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Environment geometry alters subiculum
boundary vector cell receptive fields in
adulthood and early development

Laurenz Muessig1, Fabio Ribeiro Rodrigues 2, Tale L. Bjerknes3,
Benjamin W. Towse 4, Caswell Barry 1, Neil Burgess 4,5, Edvard I. Moser 3,
May-Britt Moser 3, Francesca Cacucci 6,7 & Thomas J. Wills 1,7

Boundaries to movement form a specific class of landmark information used
for navigation: Boundary Vector Cells (BVCs) are neurons which encode an
animal’s location as a vector displacement from boundaries. Here we char-
acterise the prevalence and spatial tuning of subiculum BVCs in adult and
developing male rats, and investigate the relationship between BVC spatial
firing andboundary geometry. BVCdirectional tunings alignwith environment
walls in squares, but are uniformly distributed in circles, demonstrating that
environmental geometry alters BVC receptive fields. Inserted barriers uncover
both excitatory and inhibitory components to BVC receptive fields, demon-
strating that inhibitory inputs contribute to BVC field formation. During post-
natal development, subiculum BVCs mature slowly, contrasting with the ear-
lier maturation of boundary-responsive cells in upstream Entorhinal Cortex.
However, Subiculum and Entorhinal BVC receptive fields are altered by
boundary geometry as early as tested, suggesting this is an inherent feature of
the hippocampal representation of space.

Spatial cognition in the hippocampus is supported by a network of
neurons tuned to an animal’s position and orientation, including
place1, head direction2 and grid3 cells, which collectively form a cog-
nitivemapof allocentric space4,5. The spatial tuning of these neurons is
supported by a combination of both internally-derived movement
information and sensory-bound external landmarks6–8. One important
class of external landmarks are environmental boundaries, more spe-
cifically, extended objects that form a barrier to an animal’s
movement9,10. Boundaries are thought to anchor the cognitive map at
the edges of the visited environment, correcting errors accumulated in
an open field11–16.

At a behavioural level, boundary geometry serves as a strong cue
for the successful retrieval of spatial memories. After disorientation,

many species of animals, including human children, will search for a
reward in geometrically equivalent corners of a rectangular enclosure
(‘spatial reorientation’)17–19. Remembering goal locations relative to
boundaries recruits the hippocampus20, and humans remember loca-
tions close to boundaries better than those far from them21,22.

Within the hippocampal network, an animal’s location relative to
boundaries is signalled by different classes of spatially-tuned neurons.
Border cells, in themedial entorhinal cortex (mEC),firewhen an animal
is in close proximity to a boundary, usually in one specific allocentric
direction23,24. In the subiculum, a subset of neurons shows spatialfiring
consistent with that described by the boundary-vector cell (BVC)
model25, which predicted the existence of BVC neurons, i.e., neurons
signalling allocentric distance and direction to boundaries10,26. Recent
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studies suggest that signalling an organism’s position relative to
boundaries may be a common neural mechanism for cognitive map-
ping, across vertebrates21,27,28.

Environment boundaries serve as a foundational input to the
cognitive map of space during post-natal development: before grid
cells emerge (before post-natal day 21), place cells aremore stable and
accurate when an animal occupies locations close to a boundary29.
Border Cells, which may act as a source of stable spatial input to
developing place cells, are present in the mEC from P17 onwards30.
However, how neural responses to boundaries develop in the sub-
iculum remains unknown.Mapping the development of the subiculum
is key to understanding hippocampal development overall: the sub-
iculum encodes location, speed, direction, axis of travel and task
relevant variables31–33, as well as position with respect to boundaries
and objects26,34. This information is distributed to multiple brain
regions including retrosplenial cortex, nucleus accumbens and ante-
rior thalamic nuclei35,36. Patterns of molecular development indicate
that hippocampalmaturation recapitulates information flow along the
tri-synaptic loop37, predicting late maturation of the subiculum. How-
ever, to date, developing subiculum neural responses have not been
studied in behaving animals.

The goals of this study were to characterise subiculum BVC
properties duringpost-natal development, to understand thenature of
the subiculum representation of boundaries, and how these change
through an animal’s lifespan. We categorise subiculum neurons as
BVCs by fitting idealised BVC firing rate maps25 to neural firing rate
maps, obtained by recording the activity of subiculum neurons as rats
explored a familiar, square-walled, open field environment. Manip-
ulations of environment geometry revealed that the firing properties
of adult BVCs departed from their canonical definition in two ways.
Firstly, directional tunings are uniformly distributed in a circle, but
cluster in alignment with wall orientations in a square environment,
demonstrating an influence of environment geometry on BVC recep-
tive fields. Secondly, insertion of barriers into the open field produces
not only a replication of the principal field, but also an inhibition of
firing on the opposite side of the barrier, indicating a role for
boundary-driven inhibition in reorganising BVC firing fields.

As predicted on the basis of previous observations37, the devel-
opment of precise and stable BVC firing, as well as adult-like responses
to inserted boundaries, are slower than those observed in upstream
hippocampal areas. However, the fundamental geometry of the dis-
tribution of BVC receptive fields, including the influence of geometry
on directional tunings in square environments, is observable at the
earliest ages tested, suggesting that these are inherent features of the
hippocampal coding of space.

Results
Detection of BVCs in adult and developing subiculum
We recorded 517 neurons from the subiculum of four adult rats and
1080 neurons from the subiculum of 17 developing (P16-P25) rats, as
they explored a square, walled, open field environment (for tetrode
positions see Supplemental Fig. 1). To identify BVCs in the open field,
we used an exhaustive search for the best fit for each neuronal firing
rate map from a set of idealised BVC firing rate maps, constructed
following the model described in ref. 25. According to this model, a
BVC unit fires optimally when a boundary is detected at a specific
distance and allocentric direction from the animal, its receptive field
taking the form of a 2-dimensional Gaussian in distance and direction
(polar) space. BVC firing is not affected by the body-centred, or ego-
centric, bearing of the animal to the boundary (see Fig. 1A). Themodel
parameters which were varied to create the test set of idealised BVCs
were: the distance tuning, d; the allocentric directional tuning,Φ; and
the width of the distance tuning curve, σ0 (Fig. 1A, see Methods). If the
correlation between the firing rate map and the best fitting idealised
BVCwasgreater thana thresholdderived fromfitting spatially-shuffled

data, the neuron was identified as a BVC (Fig. 1B). Additionally, BVCs
were required to convey spatial information greater than a threshold
derived from spatially-shuffled data (following30; see methods). Fig-
ure 1C shows representative examples of classified BVCs in adults and
developing rats, with a range of goodness-of-fit from high (top) to just
crossing classification threshold (bottom) illustrated for each
age group.

Characterisation of BVC spatial firing development
The number of neurons defined as BVCs was significantly greater than
expected by chance, at all ages (Fig. 2A; Binomial test: p < 0.001, all
groups. Numbers of BVCs: P16-18, 74; P19-21, 61; P22-25, 46; Adult, 187).
The proportion of BVCs significantly increased between pre- and post-
weaning (Z-test P19-21 vs P22-25; Z = 2.35, p =0.019), but remained
significantly lower than adults even at P22-25 (Z-test; Z = 3.41,
p =0.001). Firing rate maps (Fig. 1C) show that developing BVCs
appear less spatially specific, with greater deviation from their best-fit
idealised BVC. Furthermore, comparison across two consecutive trials
shows decreased spatial stability in developing BVCs (Fig. 2B). The
development of the spatial specificity and stability of BVCs was
quantified using spatial information, BVC fit r(max) (seeMethods), intra-
and inter-trial stability (Fig. 2C–F), respectively. All scores increased
with age (1-way ANOVA age: Spatial Information, F(3,364) = 16.6,
p <0.001; BVC rmax, F(3,364) = 43.1, p <0.001; Inter-trial stability,
F(3,363) = 74, p <0.001; Intra-trial stability, F(3,364) = 100, p <0.001).With
the exception of Spatial Information, all measures increased across the
pre- and post-weanling period (Tukey HSD P16-18 vs P22-25: Spatial
Information p =0.61, all other measures p <0.001). Furthermore, all
four measures remained significantly lower in developing animals,
including post-weanlings, than in adult rats (Tukey HSD P22-25 vs
Adult: all measures p <0.001).

Animals’ median speed, and total distance travelled per trial,
changed across developmental time (Supplementary Fig. 2A). Sub-
sampling data to match either speed or distance travelled did not
affect the developmental trends reported above (Supplementary
Fig. 2B–E), ruling out sparser positional sampling early in development
as a possible experimental confound. Likewise, although the mean
firing rate of Subiculum neurons, and BVCs in particular was notably
lower in developing animals (Supplementary Fig. 3A), this could not
explain the imprecise spatial firing observed in developing neurons, as
sub-sampling spike data tomatchmedianfiring rates did not affect the
developmental trends reported above (Supplementary Fig. 3B, C).
Finally, we tested whether poorer spatial firing in development could
be due to differences in tetrode recording stability across sampled
ages: spike cluster drift was greater in young animals (Supplementary
Fig. 4A), but sub-sampling neurons tomatch cluster drift did not affect
reported developmental trends (Supplementary Fig. 4B, C). Spike
cluster isolation quality did not change across development (Supple-
mentary Fig. 4A). In summary, although subiculumBVCs are present in
pre-weanling animals, adult-like stability and spatial specificity emerge
late in development (>P25).

BVC receptive field spatial tunings in a square environment
We examined the distributions of spatial tuning parameters (d, σ0 and
Φ) for BVCs recorded at each age. At all ages, distance tunings (d) were
highly skewed towards short distances, although tunings up to half of
the arena width were observed (Fig. 3A). The median d of recorded
BVCs did not change significantly with age (Fig. 3B; Kruskal-Wallis test,
Age: χ2(3,364) = 3.69, p =0.30). The tuning fieldwidths of BVCs (σ0) were
distributed over all four tested levels, at all ages (Fig. 3C), and the
median σ0 did not change significantly with age (Fig. 3D; Kruskal-Wallis
test Age: χ2(3,364) = 3.91, p =0.27). The distribution of directional tun-
ings (Φ) exhibited a striking departure from a uniform distribution: Φ
values were strongly clustered at the cardinal points of the compass,
aligned to the orientations of the arenawalls, in all age groups (Fig. 3E).
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Fig. 1 | Classification of subiculum neurons as BVCs. A Example idealised BVC
receptive fields and corresponding expected firing rate maps. Left: receptive field
cartoon showing positions (relative to the animal) for which the presence of a
boundary leads to maximal BVC firing (red), falling off to minimal firing (blue).
Middle, right: receptive field schematics and corresponding ratemaps showing the
effect of changing the three parameters varied in the BVC fitting procedure: the
distance tuning, d; the allocentric directional tuning, Φ; and the width of the dis-
tance tuning curve, σ0. Φ is defined with respect to the environmental reference
frame: it is independent of the heading direction of the animal. B Distributions of
correlations betweenneuronalfiring ratemaps and thebest-fittingBVCmap (r(max))
at different ages. Blue histograms show subiculum data r(max), grey histograms
show r(max) based on shuffled data. Vertical dashed lines show the population
threshold r(max) for BVC classification, defined as the 99th percentile of the spike-
shifted r(max) distributions, within each age group. Cells were also classified using a

threshold generated for each ratemap, seeMethods for further details.CNeuronal
firing rate maps and best-fit BVC model maps, for five example BVCs and one
example non-BVC from each age group. Each row shows example BVCs, each col-
umn of pairedmaps is comprised of the neuronal firing ratemap (left) and the best-
fit BVC model map (right). For both maps, hot colours indicate high firing rates.
Columns of paired maps show data from different ages (cells differ across age
groups). Text adjacent to the neuronalfiring ratemap shows peak rate (top left, Hz)
and Spatial Information (‘SI’; top right). Text adjacent to model map shows the d
(top left), φ (top right), σ0 (bottom left) tuning parameters of the BVC, and r(max)

(bottom right). For each age group, representative examples are shown from dif-
fering levels of r(max), sorted from highest (top) to lowest above classification
threshold (bottom). The bottom row shows a non-BVC from each age group, for
which r(max) fell slightly below classification threshold.
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We quantified the four-fold symmetrical clustering using the Rayleigh
test on quadrupled, wrapped Φ values (see methods). At all ages, Φ
showed a significant four-fold departure from uniformity (P16-18,
z = 9.6, p <0.001; P19-21, z = 17.0, p <0.001; P22-25, z = 11.1, p < 0.001;
Adult, z = 50.7, p < 0.001). To further compare four-fold clustering
across ages,we quantified the proportion of BVCswithΦoriented ±12°

of a cardinal compass point. As expected, this proportion was well
above chance, and did not significantly change during development
(Fig. 3F; χ2 = 3.46, p = 0.33).

Four-fold symmetry of BVCΦ tunings is not related tomodulation
of BVC firing by allocentric head direction: although BVCs carry
slightly more head-directional modulation than non-BVC neurons
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(Supplementary Fig. 5A), the majority of BVC head directional tuning
results from position-by-direction sampling bias (Supplementary
Fig. 5B). Furthermore, BVC preferred head direction tunings do not
display four-fold symmetry (Supplementary Fig. 5C).

To test whether four-fold Φ symmetry may emerge artefactually
from behavioural biases in the square environment more generally, a
population of simulated BVCs was produced using real position data
and synthetic, mean rate-matched spike trains. In the latter, spike
likelihood was based on a combination of both the BVC function
evaluated at each location, and a random Poisson process (see Meth-
ods).When simulatedΦ tuningsweredrawn fromaflat distribution, no
four-fold symmetry in the resulting BVCs was detected (Supplemen-
tary Fig. 5D, E). As a positive control, a second simulated BVC

population was generated, but in this caseΦ tunings were drawn from
the real data: this population displayed a strong four-fold symmetry, as
in real data (Supplementary Fig. 5F, G). These control analyses suggest
that the four-foldΦ tuning symmetry observed in real data is indeed a
feature of BVC receptive field tuning, and not an artefact due to
position bias in the square arena.

Following this, we tested whether the tuning characteristics of
BVCs change depending on their preferred firing distance from a
boundary, by splitting BVCs into short- and long-range distance tuning
groups (d ≤ 10 cm and d > 10 cm, respectively). Median σ0 levels were
significantly greater for long-range than short-range BVCs, at all ages
(Fig. 3G; Wilcoxon test long vs short, p <0.001 for all age groups). The
clustering of Φ at wall orientations did not differ between long- and

Fig. 2 | Prevalence, spatial specificity, and spatial stability of BVC firing, across
development. A Prevalence of BVCs (percentage of all subiculum neurons classi-
fied as BVCs in each age group). Error bars show 95% confidence interval of the
proportion. Horizontal dashed lines show 95% confidence level for the number of
BVCs exceeding that expected by chance. *** indicates significant differences at
p <0.001 level. B Example BVCs recorded across two consecutive trials, showing
increases in inter-trial stability with age. Each row shows a BVC, each column of
paired maps shows the neuronal rate map (left) and best-fit model map (right) for
one recording trial. Text adjacent to neuronal firing ratemap shows peak firing rate

(top-left) and inter-trial stability (top right). Model map format as for Fig. 1C. Inter-
trial stabilities for each example lie within SEM of mean, for respective age group.
Boxplots showing distributions of Spatial Information (C), BVC r(max) (D), inter-trial
stability (E) and intra-trial stability (F), for all BVCs in each age group. Boxes show
Inter-Quartile Range (IQR), central line showsmedian, notch shows 95% confidence
interval for the median, and whiskers show the extremes of the data, excluding
outliers (see Methods for further details). *** indicates difference significant at
p <0.001 level.
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Fig. 3 | Characterisation of BVC tunings for all subiculum BVCs, in each
age group. A Histograms showing all d tunings in each age group. B Median d
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short-rangeBVCs in adults, but did in developing animals,withΦbeing
significantly more clustered at wall orientations for short-range BVCs,
up until P21 (Fig. 3H; χ2 Age*Range: χ2 = 27.4, p = 0.002; Z-test for
proportions short vs long: P16-18, p =0.002; P19-21, p =0.036; P22-25,
p =0.32; Adult, p =0.94). The lack of wall-aligned Φ tunings in long-
range P16-18 BVCs could be due to a sensory deficit: vision is of lower
acuity early in development38, and long-range BVCs are active when
animals are further from visual sensory landmarks such as boundaries
or external cues, possibly leading to a reduction in the tuning or sta-
bility specifically in long-range BVCs. However, there was no age-
specific reduction in general measures of spatial firing quality,
including Spatial Information, BVC fit r(max) or intra-trial stability in
long-range BVCs (Supplementary Fig. 6A–C), arguing against this
hypothesis. There was a trend towards lower stability between con-
secutive trials in P16-18 long-range BVCs (Supplementary Fig. 6D),
suggestingmemory-based re-instantiation of BVC activity is less stable
in young animals in locations far from visual landmarks: however, this
would not affect Φ tuning orientations, within an individual trial.
Overall, therefore, the geometry of the population of BVC receptive
fields is unchanged between early development and adulthood, with
the exception that the striking influence of environment walls on
directional tunings does not extend to long-range BVCs, until after
weaning.

BVC receptive field directional tunings change between square
and circle
To test whether the clustering of Φ tunings in the square is caused by
the geometry of environment boundaries, we exposed the rats to a
circular open arena (diameter 80 cm). The distributions of Φ and d
tunings in both square and circle are illustrated in Fig. 4A, which shows
a clear contrast between the distribution of Φ tunings in the square
(clustered at cardinal compass points) and those in the circle, which
possess an apparently uniform angular distribution. Indeed, BVC
directional tunings in the circular arena showed no significant 4-fold
radial symmetry or unimodal departure from uniformity (Fig. 4B;
Rayleigh test quadrupled Φ: P16-18, z =0.5, p = 0.63; P19-21, z = 1.5,
p =0.23; P22-25, z =0.6, p =0.57; Adult, z = 1.8, p =0.16; Rayleigh test
unimodal: P16-18, z = 2.3, p =0.098; P19-21, z = 2.2, p =0.11; P22-25,
z =0.4, p =0.65; Adult, z =0.0, p =0.98). A full description of BVC
spatial tuning, stability and receptive field properties in the circle is
shown in Supplementary Fig. 7A, B: overall, differences in BVC firing
between square and circle are limited to the distribution ofΦ tunings,
as described above. The only exception is BVC fit r(max), which is sig-
nificantly lower in the circle, across all age groups. Crucially, the
reduced r(max) in the circle does not lead to changes in Φ tuning dis-
tribution: sub-sampling the circle BVCs to match BVC r(max) across
shapes did not affect BVC spatial firing characteristics (Supplementary
Fig. 7C, D), or any of the results reported in Fig. 4 (Supplementary
Fig. 7E–G).

Inspection of the rate maps reveals that Φ tunings sometimes
rotated between square and circle in the laboratory reference frame,
likely due to the lack of common extra-maze cues across these envir-
onments (Fig. 4C; seeMethods).Within each ensemble (comprising all
simultaneously recorded BVCs in one recording session), rotations of
individual BVC Φ tunings were clustered around the ensemble mean
rotation for both pups and adults (Fig. 4D; Concentration parameter
kappa: P16-25,k = 2.15; Adult, k = 2.23;K-test fordifferingKappa [Pupvs
Adult]: f = 1.07, p = 0.77), indicating that BVC ensemble rotations were
approximately coherent. However, relative Φ rotations were not fully
rigid across co-recorded cells, with Φ offsets between cell pairs often
changingwithin the range ±45° (see examples Fig. 4C;median absolute
rotation relative tomean: P16-25, 30°; Adult, 22°). This partial plasticity
in relative Φ offsets is consistent with a reorganisation of ensemble
receptive fields between circle and square, producing the 4-fold clus-
tering observed in the latter environment.

The rotation of BVC ensembles between square and circle raises
an alternative explanation for our results: that 90° Φ clustering is
present in the circle within each simultaneously recorded BVC
ensemble, but the orientation of these clusters is inconsistently
aligned across experimental sessions, obscuring the clustering when
all data are aggregated. To test this possibility, we corrected the Φ
tuning for each BVC by subtracting the mean ensemble rotation (for
ensembles with ≥5 co-recorded BVCs). Even following this correction
procedure, the distribution of Φ tunings, in circular environments,
showed no significant 4-fold departure from uniformity (Fig. 4E, Ray-
leigh test quadrupled Φ: P16-25, z =0.2, p =0.86; Adult, z = 0.2,
p =0.80). Furthermore, even within each co-recorded ensemble (≥5
co-recorded BVCs), BVC Φ tuning distributions showed a significant
reduction of 4-fold symmetry when moving from square to circle, as
shown by the length of the Rayleigh vector derived from wrapped,
quadrupledΦ (Fig. 4F;WilcoxonTest;p =0.001). Features of boundary
geometry present specifically in the square, as opposed to the circle,
are therefore most likely responsible for the observed 90° clustered
distribution of BVC Φ tunings in square environments.

BVC response to inserted boundaries
An important characteristic of boundary-driven firing is that the
introduction of a new boundary, such as a barrier, into the environ-
ment causes a new firing field to emerge9,23. To assess the development
of barrier-driven firing, a barrier (oriented EW or NS) was inserted into
the square arena, and we quantified whether BVC firing increased on
the distal side (relative to the existing BVC field), as compared to the
proximal side of the barrier (following30; see Methods). At all ages,
barrier insertion caused an increase in absolute firing rate on the distal
side (Fig. 5; percentages of tested BVCs with increased firing rate on
distal side: P16-18, 79%; P19-21, 78%; P22-25, 93%%; Adult, 92%), though
the difference between distal and proximal firing rates did not reach
significance until P19 (Mixed ANOVA: Age*Barr Side F(3,137) = 10.8,
p <0.001; SMEDist vs Prox: P16-18, p =0.068, P19-21, p = 0.033, P22-25,
p =0.010, Adult p <0.001). However, when changes in firing rate were
normalised to overall firing rates in the barrier and baseline trials, the
difference between proximal and distal side firing was significant at all
ages (Fig. 5C; Mixed ANOVA: Age*Barr Side F(3,137) = 21.6, p < 0.001;
SME Dist vs Prox: P16-18, p = 0.012; all other age groups p < 0.001),
suggesting that part of the slowdevelopment of barrier-driven fields is
due to low overall firing rates. For both measures (absolute and nor-
malisedfiring), distal sidefiringwas significantly less thanadult forpre-
weaning age groups, but not significantly different to adult in post-
weaning animals (SME Dist vs Adult: P16-18, p <0.001 [Abs], p <0.001
[norm]; P19-21, p = 0.021 [Abs], p = 0.031 [Norm]; P22-25, p = 0.58
[Abs], p = 0.33 [Norm]).

Notably, in adults, barrier insertion causes a significant inhibition
of firing rate on the proximal side of the barrier, relative to baseline
level, indicating that barrier insertion causes a reorganisation of the
BVC field that goes beyond simply replicating the principal firing field
(1-sample T-Test versus no change: Absolute rate, p <0.001, Normal-
ised rate, p <0.001). However, this reduction in firing is not observed
in any development group (p ≥0.57, all groups). In adults only, prox-
imal side inhibition was stronger in BVCswith broader-tuned receptive
fields (Fig. 5A c.f. bottom two rows, 5D-E; 1-way ANOVA Best fit model
σ0: Absolute Proximal Rate, F(3,79) = 7.91, p < 0.001; Normalised Prox-
imal Rate, F(3,79) = 3.41, p =0.022) and was only consistently significant
(across both absolute and normalised ratemeasures) for cells falling in
the two broadest σ0 categories (1-sample T-Test versus no change:
Absolute rate, σ0 = 6.2, p = 0.44; σ0 = 12.2, p =0.22; σ0 = 20.2, p < 0.001;
σ0 = 30.2, p <0.001; Normalised rate, σ0 = 6.2, p =0.24; σ0 = 12.2,
p =0.001; σ0 = 20.2, p < 0.001; σ0 = 30.2, p <0.001). Where an adult
BVC has a broader baseline field, this is consistently inhibited by bar-
rier insertion, on the proximal barrier side. However, this pattern of
resultswas not observed indeveloping rats (see Supplementary Fig. 8).
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Fig. 4 | Characterisation of BVC Φ tunings in a circular arena. A Two-
dimensional (polar) histograms showing distributions of BVC d andΦ in the square
and circular arenas, in adults and developing rats. Bin colours show histogram
counts (hot colours indicate high counts, cold colours low counts), angular axis
showsΦ, radial axis shows d. Radial axis is reversed such that low d is outermost, to
enhance visual clarity of clustering of Φ tunings in the square arena. B Top row:
Histograms showing allΦ tunings in age group, in the circular arena. Black dashed
lines show values of Φ orientated towards the square arena walls. Bottom row:
histograms of allΦ tuningsmapped onto one 90° quadrant. 0° indicatesΦ tunings
aligned to the square environment walls, in the laboratory reference frame.
C Neuronal firing rate maps and respective best-fit BVC model maps for four pairs
of simultaneously recordedBVCs, in the square and circular arenas. Each row shows

one BVC, dashed lines delineate simultaneously recorded pairs. Text top left of
neuronalmap showspeakfiring rate.Modelmap format as for Fig. 1C. Textbetween
rows shows offsets of Φ tuning between co-recorded pairs in square and circle.
D Histograms showing rotations of BVCΦ tunings, relative to the meanΦ rotation
for their ensemble (ensembles of ≥5 BVCs only). Left panel shows all developing
rats, right panel shows adults. EHistograms showing distribution ofΦ tunings after
alignment to common directional reference frame, by subtraction of ensemble
mean Φ rotation from individual BVC Φ rotations (ensembles of ≥5 BVCs only).
F Rayleigh Vector lengths derived from quadrupled wrapped Φ (quad-Φ RV), for
each ensemble with ≥5 BVCs. Boxplots show distribution of quad-Φ RV in square
and circle arenas, grey lines show change in quad-ΦRV for each ensemble, between
square and circle (light-grey, adult; dark grey, P16-25).
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In summary, while excitatory responses to inserted barriers are
observed in subiculum BVCs from P16, the inhibitory component of
the BVC responseobserved in fullymature BVCs does not emerge until
much later in development.

Results are robust to changes in BVC classification method
We investigated whether the results reported above are robust to
using alternative shuffling methods for BVC definition, for example
shuffles thatpreserve the spatial structureoffiring (‘field shuffle’)39.We
found that shuffling spatial firing fields, as opposed to spike times,
produced higher threshold values of r(max), and a correspondingly
smaller population of BVCs, with amore stringent fit to themodel. Key
study results were unchanged (Supplementary Fig. 9). We also tested
the specificity of the BVC model-fitting method by applying it to CA1
data, where BVCs have not previously been reported. BVCs were

detected in the CA1 (though less when using the field shuffle than the
spike-time shuffle, and always significantly fewer than in Subiculum, in
adults; Supplementary Fig. 10A). The majority of BVCs detected from
CA1 data took the form of elongated place fields near to environment
boundaries (see examples Supplementary Fig. 10B). We found that
these spatial responses were better fit by model Place Cells (radially
symmetric 2-dimensional Gaussian fields of varying widths, see
Methods) than BVCs. On the basis of these results, we introduced a
further refinement to our detection procedure, by excluding BVCs
whose firing is better fit by amodel Place Cell than amodel BVC: doing
so resulted in a notable reduction in CA1 BVCs, post-weaning and in
adulthood (for both spike-time and field shuffles; Supplementary
Fig. 10C), and did not change the key results of this study (for spike-
time shuffle, Supplementary Fig. 10D–K; for field shuffle Supplemen-
tary Fig. 10L–S). Similar proportions of residual BVCs in CA1 and
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Fig. 5 | Development of BVC response to inserted boundaries. A Neuronal firing
ratemaps and best-fit BVCmodelmaps for eight example BVCs, in the square arena
(left columns) and following the insertion of a barrier (right columns). Each row
shows one BVC, dashed lines delineate cells recorded at different ages. Text adja-
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change = 0.
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Subiculum can be observed in pre-weanling animals across all classi-
fication methods; this likely reflects the previously reported depen-
dence of stable CA1 place cell firing on boundaries, in pre-weanling
rats29. Overall, introducing more stringent criteria for BVC selection
did not alter any of the key findings reported here, demonstrating their
robustness.

BVCs and border cells in medial entorhinal cortex are
mature at P17
We have shown that subiculum BVCs, although present at P16, con-
tinue to mature late into development (>P25), with spatial tuning,
stability, and barrier responses all remaining immature as late as P25.
This is in contrast to previous reports of mEC border cells30 which
showed no change in either spatial tuning or stability between P17 and
adulthood. These contrasting results could be due to the faster

maturation of mEC (as suggested by37). However, an alternative pos-
sibility is that the boundary-responsive cells captured by the BVC
measure mature more slowly than those defined using the border
score (which is biased towards selecting fields near to boundaries). To
rule out this latter possibility, we re-analysed the data described by ref.
30, and quantified the development of boundary-driven firing using
either the border score, or the BVC classificationmethod (as described
here) to define boundary-responsive neurons.

Figure 6A shows the proportion of mEC neurons classified as
either a border cell, a BVC or both. Distributions of shuffled and actual
BVC fits to the data are shown in Supplementary Fig. 11A. As previously
reported, there is no difference between the proportions of mEC
border cells in adults and developing rats (Z-test proportions adult vs
developing: Z = −1.02, p =0.31), and the same is true for the proportion
of BVCs (Z =0.26, p = 0.80). At all ages, there is considerable overlap

P16-18 P19-21 P22-24 P25-27 P28-30 P31-33 P34-36 AdultA

B

F

G

H

C

D

E

5.2Hz BS=0.63

5.5Hz BS=0.53

8.7Hz BS=0.44

11.3Hz BS=0.39

2.3Hz BS=0.60

5.0Hz BS=0.50

d=5

0=6.2 r=0.80

d=0

0=20.2 r=0.72

d=2.5

0=30.2 r=0.72

d=2.5

0=30.2 r=0.66

d=2.5

0=6.2 r=0.51

d=2.5

0=6.2 r=0.53

7.1Hz BS=0.58

10.8Hz BS=0.58

1.2Hz BS=0.58

1.5Hz BS=0.51

d=5

0=6.2 r=0.85

d=0

0=12.2 r=0.82

d=5

0=6.2 r=0.59

d=5

0=6.2 r=0.58

11.4Hz BS=0.57

1.4Hz BS=0.55

11.2Hz BS=0.57

5.5Hz BS=0.48

d=0

0=12.2 r=0.88

d=0

0=20.2 r=0.76

d=0

0=12.2 r=0.63

d=0

0 =30.2 r=0.52

4.5Hz BS=0.73

P17-22

d=0

0=6.2 r=0.81

8.7Hz BS=0.70

P23-36

d=2.5

0=6.2 r=0.92

2.8Hz BS=0.65

Adult

d=2.5

0=6.2 r=0.86

BVCs

Border
Cells

BVC-
Border
Cells

KEY

Border Cells
BVCs

KEY

Border 
Cells

BVCs
BVC-

Border Cells

5.9Hz BS=0.46

17.3Hz BS=0.47

d=0cm

0=20.2cm
d=7.5cm

0=12.2cm

2.4Hz BS=0.47

3.6Hz BS=0.44

d=0cm

0=20.2cm
d=7.5cm

0=20.2cm
P16

-18

P19
-21

P22
-24

P25
-27

P28
-30

P31
-33

P34
-36

Adu
lt

P16
-18

P19
-21

P22
-24

P25
-27

P28
-30

P31
-33

P34
-36

Adu
lt

P16
-18

P19
-21

P22
-24

P25
-27

P28
-30

P31
-33

P34
-36

Adu
lt

P16
-18

P19
-21

P22
-24

P25
-27

P28
-30

P31
-33

P34
-36

Adu
lt

P16
-18

P19
-21

P22
-24

P25
-27

P28
-30

P31
-33

P34
-36

Adu
lt

P16
-18

P19
-21

P22
-24

P25
-27

P28
-30

P31
-33

P34
-36

Adu
lt

0

50

100

0

0.5

1

1.5

Sp
at

ia
l I

nf
or

m
at

io
n 

(b
its

/s
pk

)

0.4

0.6

0.8

1

BV
C

 r m
ax

0.4

0.6

0.8

1.0

Bo
rd

er
 S

co
re

0

0.5

1

In
te

r-t
ria

l S
ta

bi
lit

y 
(r)

0

0.5

1

In
tra

-tr
ia

l s
ta

bi
lit

y 
(r)

0

5

10

15

20

d 
(c

m
)

r=0.81

r=0.81

r=0.82

r=0.76

10%7%15% 3%2%8% 8%4%10% 10%7%20% 10%8%16% 12%12%33% 10%8%22% 11%8%15%

Fig. 6 | Comparison of BVCs and border cells recorded in medial entorhinal
cortex. A Venn diagrams showing the proportion of mEC cells classified as BVCs
(blue), Border Cells (red), or both cell types (overlap region), for each age group.
Coloured text above circles shows corresponding numerical percentages. Circles
are scaled such that the square bounding box represents 100% of cells recorded
in an age group. B Neuronal firing rate maps and best-fitting BVC model maps, for
example BVCs and Border Cells. Each row shows example cell, columns of paired
maps show data from different age groups (cells differ across age groups). Text
adjacent to the neuronal firing rate map shows peak rate (top left, Hz) and Border
Score (‘BS’; top right). Model map format as for Fig. 1C. Top three rows show cells
classified as both BVCs and Border Cells, middle two rows cells classified as BVCs
but not Border Cells, bottom two rows cells classified as Border Cells but not BVCs.

Boxplots showing distributions of Spatial Information (C), inter-trial stability (D)
and intra-trial stability (E), for BVCs (blue boxes) and Border cells (red boxes) in
each age group. Cells classified as both BVCs and Border Cells are included in both
groups. Box shows IQR, circular target shows median, whiskers show limits of data
excluding outliers. F Boxplots showing distributions of the BVC r(max) of BVCs (blue
boxes; left y-axis) andBorderScoreof BorderCells (redboxes, right y-axis). Boxplot
format as for (C).GBoxplots showingdistributionsofd tunings for BVCs (blue bars)
and Border Cells (red bars), in each age group. Boxplot format as for (C).
H Proportion of BVCs (blue bars) and Border Cells (red bars) with Φ oriented
towardswalls (±12°), in each age group. Error bars show95% confidence interval for
the proportion. Horizontal dashed line shows proportion expected, assuming a
circularly uniform distribution of Φ.
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between those boundary-responsive neurons classified as border cells
andBVCs, but the proportion of these “intersect” cells does not change
between adults and developing rats (Z = −0.88, p = 0.38). Figure 6B
shows examples of neurons which were classified as BVCs, Border
Cells, or as both types simultaneously. Cells classified asbothBVCs and
border cells show clear firing fields close to, and extending along,
boundaries. Cells selected uniquely by the BVCmeasure show broader
firingfieldswith firing extending away fromwalls. Neurons classified as
border cells, but not BVCs, by contrast, exhibit multiple firing fields
which are close to walls, but do not cover their full extent. For all cell
types, the qualitatively-judged firing properties do not change
with age.

We confirmed the precocious maturity of mEC boundary-related
firing by quantifying the spatial information and stability of the clas-
sified cells. The spatial tuning, stability and BVCmodel fit of mECBVCs
does not change during development (Fig. 6C–F, ANOVA Age: Spatial
Information, F(7,156) = 1.8, p =0.09; Inter-trial stability, F(7,151) = 0.84,
p =0.56; Intra-trial stability, F(7,156) = 1.28, p =0.26; BVC r(max),
F(7,156) = 0.48, p =0.84), and furthermore, we confirmed that neither
does the tuning, stability and Border Score of border cells (Spatial
Information, F(7,84) = 0.05, p = 0.40; Inter-trial stability, F(7,85) = 1.8,
p =0.10; Intra-trial stability, F(7,84) = 0.99, p =0.44; Border Score,
F(7,84) = 0.72, p =0.66). Boundary-responsive firing in themEC appears,
therefore, mature from P17, irrespective of the measure used to
quantify it. Similarly, the tuning properties ofmECBVCsdonot change
throughout development: though BVCs have longer distance tunings
than border cells (Fig. 6G, Supplementary Fig. 11B, E; Wilcoxon test
BVC vs Border Cell all ages: p <0.001), the median distance tunings of
either does not change during development (Kruskal-Wallis Age: BVCs,
χ2(7,156) = 5.4, p = 0.61; Border Cells, χ2(7,84) = 11.8, p =0.11). The propor-
tion of angular tunings oriented to walls is significantly higher than
chance, at all ages (Fig. 6H, Supplementary Fig. 11G), and does not
change with age (χ2 Age: BVCs, χ2 = 56, p =0.23; Border Cells, χ2 = 48,
p =0.24). The distortion of boundary-responsive angular symmetry is
also apparent in mEC boundary-responsive neurons, from early in
development (though responses to a circular arena were not tested
within this dataset).

The results abovedemonstrate that BVCs and Border Cells inmEC
are already mature by P17, in contrast with the extended maturation
(>P25) displayed by subiculumBVCs. The spatial tuning and stability of
spatially-modulated subiculum neurons which did not fit BVC criteria
(Supplementary Fig. 12A–C; see Methods) were also immature at P25.
This suggests that the slow development of subiculum circuitry is a
more general phenomenon and is not limited to BVC neurons. Fur-
thermore, both mean rate (Supplementary Fig. 3) and burst-firing
tendency (Supplementary Fig. 12D, E) of subiculum neurons mature
during or after the period P16-25, suggesting that the subiculum, as a
whole, displays a protracted maturational trajectory.

Discussion
This study is the first to define a population of BVCs in the subiculum
and characterise their spatial tuning. Previous reports of BVCs in the
subiculum did not use a formal objective procedure to define a
BVC10,26, and the method used to define Border Cells in mEC23,30

selectively weights firing fields in close proximity to boundaries and is
not well-suited to capture the broader and vectorial nature of spatial
firing in the subiculum. The BVCmodel fit method used here captures
both long- and short-range boundary tunings, and our parallel analysis
of mEC and subiculum data confirms that mEC boundary-driven cells
respond selectively closer towalls, whereas in the subiculum abroader
range of distance tunings are present (cf Figs. 3B, 6F). Subiculum
neurons whose spatial tuning closely fits that of idealised BVCs have
previously been reported33, using a similarmethod to our own, though
this study did not provide any further characterisation of the BVCs
detected. The goodness-of-fit r-values appearedmarkedly lower in that

study than those reported here: thismaybeexplainedby the fact that33

used awall-less arena,which can reduce the spatial specificity of BVCs9.
We introduce twomodifications to our method, both of which restrict
the population of BVCs to those with a more stringent match to
canonical BVCs: using thefield shuffle to generate r(max) thresholds and
excluding those BVCs whose firing is better fit by a model place cell.
For the purposes of this study, which required the characterisation of
immature BVCs, a more inclusive selection method was chosen.
However, here we have also characterised the analytical tools (the two
more stringent selection methods outlined above) best suited to stu-
dies focused on adult BVC responses.

The model-fitting method used here allowed us to characterise
the population of detected BVCs in terms of the preferred distance-to-
boundary (d), allocentric angle-to-boundary (Φ) and receptive field
width (σ0) of the idealised BVCs fitted to neural data. Here we show
that preferreddistance tunings are biased towards short-range tunings
(modal dwas 0 cm, at all ages), but the full range of possible preferred
distances were detected, up to the arena radius. The preferred
distance-to-boundary tunings described here are smaller than recently
reported object-responsive subiculum neurons34 (Vector Trace Cells
14.1 ± 1.0 cm [Mean± SEM], Non-trace cells 11.2 ± 0.4 cm; Adult BVCs in
present study, 7.5 ± 0.6 cm), which may reflect the smaller arena used
in this study (62.5 cm, versus 100 cm) preventing the detection of
longer-range BVCs. Nonetheless, this study confirms the vectorial
nature of boundary coding in the subiculum and builds on previous
reports of object vector coding34,40–42 to suggest that the vectorial
coding of allocentric space is fundamental to hippocampal spatial
cognition.

A striking feature of BVC tunings is the non-uniformity of the
receptive field preferred angles in a square arena, which were strongly
clustered with a four-fold circular symmetry, aligned with walls of the
square environment (as predicted by ref. 43), whereas this four-fold
clustering is notpresent in a circular environment. BVC receptivefields
are unlikely, therefore, to solely represent an allocentric vector to
boundaries25, fixed across all environments, but are instead further
modulatedby the geometric features of those boundaries (e.g. straight
walls and corners). This result is consistent with both the well-
established finding that the geometry of walls and corners influences
spatial memory17–19,22, and that corners in particular may be an impor-
tant class of geometric cue, with acute corners beingmore salient than
obtuse corners44,45. The modulation of BVC firing by boundary geo-
metry, and corners in particular,may therefore represent amechanism
by which these geometric features exert effects on behaviour. Future
research could focus on the question of how straight walls and corners
alter BVC receptive fields. The existence of a sub-set of subiculum
neurons that specifically encode convex and concave corners46 offers a
potential neural mechanism underlying BVC firing modulation by
geometric cues; however, the interactions between these cells and
BVCs remain to be understood.

The distortion of BVC firing by environment geometry echoes
previous findings of distortion of grid cell firing patterns47,48. Our study
confirms that boundary firing in both subiculum and mEC aligns with
individual walls, supporting the hypothesis47 that grid field shearing
may be caused by a combination of grid shrinkage49 and anchoring of
the grid to a sub-set of local environment cues (e.g., one boundary of
the environment). A further example of environmental geometry
influencing spatially modulated firing is the fact that square environ-
ments enforce a four-fold symmetry in the directional tuning curves of
egocentric boundary cells in the retrosplenial cortex50, which the
authors speculate may create boundary-driven distortions in down-
stream allocentrically-tuned neurons.

Are the effects of boundary geometry on BVCsmediated by other
spatial responses? BVCs emerge in development earlier than grid
cells30,51,52 suggesting that the influence of geometry on BVCΦ tunings
is independent of grid cell firing and is not simply a downstream
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reflection of shearing of grid cells in square arenas. The ontogeny of
egocentric boundary cells (ECBs) is currently unknown, so it is not
possible to draw conclusions regarding interactions between these
cells and BVCs on the basis of their relative timelines of emergence
during development. We note, however, that the receptive fields of
EBCs are not altered by geometry: four-fold directional symmetry
emerges as a direct consequence of square geometry constraining the
head orientations for which rats can occupy a specific egocentric
bearing to the boundary (see Fig. 5 in ref. 50). In our study, instead, we
have ruled out any possible effects of behavioural biases along square
walls and shown that the spatial receptive field of a BVC itself is altered
by environment geometry. We therefore conclude that distortion of
BVC firing in square environments is a conceptually distinct phenom-
enon from the four-way head direction tuning of EBCs.

Boundary geometry can affect spatial memory in ways that reca-
pitulate its effects on spatially-modulated neurons: distance estimates
are distorted in a rhomboid environment, particularly at the narrow
end53; shrinking or stretching a square environment shifts goal search
locations in a way predicted by place field movements22. If BVCs
encode an allocentric map of position with respect to current
boundaries (as in54 for example) then distortion of BVC receptive fields
by geometry may lead to inaccurate navigation following a switch
between environments of different shapes. Consistently with this
hypothesis, moving between a square- to circular-boundedwatermaze
(whilst keeping all extra-maze cues constant) disrupts memory for
platform position55, whilst shape transfers that preserve local geo-
metry of corners and walls in specific parts of the maze also preserves
memory of these locations, in a hippocampally-dependent fashion56,57.
Given the nature of the BVC receptive field distortion we report here,
we canmake a specific prediction related to the hypothesis above: the
behavioural effects of switching shape will be maximal at environ-
mental corners (where the BVC representation changes substantially
between circle and square) and minimal/negligible in locations near
the middle of walls (where the BVC representation changes relatively
little when switching shapes).

The inhibition of adult BVC firing on the proximal side of an
inserted barrier is a further property of BVCs not predicted by the
canonical model25, which predicted the existence of solely excitatory
receptive fields. Inhibitory receptive fields have also previously been
seen in unpublished observations (PhD thesis; Shailendra Rathore, Neil
Burgess, Francesca Cacucci). Proximal side inhibition of BVC firing
offers a possible explanation for the observed coherence of the BVC
representation of space: BVCs do not remap between different
environments26, and if their directional tunings rotate, they do so in
unison58 (see also this study). A hypothesis put forward to explain such
coherence is that BVCs form a continuous attractor representation of
allocentric position, analogous to the directional continuous attractor
formed by head direction and grid cells59–63. Proximal side inhibition
may reflect BVCs (directly or indirectly) inhibiting other BVCs with
directionally-opposed receptive fields, thus reflecting connectivity
patterns which are necessary for attractor dynamics to emerge59.

In addition to describing the adult subiculum BVC population,
here we also offer the first characterisation of the emergence of sub-
iculum BVCs during post-natal development, and specifically across
weaning, when hippocampal learning andmemory first emerges64. We
found that the development of BVCs has both precocious and late-
emerging aspects: the spatial stability and specificity of BVCs, and their
responses to inserted barriers, develops gradually and slowly, mir-
roring the previously described gradual emergence of place cell firing
in CA151,52,65. This pattern of development provides a notable contrast
with boundary-driven firing in the mEC, which appears adult-like from
P17 onwards30—a finding we have confirmed in our reanalysis of mEC
data. These data are consistent with the proposal that maturation of
different hippocampal regions proceeds sequentially, along the tri-
synaptic loop, with entorhinal areas maturing first, followed by CA3,

CA1 and subiculum37. The slow maturation of BVC specificity is con-
sistent with the late-emerging ability of boundaries to enable accurate
recall of spatial locations66,67, and suggests that BVC developmentmay
be a key limiting step in the late emergence of place learning more
generally68,69. Stable spatial signalling close to boundaries emerges
early in the mEC (Border Cells30 and short-range BVCs, see Fig. 6). One
prediction of our findings, therefore, is that the development of
accurate navigation should emerge earlier for goals close to, as
opposed to far from, boundary locations.

In other respects, however, the development of BVCs is pre-
cocious. BVC firing is present at the earliest ages tested, and the overall
characteristicsof BVC spatial tunings, at thepopulation level, appear in
adult-like form: average d and σ0 do not change with age, and Φ tun-
ings are clustered to alignwithwall orientations in the square. The core
geometrical properties of the BVC representation of space thus
appears in an already mature form at the earliest age tested (P17). The
only exception to this pattern is the distorting influence of boundaries
on BVC directional tunings for BVCs with long distance tunings, which
only emerges post-weaning, a finding which echoes increases in place
cell stability far fromwalls at the same age29. The presence of a specific
geometry of BVC tunings for square environments may be a neural
mechanism enabling the recognition of geometric boundary infor-
mation, thereby underlying the early emergence of spatial
reorientation18,70,71. It is unclear whether this mechanism is innate or
experience dependent. We note that the animals in this study were
reared in rectangular cages: it remains to be established how BVCs
would respond following rearing in circular environments, a manip-
ulation which impairs the use of geometrical information in rodents70.

Methods
Subjects
Subiculum data was collected from 17 developing male outbred (lister
hooded) rat pups (aged P12-P14 and weighing 24–32 g at time of sur-
gery) and 4male (3-6mo) lister hooded rats. Developing rats were bred
in-house and remained with their dams until weaning (P21). Adult
experimental animals and breeding for litters were obtained from
Charles River (UK). Male rats, only, were used such that the oestrous
cycle stage of female rats was not an uncontrolled variable in experi-
ments. Rats were maintained on a 12:12 h light:dark schedule (with
lights off at 10:00). At P4, litters were culled to 8 pups per mother in
order to minimise inter-litter variability. Pregnant females were
checked at 17:00 daily and if a litter was present, that day was labelled
P0. After surgery (seebelow), eachpupwas separated from themother
for between 30min and 2 h each day, to allow for electrophysiological
recordings. All experiments were conducted in compliance with UK
legislation ASPA (1986), and were approved by the UCL ethical review
panel. The PPL numbers were 70/8636 and 70/7136.

Surgery and electrode implantation
Rats were anaesthetised using 1–2% isoflurane, and 0.15mg/Kg body-
weight buprenorphine. Rats were chronically implanted with microd-
rives loaded with 8 tetrodes (HM-L coated 90% platinum-10% iridium
17μmdiameterwire).Microelectrodeswere aimed at the hippocampal
subiculum region. In developing rats, the co-ordinates used were
4.4mm posterior and 1.3mm lateral to Bregma, 2.7mm below brain
surface. For adult rats, the co-ordinates used were 5.4mm posterior
and 1.5mm lateral to Bregma, 2.7mm below brain surface. After sur-
gery, rats were placed in a heated chamber until they had fully
recovered from the anaesthetic (10–30min) andwere then returned to
the mother and littermates.

Single-unit recording
Rats were allowed a 1-day postoperative recovery (1 week for adults),
after which microelectrodes were advanced ventrally by 62–250 µm/
day until they reached the subiculum cell layer, identified on the basis
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of a prominent theta (5–8Hz) LFP rhythm and the presence of theta-
modulated pyramidal cell firing, at which point recording sessions
began. Single units in the subiculum were defined as excitatory pyr-
amidal cells on the basis of a waveformwidth >300 µs. Single-unit data
was acquired using an Axona (Herts, UK) DACQ system. LEDs were
used to track the position and directional heading of the animal. Iso-
lation of single units frommulti-unit data was performed manually on
the basis of peak-to-trough amplitude, using the software package
‘TINT’ (Axona, Herts, UK). Rat position was recorded by tracking two
LEDs attached to the headstage amplifier. Electrodes were moved at
least 50 µm (normally 100 µm) every day. Cells recorded on different
days were treated as independent samples.

Behavioural testing and environments
Single-unit activity was recordedwhile rats searched for drops of soya-
based infant formula milk randomly scattered on the floor of two
different open field arenas: (1) a square-walled (62.5 cm sides, 50 cm
high) light-grey wooden box, placed on a black Perspex floor, (2) a
circular-walled (80 cm diameter, 50 cm high) light-grey wooden box,
placed on a black painted wooden floor. From the square arena, distal
visual cues were available in the form of the fixed apparatus of the
laboratory. The circular arena was placed within a set of closed black
curtains, within which there was only one prominent distal visual cue,
an A0-sized white card, illuminated by a 20W (incandescent filament)
desk lamp. Before recording in the circular arena, rats were carried
through the curtains in a closed black box, which was moved directly
between the arenas, without being rotated. Two consecutive square
arena trials were always run at the beginning of every experimental
session. In addition, rats were familiarised to the square arena for two
trials each over 2 days, before recordings began. One circle arena trial
(only) was run in an experimental session, either directly after the
square trials, or after the barrier trials (see below). To test responses of
subiculum neurons to barriers, a single straight barrier was inserted
into the standard square arena, aligned parallel to the arena walls,
centred within the open field in both x and y dimensions. In the
majority of recording sessions (83% of recorded BVCs), both possible
barrier orientations (North-South and East-West) were tested. Other-
wise, only one orientationwas tested, based on the orientation of BVCs
as assessed in the baseline (open field square) trials. Barriers were
made of the same material and of the same appearance as the arena
walls. The majority of rats were tested using a barrier of dimensions
50 cm length, 2.5 cm width and 50 cm height; 4 developing rats were
instead tested using a barrier of 40 cm length, 5 cm width and 50cm
height. Trials were 15min long. Between each trial, the rat rested for a
15-min inter-trial interval in a 25 cm× 25 cm holding box containing a
heated pad.

Construction of firing rate maps
All spike and positional data were filtered so as to remove periods of
immobility (defined as speed <2.5 cm/s). Following this, positional data
were re-scaled to a standardised size and shape, for consistent com-
parison to BVC model maps. For the square arena, edges of the arena
along each wall were defined as the line of camera pixels (each pixel
being 2.5mmwide) furthest from the centre of the environmentwhere
the summed dwell time was ≥1 s. Data outside these edges was dis-
carded, and the remaining data wasdivided into a 25 ×25 grid of evenly
spaced spatial bins, each representing an area 2.5 cm× 2.5 cm. For
circular arena data, the centre of the arena was first estimated as being
the mid-point between the visited edges of the environment at the
cardinal points of the compass, which were defined as the line of
camera pixels furthest from the centre where the summed dwell time
≥0.2 s. Following this, all positional data was rotated by 45° around the
estimated centre, and the edges and centre were defined again, fol-
lowing the method described above, for the rotated data. These steps
were continued in an iterative fashion until consecutive estimates of

the centre converged to within 0.75 cm. Following the definition of the
centre of the environment, the edgeof the environmentwas defined as
the largest pixel-wide circumference around the centre for which the
total summed positional dwell time was ≥1 s. Data outside these edges
wasdiscarded, and the remaining datawasdivided into a 32 ×32 grid of
evenly spaced spatial bins each representing an area 2.5 cm× 2.5 cm.

Following standardised scaling of the data, total positional dwell
time and spike count for the whole trial was calculated for each spatial
bin. The binned position dwell time and spike countmaps for each cell
were then smoothed using a boxcar filter, 5 × 5 bins. Trials during
which the rat visited less than 80% of the total number of spatial bins
were not used for further analysis.

Construction and fitting of BVC model maps
Firing ratemaps corresponding to the activity of an idealisedBVCwere
defined following25. Briefly, the firing rate g of a BVC tuned to respond
maximally to the presence of a boundary segment at distance d and
allocentric direction Φ was defined as:

gd,Φ r,θð Þ /
exp � r�dð Þ2

2σ2
rad

dð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

rad dð Þ
q ×

exp � θ�Φð Þ2
2σ2

ang

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

ang

q ð1Þ

where r is the distance and θ the allocentric direction from the animal
to the boundary segment, σang is constant, and radial field extent σrad

varies linearly with

σrad dð Þ= d
β+ 1

� �
σ0 ð2Þ

The firing rate f ðx,yÞ, at any position (x,y), of a BVC with receptive
field gd,Φ can therefore be defined by summing Eq. 1 over all directions
θ in steps of size Δθ:

f ðx,yÞ=
X2π

θ=0,4θ::

gd,Φ rbðθÞ,θ
� �4θ ð3Þ

where rbðθÞ is the distance-to the first boundary segment in direction θ
(if there is no boundary in that direction rb is infinite and no firing
results). Equation (3) was then evaluated at a series of points
corresponding to the centres of an evenly spaced 25 × 25 grid of
2.5 cm× 2.5 cm spatial bins to give the firing rate map for the BVC. The
boundary of the environment was defined as falling at the edge of the
outermost bins of the grid. For the circular arena, the boundary was
defined as a 80 cm wide circle, centred within a 32 × 32 grid of
2.5 cm× 2.5 cmbins, and function (3) was only evaluated at bins whose
centres lay within the boundary. In both environments, Δθ was no
smaller than 5.7°.

The best-fitting BVC for each neural rate map was defined by
varying the values of d,Φ and σ0 and conducting an exhaustive search
that maximised the Pearson’s r correlation between the BVC map and
the neural rate map. rmax was defined as the correlation between the
rate map and the best-fitting BVC map. d varied between 0 cm and
32.5 cm (40 cm in circular arenas), in 2.5 cm steps,Φ varied between0°
and 354°, in 6° steps, and σ0 could take the values 6.2 cm, 12.2 cm,
20.2 cmor 30.2 cm. In total the search set consistedof 3120BVCmodel
maps in square environments (3840 in circular arenas). Following25,
the value of σrad was held constant at 0.2 radians, and β at 183 cm.

Assessing statistical significance of BVC fit to neural data
BVCfits to neural ratemapsweredefined as significant on the basis of a
comparison to Pearson’s-r-values derived from fitting model maps to
spatially shuffled neural data. Spatially-shuffled neural data was pro-
duced by shifting the spike train by a temporal offset, which was
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between 20 s, and trial duration minus 20 s. Rate maps were then
constructed using the method described above (“Construction of
Firing Rate Maps”). Spatial shuffling was repeated 1000 times for each
cell on each trial, using 1000 equally spaced temporal offsets. Model
BVCs were fit to these spatially shuffled rate maps as described above
(“Construction of BVCmodel maps”), and themaximum Pearson’s-r fit
value (r(max)) was found. To be classified as a BVC, the r(max) value for
each cell had to surpass both of: (1) the 99th percentile of the
1000 shuffled r(max) values generated for that specific cell and trial
(‘rate map threshold’) and (2) the 99th percentile of an aggregated
population of shuffled r(max) values (‘population threshold’), from all
cells recorded in the same brain area and age group. An additional
threshold, determining a minimum level of spatial specificity for BVCs
was also used, which was defined as the 75th percentile of Spatial
Information scores (see below, “Assessing spatial tuning and stability
of BVCs”) derived from the same population of shuffled data. The 75th
percentile was used as the intended purpose of the spatial information
threshold was not to reject a null hypothesis of non-spatial firing, but
instead set a requirement for a BVC to demonstrate minimal spatial
selectivity. The threshold Spatial Information values usedwere: P16-18,
0.0467; P19-P21, 0.0487; P22-25, 0.0489; Adult, 0.0580. Spatially-
modulated neurons which were not BVCs (see Supplementary Fig. 10)
were defined as those whose Spatial Information score surpassed the
above described threshold Spatial Information, but whose BVC r(max)

score was less than both rate map and population BVC r(max) scores.
Neurons were classified as BVCs if they satisfied the above criteria

on either of two trials run in the square open arena. The false positive
classification rate for each neuronwas assumed to be 1.49%, calculated
under the assumptions that the chances of satisfying the BVC fit and
Spatial Information criteria were independent, and that the chances of
satisfying the criteria in either of the two square open field trials were
independent. The 95% significance level for the percentage of neurons
classified asBVCs at any given agewas calculated as the 95th percentile
of a binomial distribution based on N samples (where N is the total
number of neurons recorded at that age), and a 1.49% success
probability.

Graphical presentation of data
All data are presented as boxplots, unless the full distribution is also
shown elsewhere as a histogram. Boxplots were generated using the
Matlab (The MathWorks Inc, USA) function ‘boxplot’. In all figures
except Fig. 6, boxplots show the data median (central line), 25th and
75th percentiles (upper and lower box extremes), limits of the data
excluding outliers (whiskers; outliers defined as lying more than 1.5
times the inter-quartile range beyond the upper or lower quartile), and
95percent confidence interval for themedian (notch in box; defined as
q2–1.57(q3–q1)/ √(n) and q2 + 1.57(q3–q1)/ √(n), where q2 is themedian,
q1 and q3 are the 25th and 75th percentiles, respectively, and n is the
number of observations). In Fig. 6, due the compact nature of the
plots, no notches are shown, and the median is shown by a circular
target symbol.

Assessing spatial tuning and stability of BVCs
The spatial specificity of neuron firing was assessed using Spatial
Information, defined as the mutual information I(R|X) between firing
rate R and location X:

I RjXð Þ≈
X
i

p xi
� �

f xi

� �
log2

f xi
� �
F

� �
ð4Þ

wherepðxiÞ is the probability for the animal being at location xi, f xi

� �
is

the firing rate observed at xi, and F is the overall firing rate of the cell
(Skaggs et al., 1996). I(R|X) was then divided by the mean firing rate of
the cell, giving an estimate in bits/spike. The spatial stability of BVCs
was assessed using the Pearson’s-r correlation of rate maps from

temporally adjacent square open field trials. Overall age trend in Spa-
tial Information and Stability were tested using 1-way ANOVA
(between-subjects factor age), and post-hoc pairwise comparisons
using Tukey’s HSD.

Statistical testing of d, Φ, and σ0 distributions
For eachBVC, the d,Φ, and σ0 values were defined as those of the best-
fitting model, in the open field trial with the highest fit-maximised
Pearson’s-r. Overall age trends in median d, and σ0 were tested using a
Kruskal-Wallis test (between-subjects factor age). To quantify the
observed clustering of Φ tunings at the cardinal compass points, a
Rayleigh test for unidirectional departure from uniformity was per-
formed on Φ angle data that had first been quadrupled, and then
wrapped onto the interval 0–360°. This test is well-suited to detect
multimodal departure from uniformity, in cases where a clear
hypothesis predicting n-fold circular symmetry of the modes exists72.
Overall development trends in the proportion of BVCs withΦ tunings
oriented to a wall (defined as cardinal compass points ±12°) was tested
using a χ2 test. Differences in the proportion of wall-oriented Φ
between long- and short-distance tuned BVCs (defined as d > 10 cm
andd ≤ 10 cm, respectively)were testedusing χ2 test, post-hocpairwise
comparisons were performed using a z-test for proportions. The dis-
tribution of Φ tunings in the circular arena was defined as that of the
model that bestfit the circular arena neural ratemap, and distributions
were tested using the Rayleigh test on quadrupled, wrapped data. The
mean rotation of BVC ensembles, between the square and circular
arenas, was defined as the circular mean of the signed differences inΦ
between arenas. BVCs with d > 25 cm were excluded from this esti-
mate, as their rotations could be ambiguous across a 180° symmetry.
The circular dispersion of rotations around ensemble means was
assessed using the Kappa test of circular concentration, on the
population of the differences between Φ rotation for each BVC, and
the respective ensemble mean rotation. To obtain a reliable estimate
of mean rotation, only ensembles with ≥5 simultaneously recorded
BVCs were included in the analysis: in the following test for 4-fold
symmetric clustering at the population level, all developing rats were
analysed together, to compensate for the reduced number of BVCs
resulting from this restriction. Analysis of changes in 4-fold symme-
trical clustering within ensembles used all BVCs and only ensembles
with ≥5 simultaneously recorded BVCs.

BVC responses to inserted barriers
First, for each BVC the appropriate barrier orientation for assessing
responses was determined on the basis of the directional tuning: BVCs
with Φ tunings between 60° and 120° or between 240° and 300°
(where 0° is East) were defined as north-south tuned BVCs, and
responseswere assessedusing aneast-west orientedbarrier. BVCswith
Φ tunings ≤30°, between 150° and 210° or ≥330° were defined as east-
west tuned BVCs, and responses were assessed using a north-south
oriented barrier. Those BVC whose Φ tunings fell outside these clas-
sifications were not considered as unambiguously north-south or east-
west oriented and were excluded from the barrier analysis. A BVC was
only included in the analysis if a trial with the appropriate barrier
orientation hadbeen conducted in that session, and the d tuning of the
BVC was <15 cm. Following this, BVC responses to barriers were
assayed using amethod similar to that described in ref. 30. Briefly, the
changes in firing rate were measured in two zones defined relative to
barrier position: each zone was as long as the barrier in the dimension
parallel to the barrier, and extended from the barrier, to 12.5 cm away
from the barrier, in the orthogonal dimension. For each BVC, the two
zones were designated distal and proximal on the basis of the BVC’s
directional tuning, with the distal zone being on the opposite side of
the barrier to the direction of Φ. The absolute rate barrier response
was then defined as the change in the summed values of rate map bins
within each zone, between the barrier trial and the preceding open

Article https://doi.org/10.1038/s41467-024-45098-1

Nature Communications |          (2024) 15:982 13



field square. The normalised response was defined as the absolute
response, divided by the sum of the summed rates in the barrier and
open field trials. Overall age trends in barrier response were tested
using a mixed design ANOVA, including age as a between-subjects
factor and zone (distal versus proximal) as a within-subjects factor.
Post-hoc pairwise comparisons were conducted using Simple Main
Effects.

Comparison of subiculum and mEC neural data
The mEC dataset analysed here was previously described in ref. 30.
Data was shared in the form of position tracking records and spike
times of isolated single units (the same set as described in the original
study). All further analysis, including construction of rate maps, fitting
of BVCs, and determining fit significance using shuffled data, was
performed as described for subiculum data, above. Neurons were
defined as border cells using the same method as in ref. 30, namely,
both the Border Score23 and the Spatial Information (see above) of a
neuron’s rate map needed to exceed the 95th percentiles of popula-
tions of Border and Spatial Information scores derived from age-
matched, spatially-shuffled data. The Spatial Information, stability and
BVC tuning properties of both BVCs and Border Cells identified in the
mEC were analysed as for subiculum BVCs, as described above.

Sub-sampling of data
Control analyses were performed to test whether developmental
changes in path length per trial, running speed, mean rate or cluster
stability contributed to results reported in Fig. 2, and whether lower
BVC r(max) in the circle than the square contributed to the results
reported in Fig. 4. The details of these are as follows:

Path length Path length was defined as the integrated sum of all
position offsets in a recording trial, measured at a 50Hz sample rate.
Path lengths were equalised by discarding all data from the times at
which rats had travelled 65m in a trial onwards. Matched shuffled data
was produced by shifting spike times relative to path after the dis-
carding of data. BVC classification was performed as described above,
using sub-sampled real and shuffled data. See Supplementary Fig. 2.

Running Speed Running speed was quantified using trial median
speeds, after excluding immobility (defined as speed <2.5 cm/s).
Speeds were equalised by discarding position samples at either the
high or low ends of the speed distribution, such that all trial median
speeds became 7.57 cm/s. Matched shuffled data was produced by
shifting spike times relative to path after the discarding of data. BVC
classification was performed as described above, using matched, sub-
sampled real and shuffled data. See Supplementary Fig. 2.

Mean rate Mean rates were matched over the full population of
recorded neurons, before BVC classification, to control for the possi-
bility that changes inmean rate biasedwhich neurons were selected as
BVCs. Rates were matched by discarding a set proportion P of the
spikes of every cell, the discarded spikes being chosen randomly. P
varied by age group, and P for each age group, P(AG), was defined as
1 − (M(min)/M(AG)) where M(AG) is the population median mean rate for
the age group, and M(min) is the minimum population median mean
rate over all age groups. The proportions P were: P16-18, 0.0149; P19-
21, 0.0435; P22-25, 0; Adult, 0.2846. Matched shuffled data was pro-
duced by shifting spike times relative to path after the discarding of
data. BVC classification was performed as described above, using
matched, sub-sampled real and shuffled data. See Supplemen-
tary Fig. 3.

Cluster Stability was quantified by calculating waveform change,
defined as the absolute change in the peak voltage of themean cluster
spike waveform across two adjacent trials. The tetrode channel with
themaximumamplitude spikewas used to calculatewaveformchange.
Waveform change was equalised by discarding all neurons with a
waveform change of >4.5 µV. Cluster isolation was quantified using the

IsolationDistance and L-Ratio of clusters73, calculated in 4-dimensional
spike amplitude space.

BVC r(max) in the circle was equalised with that in the square
separately for each age group, by sorting cells by their circle BVC r(max),
and progressively discarding cells from the circle dataset until the age
grouppopulationmedianswerematched across square and circle. The
analyses reported in Fig. 4 were then performedwith this sub-sampled
dataset (see Supplementary Fig. 7).

BVC firing modulation by head direction
Directional firing rate maps were constructed as follows: for each
head direction angular bin (bin width = 6°), the number of spikes
occurring while the animal occupied the bin was divided by the total
dwell time in the bin, and the resulting rate values were smoothed
with a boxcar kernel (window width = 30°). The degree of head
directionmodulation was defined as the length of themean resultant
vector (Rayleigh vector) of the binned, smoothed, rate map. The
preferred firing direction of each cell was defined as the angle of the
Rayleigh vector. The extent towhich directionalmodulation could be
explained by a combination of spatially-restricted firing in (2-
dimensional) space, and uneven sampling of direction across space,
was quantified by producing directional rate maps following the
distributive hypothesis74. Distributive hypotheses maps are pro-
duced by assuming that a neuron has no intrinsic head direction
modulation, and calculating the expected firing rate for each direc-
tional bin, on the basis of (1) the directions sampled and (2) themean
firing rates recorded, in every (2-dimensional) spatial rate map bin74.
The directional modulation of distributive hypothesis rate maps was
quantified using the Rayleigh vector length. To give an estimate of
the extent of residual directional modulation, which could not be
explained by positional sampling bias, the Rayleigh vector of the
distributive hypothesis map was subtracted from that of the
observed data map.

BVC simulation
To test whether the four-fold symmetry inΦ tunings could arise from
behavioural bias, BVCs were simulated using age-matched real posi-
tion data and synthetic spike trains. To create synthetic spike trains,
the activation of a specific BVC receptive field was determined for
every location visited by the rat in a trial, at camera pixel resolution
(2.5mm), by evaluating equation (3), above. The number of spikes
occurring during each 20ms position sample was then determined by
a randomPoissonprocess, inwhichPoisson λwas linearly proportional
to the model BVC firing rate f ðx,yÞ at the currently occupied location,
scaled by a fixed factor such that the total number of expected spikes
in a trial matched a mean rate drawn at random from an age-matched
population of real BVCs. Following generation of the synthetic spike
train, data were binned, smoothed, and BVC best fit determined fol-
lowing the same procedures as those used for real data (see above).
Simulated BVCs were only included in the simulated population if the
best fit r(max) surpassed the shuffled-data thresholds applied to real
data. The tuning parameters associated with the best fitting BVC could
potentially, therefore, be different to those used to create the syn-
thetic spike train. 50,000 simulated BVCs were created for each age
group. For each simulated BVC, spike trains were based on d and σ0
values drawn from age-matched populations of real data. Φ values
were drawn fromeither aflat distribution, or, as a positive control, age-
matched populations of real data Φ values. To test the likelihood of
finding four-fold symmetry in a population of N BVCs, where N is the
number of real BVCs found in each age group, N simulated BVCs were
sampled at random (without replacement) from the full population
1000 times. For each resampled population, of N simulated BVCs, the
presence of fourfold symmetry was tested using the Rayleigh test on
quadrupled, wrapped Φ values.
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Field shuffle
The field shuffle was an alternative method for generating a spatially-
shufflednull populationof BVCfits, to test the statistical significanceof
real data BVC fits. The procedure for producing field shuffle data was
based around that of ref. 39, in summary, being to segment the rate
map based on field position, then randomly rearrange the resulting
segments. First, spatial field peaks (defined as local maxima) were
found in the binned, smoothed rate map for each cell. A prominence
measurewas calculated for each peak, defined as the ratio between the
summed rates of the 9 bins including and immediately adjacent to the
peakbin, and the surrounding 16 bins immediately adjacent to these 9.
To avoid over-segmenting the map, if more than 8 peaks were detec-
ted, only the highest eight prominence peaks were used. Following
peak detection, the map was divided into polygons defined by the
Voronoi diagram of the peaks. The polygons were then randomly
rearranged: each was assigned a random position and orientation
within the arena, in order of the mean rate of their contained bins,
starting with the polygon with the highest mean rate. If a polygon’s
random position overlapped with that of another already placed, the
overlapping bins from the later-placed (lowermean rate) polygonwere
assigned randomly to unfilled bins, after all polygonswereplaced. Rate
bin values within the placed polygons/bins were unsmoothed:
smoothing was performed only after the polygon/bin placing proce-
dure was complete. BVCs were then fit to the resulting spatially ran-
domised, smoothed map.

Fitting of BVC and place cell models to subiculum and CA1 data
CA1 data was taken from a previously published dataset29, age-
matched to the age groups used in the current study.Model BVCswere
fit to CA1 data using the same procedures as for Subiculum data, as
described above. To compare BVC fits to an alternative model, both
CA1 and subiculum data were fit with model Place Cells. Following33

these were defined as regular 2-dimensional gaussian fields, whose
peak could take any position in the environment, and whose field
width could be one of four σ values: σ = 7, 9, 11 and 13 cm.Model place
cells were radially symmetrical, and model fields near the arena
boundaries were clipped at the boundaries, but not otherwise dis-
torted. If the r(max) derived from the best-fitting Place Cell was larger
than that derived from thebestfittingBVC, theneuronwasclassified as
being better fit by a Place Cell model. The proportions of significantly
fit neurons in CA1 and Subiculumwere determined with respect to the
number of spatially-modulated neurons (defined as those whose Spa-
tial Information scores surpassed the 75th percentile of a populationof
scores derived froma spike-time shuffleddata) ineach area andat each
age: this was done to correct for higher levels of spatial modulation in
CA1 overall, at all ages51.

Burst index
Burst index was measured using two complementary methods. The
inter-spike interval histogram (ISI) method defines burst tendency as
the ratio between the number of spike intervals <8ms, and all inter-
spike intervals. The ISI method may under-estimate bursting, when
mean rates are low75. The auto-correlogram (AC)method defines burst
tendency as the ratio between the integrated area under the temporal
spike train AC in the period 1–6ms, and that in the period 9–20ms.
The AC method may over-estimate bursting, when mean rates are low

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Subiculum and mEC data are freely available to download at https://
rdr.ucl.ac.uk/articles/dataset/Subiculum_neuron_data_from_adult_

and_developing_rats/24864732. TheDOI for thisdataset is: 10.5522/04/
24864732.

Code availability
Custom code is available to download at: https://github.com/
WillsCacucciLab/BVCDevPublic.
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