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Consistent stoichiometric long-term rela-
tionships betweennutrients and chlorophyll-
a across shallow lakes

Daniel Graeber 1 ,Mark J.McCarthy2, TomShatwell 3, Dietrich Borchardt 1,
Erik Jeppesen4,5,6,7,8, Martin Søndergaard4,5, Torben L. Lauridsen4,5 &
Thomas A. Davidson 4

Aquatic ecosystems are threatened by eutrophication from nutrient pollution.
In lakes, eutrophication causes a plethora of deleterious effects, such as
harmful algal blooms, fish kills and increased methane emissions. However,
lake-specific responses to nutrient changes are highly variable, complicating
eutrophication management. These lake-specific responses could result from
short-term stochastic drivers overshadowing lake-independent, long-term
relationships betweenphytoplankton andnutrients. Here,we show that strong
stoichiometric long-term relationships exist between nutrients and chlor-
ophyll a (Chla) for 5-year simple moving averages (SMA, median R² = 0.87)
along a gradient of total nitrogen to total phosphorus (TN:TP) ratios. These
stoichiometric relationships are consistent across 159 shallow lakes (defined as
average depth < 6m) from a cross-continental, open-access database. We
calculate 5-year SMA residuals to assess short-term variability and find sub-
stantial short-term Chla variation which is weakly related to nutrient con-
centrations (median R² = 0.12). With shallow lakes representing 89% of the
world’s lakes, the identified stoichiometric long-term relationships can glob-
ally improve quantitative nutrient management in both lakes and their
catchments through a nutrient-ratio-based strategy.

Controlling eutrophication requires managing external total phos-
phorus (TP) and total nitrogen (TN) loads to lake ecosystems1–4. Uni-
versal patterns of N- or P-deficient phytoplankton growth have been
proposed, with thresholds at molar TN:TP ratios < 20 for N deficiency
and > 50 for P deficiency, primarily based on standardized laboratory
measurements5. However, snapshot lake monitoring data have shown
variable responses to changes in TN and TP concentrations at different
TN:TP ratios, which was attributed to differences in lake or catchment

characteristics6, with apparent thresholds ranging from TN:TP = 13–22
for N deficiency and TN:TP = 51−62 for P deficiency6. Due to large
variations in relationships between nutrients and chlorophyll a (Chla)
even among homogeneous lake sets, log-log transformations have
been suggested for TP7, and have been used to detect changes in
apparent TN or TP control of phytoplankton biomass8. Furthermore,
since measurements of TN and TP and phytoplankton biomass (e.g.,
Chla) are not independent, relationships are often considered
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tautologous7. In terms of nutrient dynamics, many lake monitoring
programs and datasets include only total nutrient concentrations and
Chla, which do not include information on nutrient availabilities or
lake internal nutrient dynamics9,10. Without mechanistic data describ-
ing internal nutrient dynamics and true availability, we are often left
with total nutrient and Chla data with which to evaluate nutrient and
phytoplankton relationships. We believe that by understanding the
source of lake-specific, high variability of total nutrient – Chla rela-
tionships, and characteristics of the apparent tautology, global pat-
terns of N and P relationships with phytoplankton growth in shallow
lake ecosystems can be discerned.

Strayer et al.11 suggested that long-term ecological signal analyses
are suitable for three phenomena: slow processes, rare events, and
subtle processes. Eutrophication may serve as a prime example of a
subtle process, with links between Chla and nutrients becoming
apparent only in the long term due to unpredictable year-to-year

variability obscuring subtle changes11. Random annual fluctuations in
factors such as ice-free periods, changes in phytoplankton composi-
tion, phytoplankton pigment content, and top-down food chain
effects contribute to substantial variation in phytoplankton responses
to N or P changes11–13. By separating long-term signals from their short-
term counterparts, a clearer relationship between phytoplankton
biomass and nutrient concentrations should emerge (Fig. 1).

By integrating long-term signal analysis with a deeper under-
standing of the nutrient-Chla tautology, we may be able to better
detect phytoplankton community growth patterns relative to TN and
TP. Specifically, the tautology should only be valid during the growing
season, when most of the total nutrient pool may be contained within
phytoplankton biomass. Within the growing season, the tautology
should not apply if a nutrient is present in excess, as illustrated by
Lewis & Wurtsbaugh7 for the TP-Chla relationship under P excess. We
suggest that the tautology and nutrient accumulation have a

Fig. 1 | Conceptual diagram of the data analyses performed and their hypo-
thesised results. We used growing season averages of shallow lake time series to
calculate 5-year simple moving averages (SMA), which act as low-pass filter to
extract long-term variation. We used the residuals of the 5-year SMA, calculated as
the growing season observation minus the SMA for the same year, as high-pass
filter to reveal short-term variation (A)12. We evaluated different SMA lengths and
found 5 years to be ideal (see methods and SI for details). We categorized the data
into overlapping TN:TP “windows” to assess the link between TN, TP, and Chla
within different ranges of TN:TP (B). Here, we used the natural logarithm of TN:TP
ratios because ratios follow a log-normal distribution59. For each TN:TP window,

the data were randomly sampled 300 times using a hierarchical bootstrap proce-
dure to preclude temporal dependence of the sampled data62. For each random
sample, we calculated generalized linear models with gamma distribution (5-year
SMA) or linear models (SMA residuals) for the relationship between Chla and TP
and/or TN, and extracted R² and model coefficients (C). Model slopes and R² are
shown in the main text, see Methods and SI for details on the bootstrap and other
model coefficients. We hypothesize high TP model slopes, high R² and low con-
centrations of reactive pelagic P in the form of soluble reactive phosphorus (SRP)
at higher TN:TP, and high TN model slopes, high R² and low concentrations of
reactive pelagic N as nitrate-N at lower TN:TP (D).
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stoichiometric variant, where dissolved nutrients can accumulate
whenphytoplankton assimilation of a dissolved nutrient is constrained
by the availability of another nutrient (Fig. 1). In this case, the nutrient
in relative excess may accumulate in the water column in dissolved,
reactive form5,6. This notion agrees with previous ecological
models14,15, which have proposed stoichiometric limits to phyto-
plankton N and P cell contents depending on relative water N and P
concentrations, with accumulation of reactive nutrients if these
nutrients are available in excess. Furthermore, this approach assumes
that concentration measurements of the reactive nutrient forms can
capture the true nutrient bioavailability in the system to a large part. If
the proposedpatterns of relativeN and P accumulation and availability
are lake-independent, universal relationships between TN, TP, reactive
nutrient forms and Chla should emerge along a gradient of TN:TP
ratios in shallow lakes.

We propose that long-term signals capture the majority of sta-
tistical dependence of Chla concentrations on TN and TP concentra-
tions, and that the strength of the relationships andmodel coefficients
are universal along a TN:TP gradient for a large, global shallow lake
dataset (Fig. 1). If most of the information about relationships between
nutrients and Chla is contained within the 5-year simple moving
averages (SMA), then year-to-year residual variation should not reveal
systematic changes in model slope or high R²12. Long-term relation-
ships between Chla and TN or TP concentration during the growing
season should exhibit a consistent, lake-independent steeper slope
(Fig. 1)16. Additionally, the long-term pattern should indicate an
increasedproportionof inorganic, reactive formsofNandPduring the
growing season, when there is N and/or P excess for phytoplankton
growth at specific TN:TP ratios (Fig. 1). Of the inorganic, reactive N
forms, ammonium-N is most energetically favorable for algal
growth17,18, but concentrationmeasurements are scarce and unreliable
due to its bioreactivity19. Instead, we chose nitrate-N, as it is less
energetically favorable, and thus more prone to accumulate at mea-
surable concentrations, and more likely to accumulate over long-term
periods20,21.

We use lakes with a cut-off of 6m average depth and without any
further data selection. By doing so, our data analysis is representative
of the vast majority of the world’s lakes; of the 1.4 million lakes in the
global HydroLAKES database22, 89% are shallower than 6m. We used
this cutoff to assess shallow, often polymictic lakes where water sam-
ples of nutrients and Chla are likely to be representative of the entire
water column23.

In this work,we show robust, ubiquitous stoichiometric long-term
relationships between nutrients and Chla in shallow lakes, supporting
the current view that nuanced dual nutrient control based on nutrient
ratios is required for efficiently managing lake eutrophication2,6,24. For
such strategies to succeed, it is crucial to manage both N and P across
the entire catchment area, adopting a comprehensive and integrated
perspective on nutrient loads and ratios25–27. However, further inves-
tigation is necessary to confirm whether the observed stoichiometric
patterns represent a consistent, causal relationship between nutrient
levels and phytoplankton growth over the long term. If future studies
validate our findings, the identified stoichiometric relationships will
enable managers to accurately predict the outcomes of long-term
eutrophication management, based on TN:TP ratios and
concentrations.

Results and discussion
Nutrient - chlorophyll a links for long-term averages
When combining TN and TP concentrations as predictor variables in
additive models, the long-term, 5-year SMAs showed the underlying
relationships between TN, TP and Chla with a high median R² = 0.87
(0.69–0.96 95% highest-density interval (HDI)) for the additive linear
models (Fig. 2C, see SI for Akaike’s Information Criterion supporting
this statement). Althoughuncertainty of the additivemodels increased

at TN:TP < 20, we still found a median R² =0.72 (0.47–0.89 HDI)
(Fig. 2C). The higher uncertainty around R² is shared between all
models for TN:TP < 20 (Fig. 2A–C) and is probably due to the smaller
number of observations in this range (16–64 observations per model
compared to 18–158 observations per model for TN:TP > 20, see
also SI).

The slopes of the additive models revealed a tipping point beha-
vior with change of TN:TP (Fig. 3B, D). Here, the TP slopes of the
additive models (Fig. 3B) weremaximal at TN:TP > 50 (median = 381.5,
130.8–524.5 HDI), with a decline at TN:TP < 50, and TP slopes partially
crossing zero at TN:TP < 20 (median = 43.4, −54–180.2 HDI). Further-
more, the additive model slopes for TN revealed a clear tipping point
behavior (Fig. 3D), with the highest values at TN:TP < 20 (median =
54.9, 28.7–86.6 HDI), a gradual decrease for TN:TP of 20–50, and
model slopes consistently near zero at TN:TP > 50 (median = 5.8,
1.4–11.3 HDI). Previous approaches have not been able to assess whe-
ther N or P, both, or neither nutrient is closely linked to Chla in the
range between TN:TP of 20–505,6. In contrast, our results show
empirical evidence of ubiquitous dual-nutrient links to Chla for the
5-year SMAswithin this TN:TP range (Fig. 3). Furthermore, themajority
of our 5-year SMA observations (60%) (Fig. 3) were between
TN:TP = 20–50, which suggests that dual-nutrient links to Chla are the
most common scenario in lakes <6m average depth, which is in
agreement with a global cross-ecosystem analysis of relative nutrient
limitation28.

When only including TP concentration as the predictor variable,
the long-term relationships of TP - Chla also agree with our assump-
tions (depicted conceptually in Fig. 1D) and previous literature8. For
TN:TP > 30, TP - Chla models produced a median R² =0.87 (0.8 − 0.94
HDI), which decreased to a median R² =0.5 with high uncertainty
(0.08–0.76 HDI) for TN:TP< 20 (Fig. 2A). Here, the slope change of the
TP - Chla models revealed a tipping point behavior, where the single-
nutrient TP model slopes were stable at TN:TP> 30, and decreased
below that, with slopes of a portion of the model solutions crossing
zero at TN:TP < 15 (Fig. 3A). The implication of relative TP deficiency or
excess from our model estimates was also supported by the accumu-
lation of SRP. Specifically, median SRP concentrations were 0.17mgL−1

for TN:TP < 20 and 0.01mgL−1 for TN:TP > 20 (Fig. 4A).
When only including TN concentration as the predictor variable

for TN - Chla models, we observed unexpected, yet potentially
revealing patterns. The R² of the TN-only models (Fig. 2B) was high
even atTN:TP > 50,whichcontrastswith the expected relativeN excess
and breakdown of R2 (Fig. 1D). Furthermore, the TN-only model slopes
revealed no tipping point behavior indicative of change in N excess,
but a continuous and highly consistent slope decrease with increasing
TN:TP (Fig. 3C).Wealso foundadichotomyof nitrate-N concentrations
at TN:TP > 50, with a small subset of data revealing high nitrate-N
concentrations of more than 1mg L−1 (13% of the samples), but most
samples showing nitrate-N concentrations < 0.1mg L−1 (77%, Fig. 4B).
Based on this it seems that, in the majority of lakes, denitrification was
efficient at removing nitrate-N29,30, and was responsible for the low
correlation between TN and nitrate-N (see SI for a TN - nitrate-N scat-
terplot), except for very high TN concentrations, as was shown before
for nutrient-rich lakes31. For the datawith lownitrate-N concentrations,
we also detected lower Chla concentrations, indicating that potentially
reactive N was depleted even at high TN:TP (Fig. 4B). Thus, the data
suggests that N was not as available to phytoplankton at high TN:TP
(Fig. 2B, Fig. 3C) as P seems to have been at low TN:TP (Fig. 2A, Fig. 3A).

Based on the empirical evidence, we propose that non-reactive or
less reactive N pools must contain the N not accessible for phyto-
plankton growth at high TN:TP. Living or dead particulate organic
matter is not a likely storage pool, as typical ranges of phytoplankton32

and bacterial33 cell N: P ratios are insufficient to account for such high
TN:TP ratios. In contrast, dissolved organic matter, particularly dis-
solved proteinaceous matter, is a likely candidate. In a study of four
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lakes, dissolved proteins were selectively preserved over decadal to
centennial timescales potentially due to bacterial and photochemical
degradation34. Moreover, in a long-term study of Flathead Lake, high
pelagicmolar TN:TP ratios (80 – 90) were best explained by long-term
N conservation in the dissolved organic N pool35. In our case, TN
concentrations were high at TN:TP > 50, and were maximal at
TN:TP > 100 (see SI, section 9, for details). Hence, refractory dissolved
organic N may be a considerable, yet largely overlooked, N storage
pool in lakes. Based on this evidence, we hypothesise two alternative
pathways for the N fate in high TN:TP lakes: (i) either accumulation of
excess N as nitrate-N in a minority of lakes, or (ii) removal and storage

in a coupled denitrification-dissolved organic N pathway, with accu-
mulation of refractorydissolved organic N, likely dissolved proteins, in
the majority of lakes (Fig. 3B). Such a coupled storage pathway
resembles the microbial carbon pump concept in oceans36 and soils37.
Furthermore, as organic carbon availability often controls both deni-
trification and bacterial N assimilation26,38,39, dissolved organic car-
bon:N ratios could be crucial for delineating the dominant long-termN
pathway.

Another aspect important for the link between TN:TP and N
depletion is the potential importance of N fixation by cyanobacteria
for providing N to phytoplankton growth. An earlier multi-lake study
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Fig. 2 | Explained variance R² of the generalised linearmodels.The R2 values are
separated for long-term variation in the shallow lakes based on 5-year simple
moving averages (SMA) (A–C) and short-term variation based on SMA residuals
(D–F). Shown are results from generalised linearmodels with gamma distributions
for 5-year SMAs and linear models with normal distributions for SMA residuals for
total phosphorus (TP, mg/L, panelsA,D), total nitrogen (TN, mg/L, panelsB, E), or
additivemodels of TP and TN (panelsC, F) and chlorophyll a (Chla, µg/L). These are

plotted against themeanmolar TN:TPof each randomly sampleddataset (see Fig. 1
for data processing steps). The less transparent the points, the more overlapping
solutions for R²were foundby thebootstrapprocedure (indicating the error ofR²).
The orange line is themean response based on a LOESS function.N = 9194 samples
for the 5-year SMAs because not all models converged (A–C) and
n = 13800 samples for the SMA residuals (D–F).
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revealed relatively higher importance of denitrification over atmo-
spheric N fixation in the majority of studied lakes24. In our study, high
relative N fixation rates would lead to long-term N excess even at low
TN:TP ratios40,41, causing consistently low R² and no systematic slope
changes across the entire TN:TP range, which we did not observe
(Fig. 2A, C). Alternatively, constantly high rates of N fixation relative to
denitrification would push TN:TP consistently towards N excess at
higher values of approximately TN:TP > 50. Again, we did not observe
this, as our study revealed that themajority of TN:TP were between 20
and 50 (60% of the observations), supporting the prevalence of
denitrification.

Comparison of nutrient-chlorophyll a links in long-term and
short-term data
By extracting the 5-year SMAs and using a bootstrap procedure, we
revealed a robust, ubiquitous long-term response across 159 shallow
lakes, suggesting a common long-term stoichiometric relationship
between nutrients and Chla, irrespective of differences in nutrient
concentrations, lake characteristics, or catchment type. In contrast,
the short-term variation contained within the SMA residuals showed
low correlation coefficients (median R² =0.12, 0–0.46 HDI, Fig. 2D–F).
Therefore, the persistence of strong phytoplankton-nutrient relation-
ships only in the 5-year SMAs (Fig. 2A–C) supports early ideas that

nutrient control of eutrophication at the ecosystem scale is a gradual
process11,42. This increased robustness of the link between nutrients
and phytoplankton also removes the need to log transform nutrient
concentrations and phytoplankton biomass concentration variables,
an approach which has been used to detect changes in nutrient-
phytoplankton links when using snapshot samples or shorter-term
means8. However, this long-term link may be surprising as phyto-
plankton has generation times of days to weeks. That the effect of
eutrophication is longer lasting than the generation time of phyto-
plankton is reminiscent of earlier research, where a a delayed response
of species to disturbances over several generations has been proposed
tomimic the true disturbance impact43. Therefore,multi-year averages
may reveal delayed effects of disturbances, but also effects of slowly
changing drivers such as climate12 or terrestrial catchment changes.

Of all the lakes contained in the largeopen-access globaldatabase,
only 159 lakes in the temperate climate zone had sufficient long-term
data to assess long-term phytoplankton-nutrient relationships, limit-
ing our conclusions for Arctic or tropical shallow lakes. For lakes
outside the temperate zone, we assume similar stoichiometric rela-
tionships due to similarities in algal physiology. However, marine
studies suggest shifted thresholds due to differences in phytoplankton
community composition in different climate zones44, and similar
effects may apply in lakes.
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Considerable variations in Chla, TN, and TP concentrations were
present in residual short-term data. These short-term residual varia-
tions were approximately half has high as for the 5-year SMAs. Speci-
fically, the variation of the 5-year SMAs and their residuals can be
expressed as the 95% range of their values using theHDI. For the 5-year
SMAs, the HDI range of Chla was 133 µg L−1. For the short-term Chla
data, theHDI rangewas 73.7 µg L−1. Similarly, for the 5-year SMAs versus
the SMA residuals, we found HDI ranges of 2.7 versus 1.1mg L−1, and
0.27 versus 0.12mgL−1 for TN and TP, respectively.

This remaining high short-term variability in Chla may be related
to variations in abiotic parameters controllingphytoplanktonbiomass,
such as different N and P fractions, and to food web effects12. For
example, fish predation on cladocerans can vary widely between years
due to differences in environmental factors and strongly affect Chla
concentrations45. Another source of short-term variation could be the
Chla content of phytoplankton, which can vary widely within and
between species13. Furthermore, links between variability in external
and internal loading of N andP, and their specific bioavailable fractions
need to be elucidated to better understand short-term variability.
Here, not only the well-established internal P loadingmechanisms, but
also short-term pulses of internal N loading, both from sediments10,46

and the water column9,47, may play an important role in causing and
maintaining eutrophication. Such pulses may be overlooked by infre-
quent spot sampling of TN and TP. Furthermore, simple linear
regressions may be incapable of revealing short-term eutrophication
responses to external drivers. Instead, these responses may emerge in
short-term fluctuation amplitude, covariance, synchronicity, and fre-
quency of the variability of nutrients and phytoplankton, analogous to
findings for short-term variation of Daphnia and its food sources in
lakes48. We propose that disentangling the sources andmechanisms of
the revealed short-term variation requires high-frequency, detailed
measurements of true nutrient availabilities, phytoplankton biomass,
and food web structures, linked to mechanistic nutrient flux
measurements24.

Beyond lakes, many other ecological responses may have two
temporal components: a short-term component linked to microbial
food webs or stochastic short-term changes, and a long-term com-
ponent linked to factors with variability following a longer periodi-
city. This concept has been suspected for decades11,43 – and many
researchers instinctively use long-term trends to remove short-term
variation – but we found few rigorous, systematic investigations of

multi-year monitoring or experiments. One notable exception is a
recent study by Cusser et al.49, who found that 12 long-term fresh-
water and terrestrial ecosystem experiments on plant and animal
composition exhibited consistent resposes to experimental manip-
ulation only over periods typically exceeding 10 years. With
increasing access to high-resolution long-term ecological data, our
study and that of Cusser et al.49 may inspire further research using
similar approaches to temporal signal extraction and random time
series sampling.

Usage of long-term stoichiometric relationships in lake and
catchment management
The long-term relationships between nutrients and Chla revealed in
this study provide empirical evidence for the often debated long-term
stability of dual nutrient control of phytoplankton biomass40, and
strongly suggest that recent considerations of dual nutrient
control2,16,50 are thebest approach to lakemanagement for themajority
of shallow lakes. However, dual nutrient control is not easily imple-
mented, as managing N and P input to shallow lakes is challenging.

Many shallow lakes are supplied by surface waters and are part of
extensive freshwater networks, where the majority of external N and P
originates from hydrological catchment sources. For P, source control
has been successful in reducing P loading from point sources16,40,51.
However, diffuse N and P source control often demonstrates limited
success25,51,52. As a result, well-designed nature-based solutions are
necessary to physically and biologically retain N and P within soils,
riparian zones, wetlands, ponds, and stream networks before these
enter lakes, while providing beneficial secondary effects (e.g. on bio-
diversity) and avoiding deleterious effects (e.g. increased greenhouse-
gas emissions and pollution swapping)53,54. Furthermore, our results
mayalsobe applicable fordeeper lakes, aswefindhighly similar results
when we do not only include shallow lakes in the data analysis (see SI
for an analysis without depth cut-off). Yet, deeper lakes only comprise
a small part of the dataset, and we recommend conducting a separate
analysis for a dataset consisting of only deeper lakes to assess whether
similar patterns appear.

Coupling monitoring, ecosystem models, and experiments may
provide additional mechanistic evidence that the stoichiometric
empirical patterns found here represent a causal link between nutri-
ents and phytoplankton growth. If our findings are supported by fur-
ther studies, the stoichiometric relationships found in this study will
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Fig. 4 | Dissolved inorganic nutrient concentrations versus TN:TP ratios of the
shallow lakes. Shown are soluble reactive phosphorus (SRP) (A) and nitrate-N
(NO3-N) (B) concentrations of each 5-year simplemoving average (SMA) versus the
molar TN:TP ratio of the same lake and 5-year SMA. Data are based on the same
time series as the other data, but SRP and nitrate-N data were not available for

every TN and TP observation. Therefore, panel A includes 278 observations from
37 shallow lakes, and panel B includes 620 observations from 138 shallow lakes.
The axes have been log-transformed since TN:TP ratios followed a log-normal
distribution, and to make small SRP and nitrate-N concentrations visible.
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allow managers to make long-term predictions of eutrophication
management success based on TN:TP ratios and their concentrations.

Methods
Data collection
We collected data from the largest currently available open-access
global lake database55, to which we added data provided by the Danish
Centre for Environment at the Aarhus University in an open-access
database (https://odaforalle.au.dk, downloaded in February 2022). We
collected average depth and concentrations of Chla, TN, and TP. We
performed all data analyses and statistics in R, version 4.356.

We included all lakeswith an average depth <6m.With this cutoff,
our data analysis represents the vast majority of the world’s lakes. Of
the 1427688 lakes in the global HydroLAKES database22, 89% are shal-
lower than 6m. We used the 6-m cutoff, since the probability of stra-
tification is <0.5 for an average lake depth of <6m23. Thus, this cut-off
represents lakes with a higher probability of mixing than that of stra-
tification, resulting in the fact that water samples of nutrients and Chla
shouldmore likelybe representative of the entirewater column.Not all
lakes in the global nutrient dataset had mean depth values55, so we
added mean depths from the HydroLAKES database to the global
nutrient data time series if not already available. This approach was
based on geographical location of the lake usingQGIS57 and the unique
lake identifier in the global nutrient database55. The Danish database
included depth values for all lakes, and we excluded saline or brackish
waters with more than 2000 µs cm−1. No other data filtering, outlier
detection, or exclusion was performed.

The global nutrient database did not contain nitrate-N or SRP
concentration data. Therefore, we extracted these data from the
LAGOS-NE database using the LAGOSNE R package (version 2.0.2,
database version 1.087.3) in R (version 4.3.0), which contains lake data
from the northeasternUSA58. The lakes fromLAGOS-NE are included in
the global nutrient database55. The Danish database contained nitrate-
N and SRP concentration data. Again, we kept only lakes <6m mean
depth, and no other data filtering was applied.

Calculation of growing season means and simple moving
averages
For each lake and year, we calculated growing season means for TN,
TP, nitrate-N, SRP, and Chla if three or more observations were avail-
able within this period in a given year. For the Northern Hemisphere,
we used May to September as the growing season, and for the
SouthernHemisphere, we usedNovember toMarch. No lakes from the
tropics were included in the final dataset due to a lack of long-term
data series.

After assessing the ideal SMA length by using simulations and the
available time series data, we found that 5-year SMAs remove most of
the short-term variability while keeping long-term information intact
andkeeping ahighnumber of lake time series in thedataset (please see
the SI for the detailed approach). Based on the growing seasonmeans,
we calculated all available 5-year SMAs for each lake. We then calcu-
lated SMA residuals as the growing seasonmeanminus the 5-year SMA
for the same year and lake. Subsequently, we used the SMA to split the
lake time series into high-frequency and low-frequency data. This
approach has been used previously for a single lake phytoplankton
time series12, and we extended this approach to multiple lake time
series. Within the SI, we provide evidence for the usefulness of this
approach to separate short- and long-term signals in time series data.

Separation into different TN:TP ratio ranges
To assess the effects of TN or TP on associations with Chla at different
TN:TP, we separated the 5-year SMA data into TN:TP ‘windows’. We
generated 46 TN:TP windows within a range of molar TN:TP between 1
and 1808. Nutrient ratios follow a log-normal distribution59, so the
TN:TP windows were log-transformed (natural logarithm (ln)). The

windows ranged from ln TN:TP= 1 to 7.5, with a window width of ln
TN:TP = 3 and an increment of ln TN:TP=0.1. The windows over-
lapped; for example, the first window had a range of ln TN:TP from 1 to
3, and the second window ranged from 1.1 to 3.1, and so on. We
assigned the 5-year SMA and SMA residuals to their TN:TP windows
(usually more than one, since the TN:TP windows overlapped). The
SMA residuals do not contain absolute TN:TP ratio data, so they were
assigned based on TN:TP ratio data for the 5-year SMA for the same
year and lake.

Statistics and bootstrap resampling
Once the data were assigned toTN:TPwindows,we randomly sampled
them 300 times per TN:TP window (13800 iterations in total) using a
hierarchical bootstrap procedure60. In short, we randomly sampled
with replacement at the lake level, then randomly sampled one
observation (either a single growing season average or a single 5-year
SMA) fromeach lakewithout replacement until the number of samples
equaled the number of lakes in the corresponding TN:TP window. For
each random sample, we calculated generalised linear models (GLM,
glm function, stats package in R)56. We used Chla as the dependent
variable and built models using either TN (TN - Chla models), TP (TP -
Chlamodels), or both TN and TP in additive (TN+TP - Chla)models. In
the GLMs, we used the gamma distribution as the link function for the
5-year SMA and the normal distribution of Chla as the link function for
SMA residuals (see SI for detailed descriptions of the SMA, TN:TP
windowing and bootstrapping approaches). We kept only those
iterations where all GLMs converged. Of the 13800 possible iterations
(46 TN:TP windows times 300 iterations per window), the models
converged for 9194 iterations of the 5-year SMAs and for 13800
iterations of the SMA residuals.

From the iterations where all GLMs converged, we extracted R²
(as pseudo R² = 1 - model deviance/zero deviance), Akaike’s infor-
mation criterion (AIC), model slopes and intercepts (only R² and
slopes are shown in the main manuscript, please see the SI for the
other extracted variables). We used the delta AIC between models
of the 5-year SMA to determine whether additive or interactive
GLMs of TN and TP had higher model quality than those using only
TN or TP as explanatory variables (see SI for model selection pro-
cedures). Model improvement was observed with additive TN + TP -
Chla models, but no further improvement was obtained by includ-
ing an interaction term. Therefore, we only show results for the TN -
Chla, TP - Chla, and TN + TP - Chla models. To assess model
improvement in terms of R² for the 5-year SMA compared to SMA
residuals, we compared the distribution mean and 95% highest
density interval (HDI)61.

Software and packages
All data was analysed in R, version 4.3.2 and partially (bootstrap pro-
cedure and generalized linear models) in Julia, version 1.9.0, using
code developed by the authors. Within the data analysis code, Julia
packages DataFrames (version 1.6.1), FLoops (version 0.2.1), Data-
FramesMeta (version 0.14.1), GLM (version 1.9.0) and Statistics were
used; as well as the R package collection tidyverse (version 2.0.0).

Information about the number of lakes with average depth <6 m
was extracted from the HydroLAKES dataset using QGIS Desktop
(version 3.34).

Themanuscriptwas written inQuartoMarkdown (version 1.88.0)
within the VSCodium IDE (version 1.79.0), and using R (version 4.3.2).
Within the manuscript code, plots were generated with the ggplot2
(version 3.4.4), ggpubr (version 0.6.0), ggtext (version 0.1.2), and
patchwork package (version 1.1.3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
This study uses open-accessdata fromFilazzola et al.55 (https://doi.org/
10.5063/F1RV0M1S), the LAGOS-NE database58 (https://lagoslakes.org/
lagos-ne/), the Danish Overladevandsdatabasen (https://odaforalle.au.
dk/) and from the HydroLAKES database22 (https://www.hydrosheds.
org/products/hydrolakes). All data used and generated in this study
are also available here: https://git.ufz.de/graeber/long-term-nutrient-
chla-links-shallow-lakes.

Code availability
Links to used open-access software and all code developed for this
study are available here: https://git.ufz.de/graeber/long-term-nutrient-
chla-links-shallow-lakes. All code developed for this study is published
under the BSD-3-Clause License (allowing open access and free soft-
ware usage with full recognition of the original copyright).
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