0.046,0.08)

33 Irpinia 5 ~0(~0,0.245) W ~0(~0,0.245)

34 Javon Canyon 5 5.855(2.885,8.982) W 5.855(2.885,8.982)

35 Kiri 5 5.931(4.427,7.59) L 5.911(4.473,7.475)

36 Lachlan 5 3.756(3.034,4.493) W 3.756(3.034,4.493)

37 Lake Edgar 5 0.023(0.019,0.028) G 0.023(0.019,0.028)

38 Langshan Piedmont Xibulong East 5 1.929(1.618,2.295) L 1.929(1.618,2.295)

39 Lenglongling 5 0.006(~0,0.041) L 0.006(0.001,0.041)

40 Mangatete 6 0.032(0.001,0.189) W 0.032(0.001,0.189)

41 Nankai Trough 8 13.916(11.782,16.187) W 13.916(11.782,16.187)

42 New Guinea 6 4.868(4.173,5.945) W 4.826(4.157,5.561)

43 North Anatolian Cukurcimen 6 1.023(0.619,1.585) W 1.023(0.619,1.585)

44 North Anatolian Elmacik 8 1.335(0.533,1.945) G 1.365(0.922,1.96)

45 North Anatolian Gunalan 6 0.139(0.046,0.37) B 0.139(0.046,0.368)

46 North Anatolian Kavakkoy 6 14.103(11.425,16.896) B 14.103(11.425,16.897)

47 North Anatolian Lake Ladik 7 21.196(5.798,34.833) W 21.196(5.798,34.833)

48 North Anatolian Yaylabeli 5 4.885(2.525,7.957) B 4.886(2.506,7.987)

49 Okaya 9 1.992(0.983,3.319) W 1.992(0.983,3.319)

50 Paeroa 7 1.225(0.962,1.493) W 1.219(0.961,1.471)

51 Pasuruan 5 17.776(15.402,20.38) W 17.771(15.411,20.365)

52 Pihama 7 0.337(~0,0.589) L 0.338(~0,0.589)

53 Porters Pass East 6 2.14(1.78,2.511) W 2.14(1.78,2.511)

54 Qilianshan Laohushan 8 ~0(~0,~0) B ~0(~0,~0)

55 Rangipo 7 2.518(0.503,4.55) G 2.518(0.503,4.55)
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using earthquake simulators22. In contrast, relatively strong quasi-
periodic recurrence on the Alpine Fault has been attributed to its
geometric simplicity and relative isolation from other faults23,
although its fault geometry has also been invoked to explain
the variability in earthquake inter-event times24. The persistence (or
otherwise) of rupture barriers between segments25 may also be a sig-
nificant factor controlling the distribution of inter-event times
observed on a fault segment. Therefore, because of the limitations of
the available data, even within a single well-studied fault system, we
cannot use a universal single best model, and it is not clear that one
exists.

Best-model frequencies in Fig. 1b, c indicate that the Weibull
renewal process is more likely to best reproduce recurrence times for
fault segments with longer records compared to the BPT renewal
process. The fault segments that have the Weibull renewal process as
the single-best model have on average about 1.59 (95% CI 1.10–2.47)
times more large earthquakes than those for which the BPT renewal

process is the single-bestmodel. The fault segments that have the BPT
renewal process as the single-best model all have fewer than 10 events
in the paleoseismic records. When we removed the last event in each
record, in order to carry out retrospective forecasts (see section
Assessment of Prediction Error), the fault segments with more than 15
events all have the Weibull renewal process as the single-best model;
only one fault segment with 12 events has the BPT renewal process as
the single-bestmodel. It is therefore difficult to determinewhether the
dependence of the favoured model on sample size is due to real dif-
ferences in the best model or simply an outcome of the small amount
of data.

Previous studies26–28 have shown that the standard deviations of
the scaled (divided by the mean value) inter-event times along several
fault segments appear to be constant. For each of the 93 fault seg-
ments, we calculated the scaled inter-event times for eachMC sample,
and then reported the median and the 2.5% and 97.5% quantiles of the
standard deviations of the scaled inter-event times calculated for the

Table 1 (continued) | Probability of at least one event occurring in the next 50 years from the 93 fault segments

ID Fault name N MA forecast prob (%) BM BM forecast prob (%)

56 Reelfoot 5 2.192(1.569,2.851) L 2.193(1.57,2.851)

57 Rocky Valley 5 0.081(0.051,0.109) W 0.081(0.053,0.108)

58 Rotoitipakau 9 3.093(2.537,3.73) W 3.081(2.532,3.677)

59 San Andreas Big Bend 10 40.848(36.147,45.931) W 40.848(36.147,45.931)

60 San Andreas Burro 7 34.498(30.194,39.242) W 34.498(30.194,39.242)

61 San Andreas Carrizo 6 59.954(51.174,71.794) W 63.604(54.216,73.246)

62 San Andreas Coachella 7 24.399(19.926,30.01) L 24.399(19.926,30.01)

63 San Andreas Mendocino 5 0.14(0.031,0.441) L 0.14(0.031,0.44)

64 San Andreas Mission Ck 5 46.826(37.066,58.07) W 46.879(37.486,58.098)

65 San Andreas Pallet Ck 9 45.121(40.419,50.149) W 45.121(40.419,50.149)

66 San Andreas Pittman 7 38.991(32.317,47.317) W 38.994(32.319,47.32)

67 San Andreas Thousand Palms 5 40.079(33.627,58.286) G 39.026(33.33,44.753)

68 San Andreas Vedanta 12 17.033(15.696,18.432) W 17.033(15.696,18.432)

69 San Andreas Wrightwood 15 70.727(64.942,76.399) W 70.727(64.942,76.399)

70 San Jacinto HogLake 21 24.749(23.397,26.153) W 24.749(23.397,26.153)

71 San Jacinto Mystic Lake 13 46.015(43.077,48.948) G 46.015(43.077,48.948)

72 Serteng Piedmont Wujia 5 0.88(0.736,1.046) W 0.879(0.735,1.045)

73 Snowden 5 0.388(0.156,0.658) W 0.388(0.156,0.658)

74 Solitario Canyon 5 0.041(0.033,0.048) L 0.041(0.033,0.048)

75 Stagecoach Road 5 0.114(0.078,0.155) L 0.126(0.091,0.16)

76 Sumatra Mentawai 13 58.364(54.815,65.233) G 58.101(54.693,61.437)

77 Tanna 9 1.903(1.251,2.686) W 1.903(1.251,2.686)

78 Teton Lakes 8 2.757(2.387,3.173) L 2.757(2.387,3.173)

79 Vernon 5 2.188(1.338,3.684) W 2.188(1.338,3.684)

80 Wairarapa South 6 0.029(0.013,0.06) W 0.029(0.013,0.06)

81 Wairau 5 10.68(6.813,17.663) L 10.329(6.609,17.281)

82 Waitangi 7 0.21(0.128,0.289) B 0.21(0.128,0.289)

83 Wasatch Brigham 6 14.691(12.395,17.373) L 14.663(12.38,17.302)

84 Wasatch Nilphi 6 5.199(4.085,6.607) W 5.199(4.085,6.607)

85 Wasatch Weber 5 2.816(1.627,3.598) W 2.816(1.627,3.598)

86 Wharekuri 5 0.137(0.116,0.161) G 0.138(0.116,0.162)

87 Whirinaki 8 0.643(0.479,0.828) G 0.633(0.471,0.823)

88 Windy Wash 7 0.005(0.001,0.01) W 0.006(0.003,0.01)

89 Wulashan Piedmont Heshunzhuang Botou 7 2.261(1.924,2.655) W 2.261(1.924,2.655)

90 Wulashan Piedmont Jinmiaozi Heshuzhuang 6 1.193(1.006,1.388) L 1.193(1.006,1.388)

91 Wutai North Piedmont 5 2.46(2.056,2.958) W 2.393(2.032,2.77)

92 Xorkoli 9 8.037(6.235,9.312) W 8.037(6.235,9.312)

93 Zemuhe 8 0.007(0.003,0.017) W 0.007(0.003,0.017)

Forecast probabilities: median (95% credible interval). N number of events in the paleoseismic records, MA model-averaged, BM Single best model, i.e. with the largest WAIC weight.
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100 MC samples. Fault segments with higher rates of earthquake
occurrence appear to have smaller standard deviations of the scaled
inter-event times (Supplementary Fig. 1 (e)). The median standard
deviations of the scaled inter-event times for the 41 fault segments that
were best fit by aWeibull model are all smaller than 0.8 except for one
case. In contrast, more than half of the median standard deviations of
the scaled inter-event times for the 15 fault segments that were best fit
by a lognormal model are larger than 0.8 (Supplementary Fig. 1a, d).
The large median standard deviations are related to fault segments
that have inter-event times with long-tailed distributions which result
in a large spread of data values. These long-tailed distributions are best
fit by a lognormal renewal process.

Probabilistic forecasting
The estimated probability that at least one large earthquake will occur
in the next 50 years along each fault segment is shown in Fig. 2 and
Table 1. The highest probability of a large earthquake in the next 50
years appears to be along theCarrizo andWrightwood segments of the
San Andreas Fault, and the Mentawai Segment of the Sumatra mega-
thrust, with median probabilities over 50%. The upper limit of the 95%
credible interval (CI) of this probability exceeds 75% for the Wright-
wood segment of the San Andreas Fault. These results are consistent
with previous suggestions that these faults are in or approaching the
beginning of a new seismic cycle29–33. Other sites with high prob-
abilities of rupture (>20%) in the next 50 years include the Alpine Fault,
the Chile Margin, Hayward Fault, most other segments of the San
Andreas Fault, the San Jacinto Fault, and certain segments of the Dead
SeaTransformandNorthAnatolian Fault (Table 1). If one fault segment
has a high probability of rupture, it may affect the probability of rup-
ture at a neighbouring fault segment. This is not built in our method

for the global data analysis, but can be considered for a particular local
fault system. The lowest probabilities of a large earthquake in the next
50 years are along the Kusaihu segment of the East Kunlun Fault, the
Futugawa Fault, the Eastern Piedmont segment of theHelanshan Fault,
and the Laohushan segment of the QilianshanFault, with the upper
limit of the 95% credible interval of these probabilities all being lower
than 0.001%. On average, faults along a plate boundary are about 32
(95%CI 9–125) timesmore likely to have a large earthquake in the next
50 years than intraplate faults.

Model-averaging and best-model approaches can give sig-
nificantly different forecast probabilities for an earthquake occurring
within the next 50 years. The maximum difference in the forecast
probability between the twoapproaches is about 14% for theThousand
Palms segment of the San Andreas Fault, where the model-averaging
approach gives a higher probability than the best-model approach
(Table 1). Having said that, for about 90% of the fault segments, this
difference is less than 0.1%.When considering the forecast occurrence
times, for the 28 fault segments where the single-best model has a
WAIC weight less than 0.95, the two approaches give quite different
results. The maximum difference between the credible intervals
obtained using the model-averaging and single-best model approa-
ches is over 10,000 years, and the difference is over 50years for 43%of
the 28 fault segments that benefited from a model-averaging
approach. Figure 3 shows the forecast occurrence time of the next
large earthquake along each fault using the model-averaging
approach, while Table 1 lists the probabilities of a large earthquake
occurringwithin the next 50 years. A comparison of the forecasts from
different models is in the supplement (Supplementary Figs. 2–4).

A quantitative comparison of our probabilistic forecasts with
those published inother studies is challenging (SupplementaryData 1).
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Reports of the mean recurrence interval estimates are equivalent to
forecasting the next occurrence time using a Poisson process (this
comparison is in Supplementary Figs. 2–4). A meaningful comparison
is difficult when the forecast of the probability of the next earthquake
occurrence is specified in terms of a start date and a fixed time period,
as these vary between studies. For example, UCERF3 provides 30 year
probabilities from 2014 CE aggregated by parent fault section16,
whereas we provide 50 year probabilities from 2022 CE on each fault
segment. The UCERF3 forecasts for the San Andreas fault segments all
have similarmeanvalues andoverlapping ranges, whereasour forecast
probabilities show greater variability between segments, with several
non-overlapping credible intervals (Supplementary Fig. 5). We found
previous forecasts for another eight fault segments in our study. All
except two of our forecasts overlap within uncertainties with previous
values, although our uncertainty bounds are typically narrower (Sup-
plementary Fig. 5). Having said that, UCERF3 provides the ranges of
forecast probabilities rather than 95% confidence intervals.

Clustering or periodic behaviour
For a Gamma or Weibull renewal process, if the estimated shape
parameter α < 1, then the process tends to have clustering behaviour,
while if α > 1, the process tends to have quasi-periodic behaviour, with
larger α suggesting more periodic behaviour. For a BPT renewal pro-
cess with probability density function as defined in Eq (3), smaller β

(for β < 1) suggests a more symmetrical probability density function of
inter-event times and hence more periodic behaviour. A lognormal
renewal process describes quasi-periodic behaviour, with a smaller
standard deviation σ corresponding to more periodic behaviour.

Based on the parameter estimates from the Gamma and Weibull
renewal processes, five fault segments appear to show clustering
behaviour, with the upper 95% credible limit of the shape parameter
fromeach of thesemodels being less than 1. These areCadell, Dunstan,
Lake Edgar, Solitario Canyon, and Waitangi, all of which have low
earthquake occurrence rates. For Waitangi, the BPT renewal process
has a WAIC weight over 0.95, and the estimates of β are over 2.5,
confirming a clustering behaviour. For Lake Edgar, theGamma renewal
process has a WAIC weight over 0.95. Six fault segments appear to
demonstrate near Poisson behaviour, Dead Sea Beteiha, Dead Sea
Qatar, Dead Sea Taybeh, Langshan Piedmont Xibulong East, Reelfoot,
and Wharekuri, with the 95% credible interval of the shape parameter
for both theGamma andWeibullmodel containing 1. The remaining 82
fault segments show quasi-periodic behaviour. These results are con-
sistent with a previous study9 that used different tests to check quasi-
periodic recurrence behaviour.

A regression model for the relationship between the shape
parameter of a Weibull renewal process and the earthquake rate,
tectonic setting, faulting type, and the number of earthquakes of
each of the 93 fault segments (Fig. 4) suggests that when the

Fig. 2 | Forecastprobability of anevent occurring in thenext 50years for the 93
fault segments. The values are the medians of the posterior forecast probabilities.
a World map; b San Andreas fault segments and surroundings; c central China;
dNewZealand. Scalebars inb–d are approximate. ArcGIS software byEsriwas used

to create themap.Basemapdata sources: ETOPOelevationmodel (ETOPO2022, 60
Arc-Second Resolution, Bedrock elevation geotiff)50, GNS Science, Natural Earth,
USGS. Map projections areWGS 1984WebMercator (auxiliary sphere), WKID 1857.
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earthquake rate increases 10 fold (e.g., from 0.0001 to 0.001), the
shape parameter of the Weibull renewal process increases by
about 24% (95% CI: 5%–45%). This suggests that fault segments
with higher earthquake rates tend to have more periodic beha-
viour. The shape parameter of the Weibull renewal process for
fault segments located in a stable continental intraplate setting is
about 87% (95% CI: 51%–148%) of that for fault segments located
at or near a plate boundary. Although the 95% CI is wide and
covers 100%, the posterior density plot (Supplementary Fig. 6)
suggests that there is a high probability (0.7) that the latter may
be more periodic than the former. There are only five fault seg-
ments from a stable continental intraplate setting, so to reach a

more robust conclusion, more data from intraplate fault seg-
ments are needed. These findings are consistent with and nuan-
cing those from past studies9,10. The shape parameter of the
Weibull renewal process for fault segments located in an active
intraplate setting (predominantly faults in central China) is about
1.4 (95% CI: 1.1–1.9) times that for fault segments located at or
near plate boundary, suggesting that the former appear to be
more periodic than the latter. The shape parameter of the Weibull
renewal process for fault segments located in a subduction region
is about 1.9 (95% CI: 1.1–3.3) times that for fault segments located
at or near plate boundary, suggesting that the former appear to
be more periodic than the latter. On average, the Weibull shape

Fig. 3 | Forecast occurrence times of the next large earthquake for the 93 fault segments. The x-axis is in years CE.
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parameter for reverse faults is about 69% (95% CI: 46%–104%) of
that for normal faults, suggesting that large earthquakes recur
more periodically on normal faults than on reverse faults. Note
that obtaining long earthquake records for reverse faults is often
more difficult than for normal faults, due to progressive burial of
the evidence for previous earthquakes. With more data becoming
available in the future, one could investigate whether variations in
strain rate or kinematics have a significant impact on record
length and event preservation.

The likelihood of systematically missing very short inter-event
times in the paleoseismic records andhence biasing our analysis is low.
If fault re-rupture commonly occurred shortly after previous earth-
quakes, then we would expect to see this frequently in the historical
record of surface rupturing earthquakes, which we largely do not34.
While preservation of paleoseismic evidence is an important con-
sideration in the interpretation of any paleoseismic record, the char-
acteristics of the geomorphic and geological setting, and the relative
rate of tectonic processes to non-tectonic geomorphic processes, will
control whether evidence of past earthquakes is preserved35. Ideally,
paleoseismic studies consider these factors in site selection and
interpretation; while it is acknowledged that missed events are a pos-
sibility, it is not clear that this should lead to a systematic bias in our
statistics towards or away from periodicity.

Assessment of prediction error
For each fault, we removed the last event in the record inorder to carry
out retrospective forecasts using both themodel-averaging and single-
best model approaches. The single-best model remained the same as
that for the full dataset for 49%of the fault segments (46 out of the 93).
It appears that the single-best model is more likely to change for fault
segments with fewer recorded earthquakes. The number of earth-
quakes along fault segments for which the single-best model changed
is about 27% (95% CI: 11%–39%) fewer than for those fault segments for
which the single-best model remained the same. This demonstrates
the large model uncertainties for paleoearthquake data, again sug-
gesting that a model-averaging approach is preferable.

Figure 5 shows the 95%credible intervals of the forecast of the last
earthquake occurrence time, with 0 representing the mean of the
recorded last earthquake occurrence time. Out of the 93 fault seg-
ments, the model-averaged forecast successfully covered 79 of the
mean true occurrence times. The forecasts from the Poisson process
successfully covered 89 of the mean true occurrence times, which at

first glance may suggest that it outperforms the model-averaged
forecasts. However, it does this by having much wider credible inter-
vals (on average twice as wide as the credible interval from the model-
averaged forecast); i.e. it has much more uncertainty in the forecast.
When examined in more detail, we see that model-averaged forecasts
routinely outperformedPoissonprocess forecasts, provided that there
were sufficient events left in the record. Specifically, about 83% (77 of
the 93 fault segments) of the model-averaged forecasts have much
smaller mean squared errors (MSEs) than the forecasts from the
Poisson process (Supplementary Fig. 7). MSE is the average squared
difference between the forecast value and the true value, which is
equal to the sum of the variance and the bias squared, and provides a
measure of the trade-off between accuracy and precision. For about
half of the fault segments (45 of the 93), theMSEs of the forecasts from
the Poisson process are more than twice of that from the model-
averaged forecasts (Supplementary Fig. 8). The 14 fault segments for
which the model-averaged forecast 95% credible interval didn’t cover
the true mean were characterised by few events being left in the
record: 6 had only 4 events left in the record and thus too few to fit
models with more than two parameters, while a further 7 fault seg-
ments had fewer than 7 events. Even though in some situations with a
small number of events in the record, the less informative, more
uncertain Poisson-based forecasts seem to cover the true value, the
majority of fault segments with small numbers of events are still better
represented by the model-averaging approach (e.g., 23 out of the 30
fault segments which had 4 events in the retrospective forecasts have
model-averaged forecasts with much smaller MSE than the Poisson
forecasts). It is anticipated that for most hazard modelling purposes
the smaller errors associatedwith themodel-averaged forecasts favour
their use. Having said this, the Poisson process may still be a valuable
model when limited data are available, which is the case for many fault
segments that are not included in this study because they have less
than five events in the record.

The MSEs of the retrospective forecasts from the single-best
model approach are very close to those from the model-averaging
approach for the majority of the fault segments (Supplementary
Fig. 9), all within two times relative difference. Model-averaging with
WAIC weights is not usually designed to achieve a better MSE than the
single best-model approach. However, when there is some uncertainty
as to the best model, model-averaging outperforms a single best-
model primarily in terms of better representing all the uncertainties.

TheBayesianmodel-averaging approachpresented hereexplicitly
considers model uncertainty based on the data and associated mea-
surement errors, rather than relying on selection of a best model.
Retrospective testing shows that model-averaging provides more
informative and accurate forecasts compared with a single-bestmodel
approach or assuming a Poisson process (i.e., random earthquake
recurrence). The earthquake probabilities presented in this study also
provide a testable hypothesis of future earthquake occurrence that
can be evaluated at a global scale.

Methods
Models
For each fault segment, we obtain 100 sequences of Monte Carlo (MC)
samples for the ages of the sequence of large earthquakes in the
paleoseismic record (see Data and Resources section). Each sequence
ofMC samples is then considered a realisation of the occurrence times
of large earthquakes along that fault9,36. We denote them by
tk0 < tk1 < . . . < tkNi

≤T , where k = 1, 2,…, 100 denotes the kth MC
sample,Ni denotes the number of earthquakes in the record for the ith
fault segment with i = 1, 2,…, 93, and T denotes the censoring time
which we take as the year 2022. The inter-event times for the kth MC
sample of the ith fault are then xk1 = tk1 � tk0, . . . , xkNi

= tkNi
� tkðNi�1Þ.

For each earthquake record, we fit the following five models. The
first is a Poisson process with occurrence rate Zkλ for the kth sequence
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ofMC samples, where Zk is a random variable (k = 1,⋯ , 100) capturing
the similarities between the 100MC samples for each fault. The second
model is a Gamma renewal process with the inter-event times for the
kth sequence of MC samples following a Gamma distribution with
probability density function

f ðx;α,λ,Zk ,YkÞ=
1

ΓðZkαÞ
ðYkλÞZkαxZkα�1 expf�Ykλ xg ð1Þ

where Zkα and Ykλ are shape and rate parameters, with Zk and Yk
being random variables (k = 1,⋯ , 100) capturing the similarities
between the 100 MC samples for each fault. The third model is a
Weibull renewal process with inter-event times for the kth sequence
of MC samples following a Weibull distribution with probability
density function

f ðx;α,λ,Zk ,YkÞ=ZkαðYkλÞZkαxZkα�1 expf�ðYkλxÞZkαg ð2Þ

whereZkα and Ykλ are shape and rate parameters. The fourthmodel is a
Brownian Passage-Time (BPT, also called inverse Gaussian) renewal
process with inter-event times for the kth sequence of MC samples
following a BPT distribution with probability density function

f ðx;μ,β,Zk ,YkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zkμ

2πðYkβÞ2x3

s
exp � ðx � ZkμÞ2

2ZkμðYkβÞ2x

( )
ð3Þ

where Zkμ and Ykβ are the mean and coefficient of variation of the
distribution. The fifthmodel is a lognormal renewal processwith inter-
event times for the kth sequence ofMC samples following a lognormal
distribution with mean Zk + μ and standard deviation Ykσ, both on the
log scale.

Estimation
Given the kth MC sample of the earthquake occurrence times
tk0, tk1, . . . , tkNi

along the ith fault, with final censoring time T, the
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likelihood of the kth MC sample for each model is

Lðθk ; tk1, . . . , tkNi
,TÞ= ð1� FðT � tkNi

;θkÞÞ
YNi

j = 1
f ðtkj � tkðj�1Þ; θkÞ, ð4Þ

where k= 1,⋯ , 100, θk= (λ,Zk) for the Poisson process, θk= (α, λ,Zk,Yk)
for the Gamma and Weibull renewal processes, θk= (μ,β,Zk, Yk) for the
BPT renewal process, and θk= (μ,σ,Zk,Yk) for the lognormal renewal
process

The differentMC samples from the same fault should have similar
recurrence patterns. To reflect this, we assume that both Yk and Zk
follow a distribution with mean 1, i.e.,

Yk ∼Gammað1=σ2
Y , 1=σ

2
Y Þ, Zk ∼Gammað1=σ2

Z , 1=σ
2
Z Þ, ð5Þ

where σY and σZ are the standard deviations of Yk and Zk, respectively.
A Markov Chain Monte Carlo (MCMC) algorithm generates sam-

ples from the joint posterior distribution of θk, σY and σZ given the
occurrence times tk0, tk1, . . . , tkNi

from the kth MC sample and the
censored time T, using software JAGS and the R2jags package in R37.
We use three chains, half-normal priors for α and β, and weakly
informative half-t prior distributions for the variance parameters σY
and σZ

38, i.e.

α∼Nð0, 1002ÞTð0,Þ, λ∼Nð0, 1002ÞTð0,Þ,
μ∼Nð0, 1002ÞTð0,Þ, β∼dtð0, 0:04, 3ÞTð0,Þ,

σ ∼dtð0, 0:04, 3ÞTð0,Þ, σY ∼dtð0, 0:04,3ÞTð0,Þ,
σZ ∼dtð0, 0:04, 3ÞTð0,Þ:

For theMCMCalgorithm, we use three chains with 5,010,000 iterations,
discarding the first 10,000 iterations as burn-in, and use a thinning rate
of 1000. The scale reduction factors of the Gelman-Rubin convergence
diagnostic are all less than 1.02, indicating convergence39,40.

Model-averaged forecasts
To calculate Bayesian model-averaged forecasts, we combine the
posterior distributions of the forecast under each model using model
weights. We use prediction-based Bayesian model-averaging (PBMA)15

with the model weights calculated using the Watanabe-Akaike Infor-
mation Criterion (WAIC20). This is far less sensitive to the priors for the
parameters than classical Bayesian model-averaging (CBMA), which
uses posteriormodel probabilities15. PBMA is sometimes referred to as
Bayesian model combination41. Unlike CBMA, it does not involve the
assumption that one of the models is true. The WAIC for model k is
calculated as

WAICk = � 2
Xn
i= 1

logðpðyijy, kÞÞ+ 2pk ð6Þ

where p(yi∣y, k) is the pointwise posterior predictive density from
model k, which can be estimated using the mean of the posterior
MCMC sample of p(yi∣θk, y, k) for model k; and pk is a correction for
overfitting. A common choice for pk is

pk =
Xn
i = 1

var logpð yijθk , y, kÞ
� �

, ð7Þ

where each term in the summation can be estimated by taking the
variance of the posterior MCMC sample of logpð yijθk , y, kÞ for model
k. The WAIC weight for model k is given by

pðkj yÞ / exp �ðWAICk �min
i

WAICiÞ=2
� �

: ð8Þ

WAIC is a prediction-based criterion, analogous to AIC in the non-
Bayesian setting, and use of Eq. (8) to define the model weights is

motivated by the form of AIC weights42. Alternative approaches to
prediction-based model averaging in seismology have been
proposed43,44.We prefer tomake use ofWAICweights for the following
reasons. Model selection using WAIC has the desirable property, in
large samples, of being equivalent to Bayesian leave-one-out cross-
validation (B-LOO)45. When B-LOO is used in model averaging it is
known as Bayesian stacking, and has the useful property that, for large
samples, it leads to the best linear combination of the posterior
distributions of the forecasts from each model, whereas CBMA will
lead to use of the posterior distribution of the forecast from the single
best model41–43 (which is why some authors refer to CBMA as a tool for
model selection41). We would therefore expect WAIC weights to
provide a close-to-optimal linear combination of the posterior
distributions of the forecasts from each model, whilst being much
less computationally-intensive than Bayesian stacking.

For each model, we can obtain a posterior MCMC sample of the
forecast quantity: either the forecast occurrence time of the next large
earthquake or the forecast probability of at least one large earthquake
occurring in the next 50 years along the specified fault segment. These
forecasts are conditioned on the fact that there was no large earth-
quake between the last large earthquake occurrence time and the year
2022. The five posterior MCMC samples of the forecast quantity were
combined into one model-averaged posterior sample by randomly
taking the value from one of the five posterior samples at each itera-
tion. The probability weights for the random sampling are the WAIC
weights for the corresponding five models.

Data availability
All data used in this study have been deposited in Zenodo https://
zenodo.org/records/413130846.

Long-term earthquake records were compiled from previously
published studies for 93 individual fault segments globally. The
majority of the data were taken from a previous compilation9, with
additional records (mainly from China47) added to extend this data-
base. The data primarily consists of results from paleoearthquake
studies from a single site on a fault segment, supplemented by his-
torical data where they exist. We select records that contain at least
five events. Some studies have considered evidence from more than
one site on a particular fault segment; in this case, we use an earth-
quake record that combines data from the different sites only if
provided in previously published studies, and do not attempt to
combine earthquake records ourselves. For subduction zones,
earthquake records are necessarily derived fromproxy evidence (e.g.
paleogeodesy, paleotsunami or turbidite studies), rather than direct
on-fault evidence, and again we rely on the assessment of the rele-
vant study authors for attribution of the evidence to the fault in
question. For some faults in our database (in particular the San
Andreas Fault) many studies have been carried out on neighbouring
fault segments, some of which are known to have ruptured together
in past historical earthquakes. For this study we treat each record
independently, and do not attempt to correlate past ruptures or
consider the probability of co-rupture of multiple segments and/or
faults in our model, as has been done in other studies focused on
data-rich regions24,48.

Code availability
All R code for the analysis and plots is available in Zenodo https://doi.
org/10.5281/zenodo.1051193049. Python code for the Monte Carlo
sampling of the earthquake chronologies is available in Zenodo
https://zenodo.org/records/413130846.
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