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Geospatial mapping of distribution grid with
machine learning and publicly-accessible
multi-modal data

Zhecheng Wang 1,2, Arun Majumdar 3,4 & Ram Rajagopal 1,2

Detailed and location-aware distribution grid information is a prerequisite for
various power system applications such as renewable energy integration,
wildfire risk assessment, and infrastructure planning. However, a generalizable
and scalable approach to obtain such information is still lacking. In this work,
we develop a machine-learning-based framework to map both overhead and
underground distribution grids using widely-available multi-modal data
including street view images, roadnetworks, andbuildingmaps. Benchmarked
against the utility-owned distribution grid map in California, our framework
achieves > 80% precision and recall on average in the geospatial mapping of
grids. The framework developed with the California data can be transferred to
Sub-Saharan Africa and maintain the same level of precision without fine-
tuning, demonstrating its generalizability. Furthermore, our framework
achieves a R2 of 0.63 in measuring the fraction of underground power lines at
the aggregate level for estimating grid exposure to wildfires. We offer the
framework as an open tool formapping and analyzing distribution grids solely
based on publicly-accessible data to support the construction and main-
tenance of reliable and clean energy systems around the world.

Detailed and accurate mapping of power grids is essential for power
systemplanning, operation, and riskmanagement around theworld. In
Sub-Saharan Africa (SSA), the proportion of the population without
access to electricity was still over 50% in 20201. Despite increased
connections, SSA countries experienceonaverage 50 to4600hoursof
power outage out of the 8760 hours in a year due to limited capacities
and infrastructure failures2,3. Expanding and upgrading electricity
transmission and distribution infrastructures requires detailed infor-
mation on their current locations, connections, and status.

Meanwhile, the deployment of distributed energy resources
(DERs), such as solar photovoltaics (PV), is growing rapidly worldwide.
Distributed generation is projected to account for 10% of the total
global power generation by 20304. The deep penetration of DERs into
power grids poses significant challenges to grid stability due to the
bidirectional power flow created by DERs. To monitor DERs and

integrate them into power systems, detailed information on grids,
especially of distribution grids, is a prerequisite.

Unfortunately, unlike transmission grids ofwhich the connections
and status are usually available to system operators and can be reg-
ularly measured5,6, information on distribution grids is often incom-
plete, coarse-grained, or even unavailable, especially in developing
countries7. Even in developed countries, although utility companies
maykeep the information of their owndistribution grids, such data are
usually not publicly-available or organized in a standardized format8,
which forms sequestered data silos and prevents researchers and
policymakers from analyzing grid status and developing investment
plans across different utility territories. OpenStreetMap maintains a
geospatial data collection of power lines by utilizing crowdsourcing
methods, yet it is far from complete, and most of the data in this
collection are for transmission lines9.
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Previous graph-based approaches for distribution grid topology
estimation relyon the availability ofmeasurement data collected at the
nodes (i.e., buses) of distribution grids, e.g., time-series observations
from smartmeters6,10–14. Despite the rapid deployment of smartmeters
in developed economies, many countries in Africa and Latin America
still have a low deployment rate of smart meters15, and these meter
data, if present, are privately ownedbydifferent utility companies. Due
to such limitations, the graph-based approaches are useful in the
operational topology identification of partially-known grids with
measurements at nodes rather than mapping real-world physical dis-
tribution grids completely from scratch without any prior knowledge
of nodes or edges.

With the rapid development of machine learning and computer
vision in recent decades16, there are attempts to automatically detect
energy transmission and distribution infrastructures utilizing publicly-
available imagery data. Arderne et al.8 developed a predictive model
for mapping medium-voltage distribution grids in developing coun-
tries by connecting the electrified settlements detected in night-time
light imagery. However, the spatial granularity of the grid map gen-
erated by such an approach is limited by the resolution of night-time
light imagery which is only at the level of kilometer or hundreds of
meters17. Schmidt et al.18 developed a machine-learning model to
extract voltage rating information of transmission lines from aerial
images. Gomes et al.19 and Huang et al.20 used deep learning to localize
utility poles and predict line connections from remote sensing images,
but the applicability of suchmethods on distributiongrids is subject to
varying image resolutions and qualities of remote sensing images
across different places, as utility poles and distribution lines, com-
pared with transmission infrastructure, are barely visible from low-
resolution or noisy remote sensing images. Deep learning has also
been used to either localize or analyze utility poles in street view
images21–24, but not for identifying power line connections to construct
a full distribution grid map. Furthermore, methods based solely on
remote sensing or street view images are not able to detect and map
underground power lines.

In this work, we propose a general machine-learning-based
framework to construct distribution grid maps by combining multi-
modal widely-available data including street view images, road
networks, and building locations. Convolutional Neural Networks
(CNN)—trained with only image-level class labels in a weakly-
supervised manner—are used to detect and estimate the orienta-
tions of utility poles and power lines from upward street view ima-
ges. Leveraging power line detection results and road networks as
features, a link prediction model is used to predict the line con-
nections between utility poles. We further predict the geospatial
map of underground grids on top of the predicted overhead grid
map by incorporating the information of road networks and build-
ing locations. The entire framework is developed and evaluated
using the data in California with utility-owned distribution gridmaps
as a benchmark. The framework is also transferred to the test areas
in three cities in Sub-Saharan Africa and shows reasonable perfor-
mance without re-training or fine-tuning. We offer our framework as
a general tool to map distribution grids, which can be further
combined with other geospatial data, such as tree locations, DER
inventory, and weather data, to facilitate various power systems
applications such as electricity access expansion, vegetation man-
agement, DER integration, and risk assessment.

Results
Overall framework
The schematics of the overall framework is shown in Fig. 1. Street view
images, captured at different geolocations, are used to localize utility
poles and estimate the directions of power lines. Specifically, a CNN-
based power line detector takes street view images as inputs and
outputs classification results indicating whether an image contains

power lines and, if containing lines, the estimated line directions
(Fig. 2a). Similarly, a CNN-based utility pole detector takes street view
images as inputs and outputs classification results indicating whether
an image contains poles or not and, if containing poles, the predicted
pole orientations. Pole orientations estimated in multiple images are
combined together to localize poles by intersecting the rays that
represent pole orientations (Fig. 2b). Both line detector and pole
detector are trained in a weakly-supervised manner—only image-level
class labels are provided as supervision, while pole orientations or line
directions are not due to the expensive cost of obtaining their ground
truth annotations (see details in Methods).

Unlike previous works21–23 that have used the horizontal per-
spective of street views, we instead use upward street views as there
are much fewer irrelevant objects and, furthermore, the geometric
relationships are simpler to capture in the upward view. By setting the
street view orientation to be uniformly facing north, we can directly
estimate line directions and pole orientations relative to the street
view point (see details in Methods).

Both the line detector and thepole detector are trained, validated,
and tested on a dataset containing 10,000 upward street view images
randomly sampled from the San Francisco Bay Area (see details about
the dataset in Methods). We use precision (ratio of correct decisions
among all positive decisions) and recall (ratio of correctly-identified
samples among all positive samples) to measure the image-level clas-
sification performance. For line detection, the model achieves a pre-
cision of 0.982 and a recall of 0.937 on the test set. For pole detection,
the model achieves a precision of 0.982 and a recall of 0.850 on the
test set.

Pole and line information extracted from street view images are
then integrated with the road network to predict line connections
between predicted poles. We first establish the geospatial relationship
between poles, street view points, and roads. Specifically, for each
predicted pole or street view point, if there is a nearby road, it will be
attached to that road (Fig. 2c). A machine-learning-based link predic-
tion model is used to predict whether there is a line connection
between a pair of poles by leveraging features such as whether there is
any line detected in street view images between the two poles, and
whether the two poles are next to each other along the road (see
details of the used features and feature selection in Methods). We,
therefore, obtain a geospatial graph representing the predicted over-
head grid, with predicted poles as nodes and predicted line connec-
tions as edges.

The prediction of underground grid map is based on the
assumption that all buildings are connected to the grid—if a building is
not connected to the nearby overhead grid, then it should be con-
nected to the nearby underground grid. This assumption generally
holds in countries with a 100% electrification rate for buildings, but
does not hold in areas with buildings unelectrified or self-powered. In
the U.S., for example, the number of people living off-the-grid is less
than 0.1% of the total population25. Note that microgrids and dis-
tributed generation can make buildings detached from utility grids,
but buildings still need to be connected to utility grids either in normal
operations or before they go isolated. Under this assumption, we
overlay the predicted overhead grid map with the building map to
identify the buildings which cannot be reached by the predicted
overhead grid within a certain distance (Fig. 2d). As a heuristic
approach, we predict the geospatial map of the underground grid by
running a modified Dijkstra’s algorithm8,26,27 to find the most efficient
paths to connect these unconnected buildings by incorporating the
prior knowledge of the geolocation preference of underground line
constructions (e.g., roads are preferable. See details in Methods).
While the predicted overhead grid is represented as a geospatial
graph, the predicted underground grid cannot be explicitly repre-
sented as a set of nodes and edges hence presented in the raster
format.
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Performance in the California test areas
Based on a distribution grid map of the largest utility company in
California28, Pacific Gas and Electric Company (PG&E), we curate a
dataset covering the distribution grids in 6 different areas in California
(San Carlos, Newark, Santa Cruz, Yuba City, Pacific Grove, and Salinas.
See details about the dataset inMethods). The distribution gridmap in
San Carlos is used as a development set for training and validating the
link prediction model, while the remaining 5 areas in California are
used as the test set to evaluate the pole localization performance, link
prediction performance, and overall grid mapping performance.

The performance of pole localization is evaluated with two
metrics: (1) precision, defined as the fraction of detected poles that are
within a distance Dmatching of a ground truth pole, and (2) recall,
defined as the fraction of ground truth poles that can be detected
within a distance Dmatching (see details of the metrics in Methods).
Table 1a shows the pole localization performance in the California test
areas withDmatching = 25m. For the 5 test areas, over 80% of the ground
truth poles can be detected within 25m (“recall”) except in Yuba City
(78%), and over 80% of the predicted poles have a nearby ground truth
pole within 25m (“precision”) except in Pacific Grove (77%). Further-
more, our framework can localize the poles that have not been docu-
mented in the PG&E distribution grid map (Table 1a), and these newly-
detected poles can serve as supplements to the utility-owned data.We
verify these supplemented poles by the visual inspection of nearby
street views and remote sensing images. By taking them into con-
sideration, the overall F1 score (harmonicmeanof precision and recall)
of pole localization in theCalifornia test areas ranges from0.83 to0.91.

By comparing the predicted line connections with the ground
truth ones, we evaluate the performance of link prediction models
using precision (fraction of predicted lines that are correct) and recall

(fraction of ground truth lines that can be detected), as well as their
harmonic mean, F1 score (see details of the metrics in Methods). Fig-
ure 3a compares two link prediction models—decision tree and gra-
dient boosting—in terms of the F1 scores across the 5 test areas, and it
shows that gradient boosting performs slightly better than decision
tree. For the gradient boosting model, the precision of link prediction
ranges from 0.71 to 0.83 across the 5 test areas, while the recall ranges
from 0.67 to 0.89 (Table 2a). Similar to the localization of supple-
mented poles, our framework can identify additional line connections
that are not documented in the utility-owned grid map. After con-
sidering these unrecorded connections as supplements, themodel can
achieve a F1 score from 0.75 to 0.87 across the 5 test areas, with the
highest in Salinas (0.87) and the lowest in Yuba City (0.75).

To evaluate the overall grid mapping performance covering both
overheadandundergroundgrids,wedefineprecision as the fractionof
predicted distribution grid located within a distance Reval of ground
truth grid, and define recall as the fraction of ground truth distribution
grid that can be detected within a distance Reval (see details of the
metrics in Methods). The results across the California test areas,
obtained with the gradient boosting as the link prediction model, are
shown in Table 3a (Reval = 20m). As is shown, across the 5 test areas in
California, 76–93% of the ground truth distribution grid can be
detected within 20m (“recall”). For 75–92% of the predicted distribu-
tion grid, ground truth distribution grids can be found within 20m
(“precision”). Figure 3c and d show the visualization of the ground
truth and the predicted distribution grid maps in the test area of Yuba
City, respectively.

For the California test areas, incorrect underground gridmapping
is amajor source of error contributing to 82%of false positivemapping
and 71% of false negative mapping due to the heuristic nature of the

Fig. 1 | The overall framework of distribution grid mapping. Blue arrows and
blocks represent individual modules, while light red blocks represent output vari-
ables. a–c Inputs include: a street view images; b road network; c amap of building
locations. Street view images are processed by two weakly-supervised Convolu-
tionalNeural Networks (CNNs), a pole detector and a line detector, to estimate pole

orientations and line directions, respectively. d Pole orientations are used to
localize poles. e Pole and line information are integrated with the road network to
predict power line connections between poles. f Building locations and the pre-
dicted overhead grid map are integrated to predict the underground grid map.
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undergroundgridmapping approach. A potentialmitigation approach
is to incorporate other prior knowledge besides road maps (e.g.,
topographic map and land cover map) to reflect additional geoloca-
tion preferences of underground lines for the modified Dijkstra’s
algorithm. See detailed analysis of sources of error in Supplemen-
tary Note 2.

Performance in the Sub-Saharan Africa test areas
To evaluate the generalizability of the grid mapping framework,
especially in developing countries where the infrastructure data are
scarce, we transfer the framework developed using the data in Cali-
fornia to 5 manually-curated test areas in three countries in Sub-
SaharanAfrica (SSA): Uganda, Kenya, andNigeria (see details about the
dataset in Methods). Among them, Uganda is considered as a low-
income country, while Kenya and Nigeria are considered as lower-
middle income countries according to the World Bank country
classification29. We evaluate themodel performance in these test areas
with the same metrics as in California. The line detector, the pole
detector, and the link predictionmodel all remain the samewithout re-
training or finetuning. All hyperparameters are also the same as those
used in California except that the decision threshold to classify an
image aspositive is changed from0.5 to0.2 for the pole detector. Such
a change is based on the observation that the utility poles in Sub-

Saharan Africa are generally shorter than those in the U.S. which can
make them more difficult to identify in upward street view images.
Figure 3e and f show the ground truth and the predicted distribution
grid maps for the test area in Ikeja, Lagos, Nigeria. Note that we do not
predict the underground grid map for the SSA test areas since the
assumption for underground grid mapping—all buildings are con-
nected to the grid—does not necessarily hold in SSA, and the reference
underground grid maps in SSA are not available for model evaluation.

Table 1b shows the pole localization performance. While preci-
sions of pole localization across the SSA test areas are generally higher
than 0.8, the recall drops from an average of 0.84 in the California test
areas to an average of 0.66 in SSA, which can be largely attributed to
the missing detection of poles in images (contributing to 71% of the
false negative pole localization. See Supplementary Note 2 for details).
Such missing detection is partially due to the difference in the
appearance of utility poles between the U.S. and SSA. Moreover, some
utility poles in SSA are comparatively short, making them out of sight
in upward street view images if they are not close enough to the
locationswhere street view imageswere captured (contributing to 24%
of the false negative pole localization). Missing pole detection further
affects the link prediction performance—the recall drops from an
average of 0.77 in the California test areas to an average of 0.63 in SSA
(Table 2b). A potential mitigation approach is to augment the field of

Fig. 2 | Illustration of different modules. a Power line detector. It first decides
whether there is any line in the image (positive) or not (negative), and if there is,
then estimates its direction. b Utility pole detector. It first decides whether there is
any pole in the image (positive) or not (negative), and if there is, then estimates the
pole orientation. Rays of pole orientations estimated from multiple images are
intersected to obtain pole locations. c Road modeling. Street view points and the
detectedpoles are attached tonearby roads. To reduce thenumberof polesmissed
by the pole detector, an additional pole is inserted between a pair of poles if the

distance between them is greater than a distance threshold Dinsert. d The heuristic
approach for undergroundgridmapping, which is based on the assumption that all
buildings have access to the grid. Linesof thepredictedoverheadgrid are dilated to
cover nearby buildings. Then amodifiedDijkstra’s algorithm is used to connect the
uncovered buildings to the grid by incorporating the prior knowledge of the geo-
location preference of underground line constructions. The paths generated for
connecting these buildings are used as the prediction of the underground grid
connections.
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view (FoV) of upward images by leveraging the panoramic street views
(see a discussion on sources of error and mitigation approaches in
Supplementary Note 2). Nevertheless, the framework achieves a pre-
cision from 0.92 to 0.99 and a recall from 0.66 to 0.80 in overall grid
mapping (Table 3b), indicating that our framework, trained with the
data in the U.S., can maintain a high correct rate and a reasonable
detection rate of mapping when transferred to SSAwithout re-training
or fine-tuning.

Estimate the fraction of underground power lines
The grid map predicted by our framework can be used for various
power systems applications such as grid maintenance and risk
assessment. For example, exposed overhead power lines are not only
vulnerable to wildfire-caused damages but can also ignite wildfires by
sparks and intruding vegetation. For example, the Dixie Fire in 2021—
the largest non-complex wildfire in California’s history that burned
over 960,000 acres—was caused by distribution lines contacting a

Table 1 | Pole localization performance

Test area Precision Recall F1 score # supplemented poles Precision (after
supplement)

Recall (after
supplement)

F1 score (after
supplement)

a. Test areas in California

San Carlos, CA, U.S.A. (devel-
opment set)

0.836 0.800 0.818 146 0.895 0.807 0.849

Newark, CA, U.S.A. 0.845 0.811 0.828 95 0.916 0.820 0.865

Santa Cruz, CA, U.S.A. 0.850 0.818 0.834 47 0.890 0.824 0.856

Yuba City, CA, U.S.A. 0.880 0.776 0.825 9 0.887 0.778 0.829

Pacific Grove, CA, U.S.A. 0.773 0.832 0.801 123 0.848 0.839 0.844

Salinas, CA, U.S.A. 0.816 0.943 0.875 73 0.888 0.939 0.913

Average (except San Carlos) 0.833 0.836 0.833 69.4 0.886 0.840 0.861

b. Test areas in Sub-Saharan Africa

Ntinda, Kampala, Uganda 0.799 0.707 0.750 - - - -

Kololo, Kampala, Uganda 0.853 0.717 0.779 - - - -

Highridge, Nairobi, Kenya 0.895 0.647 0.751 - - - -

Ngara, Nairobi, Kenya 0.887 0.584 0.704 - - - -

Ikeja, Lagos, Nigeria 0.953 0.636 0.763 - - - -

Average 0.877 0.658 0.749 - - - -

Distance thresholdDmatching, which is themaximumallowable distance formatching a predictedpolewith a ground truth pole, is set to be 25m. F1 score is the harmonicmean of precision and recall.

Fig. 3 | Model performances and distribution grid map visualization. Predicted
and ground truth grid maps are visualized in the raster format. a Comparison
between two link prediction models, decision tree and gradient boosting, across
the 5 test areas in California. The F1 score is the harmonic mean of precision and
recall. b The scatterplot of the predicted values of undergrounding rates versus
ground truth values at the census block group level for the test areas in California.

Undergrounding rate is defined as the fraction of underground lines in terms of
length in a block group. R2 is the coefficient of determination. c Ground truth grid
map for the test area in Yuba City, CA, U.S.A. d Predicted gridmap for the test area
in Yuba City, CA, U.S.A. e Ground truth grid map for the test area in Ikeja, Lagos,
Nigeria. f Predicted grid map for the test area in Ikeja, Lagos, Nigeria.
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tree30,31. Burying power lines is an effective but costly approach to
mitigate such a coupled risk of wildfires and power grids32. Although
some utilities may maintain the information of line-burying status of
their own distribution grids, such data is privately owned by various
stakeholders as data silos and not publicly available. Obtaining the
map of line burying status with high spatial granularity in an auto-
mated, scalable, and non-intrusive way can facilitate the assessment of
grid exposure to wildfire risks across different utility territories,
identification of disparities in infrastructure vulnerability, and the

development of wildfire risk mitigation policies and infrastructure
investment plans.

Leveraging the geospatial map of overhead and underground
grids predicted by our framework, we can estimate the total length of
underground and overhead lines as well as their ratio in a given area.
We evaluate the accuracy of our grid mapping method in estimating
line-burying status by comparing the predicted and ground truth
values of the undergrounding rate—defined as the fraction of under-
ground lines in terms of length—in each census block group which is a
small geographical unit defined as by the U.S. Census Bureau that
typically contains 600 to 3000 people33. We use the 73 block groups
across the 5 test areas in California as the test set (excluding block
groups in the development set of San Carlos), on which ourmodel can
achieve a prediction R2 of 0.627. The scatterplot of the predicted
values versus ground truth values is shown in Fig. 3b. Considering that
the mapping of underground lines is purely based on the publicly-
available building and road data, such a performance is reasonable,
demonstrating the effectiveness of our framework in revealing het-
erogeneous line-burying status at a granular geographic aggregation
level. The derived information of the aggregate-level line-burying sta-
tus can be further combinedwith the geospatial distribution ofwildfire
risks and vegetations to assess the regional vulnerability of distribution
grids to wildfires and to prioritize the areas for infrastructure invest-
ment towards a wildfire-resilient energy system.

Discussion
Due to the small visual targets, complexity of graph structures, and
combination of both overhead and underground power lines, map-
ping distribution grids is a challenging task requiring the integration of
different modalities of data. In this work, we develop a machine-
learning-based framework combining widely-available multi-modal
data including street view images, road networks, and building maps
to predict the geospatial map of distribution grids. Its performance is
extensively evaluated across the test areas in bothCalifornia in the U.S.
and Sub-Saharan Africa (SSA), which shows the generalizability of our
framework. The image-level performance is also evaluated in the test
areas in six additional cities from Africa, Asia, and Latin America (see
Supplementary Note 4 and Supplementary Table 2). Sources of error
for both the California and SSA test areas and the potential mitigation

Table 2 | Link prediction performance

Test area Precision Recall F1 score # supplemented
edges

Precision (after
supplement)

Recall (after
supplement)

F1 score (after
supplement)

a. Test areas in California

San Carlos, CA, U.S.A. (devel-
opment set)

0.787 0.713 0.748 161 0.853 0.726 0.784

Newark, CA, U.S.A. 0.816 0.760 0.787 113 0.899 0.773 0.832

Santa Cruz, CA, U.S.A. 0.809 0.723 0.763 48 0.851 0.730 0.786

Yuba City, CA, U.S.A. 0.828 0.671 0.741 9 0.836 0.673 0.746

Pacific Grove, CA, U.S.A. 0.709 0.783 0.744 132 0.780 0.793 0.786

Salinas, CA, U.S.A. 0.774 0.891 0.828 85 0.856 0.889 0.872

Average (except San Carlos) 0.787 0.766 0.773 77.4 0.844 0.772 0.804

b. Test areas in Sub-Saharan Africa

Ntinda, Kampala, Uganda 0.801 0.664 0.726 - - - -

Kololo, Kampala, Uganda 0.826 0.639 0.721 - - - -

Highridge, Nairobi, Kenya 0.879 0.701 0.780 - - - -

Ngara, Nairobi, Kenya 0.793 0.510 0.621 - - - -

Ikeja, Lagos, Nigeria 0.908 0.637 0.749 - - - -

Average 0.841 0.630 0.719 - - - -

a Performance in the California test areas. b Performance in the Sub-Saharan Africa test areas.
Results with gradient boosting model used for link prediction are shown. Edges between false negative poles (poles that are not detected) are counted as false negative edges, and edges between
false positive poles (wrongly-detected poles) are counted as false positive edges. F1 score is the harmonic mean of precision and recall.

Table 3 | Overall grid mapping performance

Test area Precision Recall F1 score

a. Test areas in California

San Carlos, CA, U.S.A.
(development set)

0.857 0.797 0.826

Newark, CA, U.S.A. 0.850 0.805 0.827

Santa Cruz, CA, U.S.A. 0.751 0.766 0.758

Yuba City, CA, U.S.A. 0.875 0.762 0.815

Pacific Grove, CA, U.S.A. 0.840 0.871 0.856

Salinas, CA, U.S.A. 0.924 0.926 0.925

Average (except San Carlos) 0.848 0.826 0.836

b. Test areas in Sub-Saharan Africa

Ntinda, Kampala, Uganda 0.920 0.782 0.846

Kololo, Kampala, Uganda 0.962 0.782 0.863

Highridge, Nairobi, Kenya 0.971 0.802 0.878

Ngara, Nairobi, Kenya 0.982 0.655 0.786

Ikeja, Lagos, Nigeria 0.988 0.756 0.857

Average 0.965 0.755 0.846

a Performance in the California test areas. Supplemented poles and line connections are con-
sidered, and the results are for the combination of undergroundandoverheadparts of thegrid.b
Performance in the Sub-Saharan Africa (SSA) test areas. Only the overhead part of the grid is
considered, as the benchmark for underground grid map is not available in SSA.
The performance is evaluated on a raster map using path dilation with a dilation radius Reval =
20m (see details in Methods). F1 score is the harmonic mean of precision and recall. Gradient
boosting model is used for link prediction.
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approaches are discussed in Supplementary Note 2, Supplementary
Figures 4 and 5.

Our proposed framework has three advantages. First, compared
withmeasurement-basedmethods, our framework is not restricted by
the availability of measurement data or prior knowledge of node
locations. The input data is readily-available—street view images are
collected by both technology companies such as Google, Microsoft,
and Baidu, as well as volunteer contributors34, and their coverage is
rapidly expanding around the world including underdeveloped
countries; road networks and building locations are widely available
from OpenStreetMap9. Second, our framework is not subject to the
heterogeneous resolution and quality of remote sensing imagery. It is
also weakly-supervised—only image-level class labels are needed for
training the models to estimate power line directions and localize
poles from images, eliminating the need for labor-intensive object
annotations20,21. Third, unlike previous methods that are purely based
on images, our framework can predict the geospatial map of under-
ground grids on top of the predicted overhead grid map using non-
imagery data.

We note three limitations. First, street view images are compara-
tively scarce in some developing countries at present. However, with
the rapidly increasing coverage of street view imagery around theworld
including rural areas in developing countries, aswell as theparticipation
of volunteer street view contributors34, such an issue is expected to be
mitigated over time. Grid maps can be expanded or updated by our
framework along with the arrival of new imagery data. There is also a
potential to incorporate local geospatial patterns of utility pole place-
ment into the framework to reduce the number of images needed for
pole localization (see detailed discussion in Supplementary Note 5).
Moreover, as our framework has a module that integrates road and
building information for the heuristic mapping of underground grids,
for areas without street view images, the framework can still work as a
heuristic approach to estimate the entire grid—not just the under-
ground part—by utilizing road and building information. The assump-
tion (e.g., building connectivity assumption) underlying this heuristic
approach can also be empirically examined in future work.

Second, utility poles that are short or far away from street
view points may not be captured in upward street views, which can
contribute to the false negative detections of utility poles (see Sup-
plementary Note 2). Such a limitation can be alleviated by augmenting
the field of view (FoV) of street view images with full panoramas which
are commonly captured in street view photography. Also, differences
between the appearance of utility poles across different countries can
lead to false negative detections when the model is transferred to a
new country. To tackle this, fine-tuning or few-shot learning can be
leveraged to adapt the model to a new region with a small amount of
additional training samples, which deserves future exploration.

Third, the electrical parameters of power lines and the exact
operational topology of distribution grids cannot be captured by our
current framework which primarily focuses on geospatial mapping.
However, machine learning has the potential to be applied on street
view images to further identify transformers and switches, and to
estimate fine-grained characteristics (e.g., voltage level) of power lines
by leveraging rich visual features in street views (e.g., pole/line height,
the quantity of insulators) and by incorporating domain knowledge
into machine learning models, which is also part of our future work.

Based on the geospatial grid maps generated by our framework,
learning-based models can also be developed to examine whether a
power line is severely intruded by tree branches, and whether a utility
pole is vulnerable to extremeweather conditions (e.g., leaning23) which
can potentially affect grid safety and reliability. Other geospatial data,
such as the spatial distribution of wildfire risks, vegetation maps, and
predictivemaps of extreme events such as storms and hurricanes, can
also be integrated and superimposed with the generated grid maps to
estimate the exposure of grid infrastructure to natural hazards and

extreme events across different places amidst the growing threat of
climate change. Further, such a map overlay can be used to support
grid infrastructure planning and management, such as the prioritiza-
tion of system hardening for risky poles and power lines, vegetation
management, and the identification of buildings that likely lack access
to grids for evaluating electricity access expansion projects in SSA.
Additionally, the proposed approach or its variant has the potential to
be applied for mapping and estimating the status of other energy or
utility assets and infrastructures such as telecommunication cables,
electrical transformers, and street lights, which deserves future
exploration.

Methods
Datasets
We construct a street view image dataset to train the line detector and
pole detector. The dataset contains 10,000 upward street view images
which are randomly sampled from the San Francisco Bay Area. Each
image is retrieved with Google Street View Static API35 (see more
details in Supplementary Note 3) and manually annotated with two
binary labels indicating whether it contains lines and whether it con-
tains poles, respectively. There are 3,204 images containing line(s)
among which 1,786 images contain pole(s). 14% of the images con-
taining poles/lines have nearby trees or buildings overlapped with
poles/lines (i.e., not backgrounded by clear sky). The dataset is split
into training, validation, and test sets following the 85%-7.5%-7.5% ratio.

To develop the link prediction model and evaluate the grid
mapping performance, we collect and process distribution grid maps
in 11 different areas and treat them as ground truth distribution grid
maps. 6 of them are from cities in California in the U.S., including San
Carlos, Newark, Santa Cruz, Yuba City, Pacific Grove, and Salinas. For
these 6 areas, we obtain the geospatialmaps of distribution grids from
the IntegrationCapacity Analysis (ICA)map28 of PacificGas and Electric
Company (PG&E), and then manually distinguish between overhead
and underground power lines by examining street view and remote
sensing images. Overhead grids can be represented as geospatial
graphs containing nodes corresponding to utility poles and edges
corresponding to power lines.

Other 5 test areas are from three cities in SSA, including two areas
in Kampala, Uganda, two areas in Nairobi, Kenya, and one area in
Lagos, Nigeria. These test areas cover both taller utility poles with
complicated structures as well as shorter and simpler poles (e.g.,
without crossarms) for representativeness (see examples in Supple-
mentary Fig. 6). The World Bank maintains a geospatial dataset of
transmission and distribution grids in Africa36, but it only covers a few
cities andmost of the data in this dataset are for transmission lines.We
correct errors in this dataset and identify additional overhead dis-
tribution lines by manually checking street view images and remote
sensing images, and eventually construct the distribution grid maps
for the 5 test areas in SSA that serve as the ground truth for model
evaluation.

Road maps, which can be represented as geospatial graphs with
nodes and edges, are obtained fromOpenStreetMap9 for the test areas
in both California and SSA. The building map contains a set of geo-
coordinates for buildings. For the test areas in California, the building
data are obtained from theMicrosoft US Building Footprints dataset37,
while for the test areas in SSA they are obtained fromOpenStreetMap9.

Weakly-supervised line extraction and pole localization
Each upward street view image is processed by two Convolutional
Neural Networks (CNNs)—a power line detector and a utility pole
detector. The line detector classifies an image into either positive
(contain lines) or negative category (no line found), and then extracts
the line directions for positive images (Fig. 2a). Similarly, the pole
detector classifies the image and then estimates the pole orientations
(Fig. 2b). Both CNNs use Inception-v338 as the backbone architecture
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(i.e., main branch) with a segmentation branch added to an inter-
mediate layer of the main branch for generating class activate maps
(CAMs) (see Supplementary Figure 1 for overall model architecture). A
CAM is a heatmaphighlighting the activated area of target objects39 by
deriving the weighted sum of feature maps. We choose an inter-
mediate layer at the middle point of the main branch to add the seg-
mentation branch and generate CAM, as the feature maps learned at
upstream layers are noisy but of high resolution, while the feature
maps learned at downstream layers are specific but of low resolution.
Using the featuremaps at themiddleof thenetwork canbalance such a
trade-off.

In our work, we use CAMs to extract the locations and directions
of power lines or utility poles in an image. A significant advantage of
CAM is that it can be obtained in weakly-supervised manner—only
image-wise labels indicating positive or negative are needed to train
the model to gain the capability of extracting target objects. Such a
method eliminates the need for manually-labeled line or pole anno-
tations in training images which are highly labor-intensive to obtain.
Supplementary Figs. 2 and 3 show the examples of CAMs for line
extraction and pole detection, respectively.

For training line detector or pole detector, we first train the main
branch of themodel for classification, and then freeze themain branch
when training the segmentation branch to develop the ability to gen-
erate CAM. In the training phase, the segmentation branch is trained
with only image-level binary labels as supervisory signals for classifi-
cation (i.e., weakly supervised), but it is used to generate CAMs in the
inference phase. We freeze the main branch when training the seg-
mentation branch, as we want to keep the classification ability of the
main branch unchanged and rely on it instead of the segmentation
branch for image-level classification in the inference phase (see illus-
tration of the training and inference phases in Supplementary Fig. 1).

In the training phase of both the main branch and the segmen-
tation branch, each input image is rotated with an angle randomly
selected among 0°, 90°, 180°, and 270° and also randomly flipped for
data augmentation. The main branch of the model is initialized with
the model weights pre-trained on ImageNet40. The segmentation
branch is randomly initialized and trained from scratch. Both branches
are trained using the same street view image dataset with image-level
binary labels as supervisory signals.

To estimate the directions of power lines in an image, we apply
Hough transform41 on theCAMs generated by the line detector. Hough
transform can extract lines and estimate their directions in a CAM. In
order to detect multiple lines in an image, once a line is detected, we
remove it from the CAM by adding a mask and re-apply Hough
transform to the CAM, until all lines in the image have been detected.
Similarly, for estimating pole orientations, we also apply Hough
transform to theCAMgeneratedby the pole detector and calculate the
angle between the detected pole and the horizontal axis of the image
(see Supplementary Fig. 3).

To predict exact geo-coordinates of poles,we assumeutility poles
are approximately perpendicular to the ground, hence any pole in an
upward street view must point to the image center. Under this
assumption, the angle between the detected pole and the horizontal
axis of the north-facing image represents the pole orientation. By
drawing multiple rays of pole orientations starting from street
viewpoints and intersecting these rays, the exact locationsof poles can
be derived (Fig. 2b). Intersecting two rays can obtain a single inter-
section point, while intersecting three or more rays can potentially
obtain multiple intersections and we use spatial clustering to merge
intersections that are close to each other.

Road modeling and link prediction
We further integrate road information to enrich the features for pre-
dicting whether there is a line connection between two predicted
poles. Specifically, each road can be represented as a series of line

segments. If a detected pole or a street view point has a distance
≤Dattach to a road, it will be attached to that road (Fig. 2c). All attached
street view points and poles are sorted in order along the road.
Moreover, to reduce the number of polesmissed by the pole detector,
we insert pole(s) between a pair of poles if the distance between them
is greater than a threshold Dinsert.

We develop a link prediction model that takes feature variables
for a pair of poles as inputs and outputs whether there is a line con-
nection between the pole pair. Any pair of poles with a distance less
than a threshold Dcand is considered as a candidate. We consider var-
ious types of classification models including logistic regression, deci-
sion tree, random forest, support vector machine, and gradient
boosting. Feature candidates include (1) Distance between the two
poles. (2)Whether the twopoles are on the same road. (3)Whether the
two poles are next to each other along the road. (4) Fraction of street
view images with power lines detected between the two poles. (5)
Minimum and average differences between the power line directions
estimated from street view images and the direction of the line con-
necting the two poles. The small difference gives evidence that there is
a power line connecting the two poles. (6) Whether either of the poles
is detected by the pole detector or inserted. (7) Whether either of the
poles is at a road intersection. (8) Whether the two poles are at the
same road intersection. (9) The binary prediction of the modified
Dijkstra’s algorithm8,26 running on a raster map. This algorithm finds
the most efficient paths to connect poles: On a geospatial raster, each
cell is assigned with a weight. By setting the weights at the positions of
roads to be lower than others, connecting poles along a road is pre-
ferable (see the weight assignment scheme in Supplementary Note 1).

The best feature set and hyperparameters for link prediction are
selected based on the 9-fold cross-validation on the San Carlos
development set which are divided into 9 subsets according to the
boundary divisions of the 9 census tracts in San Carlos. The output of
the link prediction module is a geospatial graph with predicted poles
as nodes and predicted line connections as edges.

Underground grid mapping
Street view images are only able to capture the information of over-
headdistribution grids. To predict the gridmap for areas where power
lines are underground or street view images are not available, we
develop a heuristic approach that integrates the information of the
predicted overhead grid map, road networks, and building locations.
An assumption for this approach is that all buildings should be con-
nected to grids, which means that buildings that are not connected to
overheadgrids should be connected by underground grids. Therefore,
this approach is only applicable to regionswith 100%electricity access.
Under this assumption, we predict the underground grid map by first
identifying buildings which cannot be reached by the predicted over-
head grid, and then running a modified Dijkstra’s algorithm8,26,27 to
generate paths to greedily connect them. The paths generated in this
algorithm are used as the prediction of the underground grid.

To pick out unconnected buildings, we dilate the line connections
of the predicted overhead grid with a radius Rdilate (Rdilate = 70m) and
overlay it with the buildingmap (Fig. 2d). Here we assume a building is
connected to the grid through its nearby power lines, so that buildings
that are not covered by the dilated paths cannot be connected to the
predicted overhead grids within the distance Rdilate. In the modified
Dijkstra’s algorithm, these unconnected buildings are set as the targets
to be connected by underground grids, and new paths are greedily
generated on top of the predicted overhead grid until all targets are
connected. The algorithm is run on a raster map where the predicted
overhead grid, roads, and buildings are all discretized. Each cell in the
geospatial raster is assigned with a weight. Paths can be generated
from one cell to any of its 8 neighbor cells (including diagonal neigh-
bors). The objective of the algorithm is to find the paths to connect all
targets with the minimum total weight. By setting the weights of road
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cells to be lower than those of other cells, connections following roads
are preferable (see the weight assignment scheme in Supplementary
Note 1). Such a weight assignment is based on the grid construction
practice that underground power lines are usually buried along roads
to facilitate maintenance42. The final output of underground grid
mapping is a 2D array with binary values indicating whether a cell
belongs to the underground grid or not.

Such a heuristic gridmappingmethod can also be used to predict
the map of distribution grids which do not have nearby street view
images. To this end, other geospatial information besides the road
map, such as topographic maps and land cover maps, can be inte-
grated as prior knowledge to design the weight assignment scheme in
the modified Dijkstra’s algorithm.

Evaluation metrics
To compare a set of ground truth geolocations of poles
P = {p1,p2, . . . , pM} with a set of predicted geolocations of poles
Q= {q1, q2, . . . , qN}, wematch all possible pairs of poles from the two sets
fðpi,qjÞg1≤ i≤M,1≤ j ≤N

and sort them in ascending order of their pairwise
geospatial distances. Given a distance threshold Dmatching, we pick pole
pairs out of the sorted list starting from the first pair with theminimum
distance, and add them to the list of matched pairs until the pairwise
distance becomes greater than Dmatching. If either the predicted pole qj
or the ground truth pole pi in a pair has already been picked before, this
pair will be dropped and not picked again to avoid repetition. This can
be viewed as a Bipartite Matching problem with greedy matching of
polepairswith the smallest distance. Thenweuseprecision and recall to
measure the pole localization performance, defined as:

precision of pole localization =
# matched pairs

N
ð1Þ

recall of pole localization =
# matched pairs

M
ð2Þ

To evaluate the link prediction performanceofoverheadgrids, we
compare the ground truth edge set E with the edge set F predicted by
the link prediction model. Specifically, we define the precision and
recall for link prediction as:

precision of link prediction =
∣E \ F ∣
∣F ∣

ð3Þ

recall of link prediction =
∣E \ F ∣
∣E∣

ð4Þ

Here ∣∣ means the number of elements in a set. Note that edges
between false negative poles (poles that are not detected) are counted
as false negative edges, and edges between false positive poles
(wrongly-detected poles) are counted as false positive edges. More-
over, false negative or false positive poles between two true positive
poles along the same power line do not affect the overall grid topol-
ogy. For example, a predicted power line connection qm − qn can be
viewed as a correct prediction of ground truth connections pi − pj − pk
if pi matches qm and pk matches qn. Similarly, predicted power line
connections ql − qm − qn can also be viewed as a correct prediction of a
ground truth connection pi − pj in E if pi matches ql and pj matches qn.
To give tolerance to such mismatches, we measure the precision and
recall after matching the equivalent segments from E and F.

We evaluate the overall grid mapping performance on a raster
map since the underground part of the grid cannot be explicitly
represented as nodes and edges. To this end, both the ground truth
map and the predicted grid map—including overhead and under-
ground parts—are discretized into 2D binary arrays with the cell size
2m× 2m, denoted as G and H, respectively. Cells belonging to grids

have value 1 and otherwise 0. To calculate the correct rate of the
predicted grid map (“precision”), we dilate the 1-value cells in G with a
radius Reval to generate Gdilate, then overlayGdilate withH, and calculate
the ratio of 1-value cells in H that can be covered by the 1-value cells in
Gdilate. Similarly, to calculate the ratio of the ground truth gridmap that
canbedetectedwithin a distance (“recall”), wedilate the 1-value cells in
Hwith the same radius Reval to generateHdilate, then overlayHdilate with
G, and calculate the ratio of 1-value cells inG that canbe covered by the
1-value cells in Hdilate. Hence the precision and recall for overall grid
mapping can be defined as:

precision of grid mapping=
∣Gdilate \ H∣

∣H∣
ð5Þ

recall of grid mapping =
∣G \ Hdilate∣

∣G∣
ð6Þ

Here∩means the intersection between two 2D binary arrays, and
∣∣ means the number of 1-value cells in a binary array.

Data availability
The data utilized or generated in this study have been deposited in
https://doi.org/10.6084/m9.figshare.22723171. They can also be
downloaded following the README file of the code repository https://
github.com/wangzhecheng/GridMapping. The links to the original
data sources for grid, roads, and buildings have been cited as refer-
ences. Street view images in the test areas can be retrieved by running
the code in the code repository. Source data are provided with
this paper.

Code availability
The source code is available at https://github.com/wangzhecheng/
GridMapping.

References
1. International Energy Agency. SDG7: Data and Projections. https://

www.iea.org/reports/sdg7-data-and-projections (Accessed: 2021-
05-04).

2. Farquharson, D., Jaramillo, P. & Samaras, C. Sustainability implica-
tions of electricity outages in sub-Saharan Africa. Nat. Sustain. 1,
589–597 (2018).

3. World Bank Group. Enterprise surveys. http://www.
enterprisesurveys.org (Accessed: 2021-05-05).

4. Frost & Sullivan. Growth opportunities in distributed energy, fore-
cast to 2030. https://www.reportlinker.com/p05894509/?utm_
source=GNW (Accessed: 2021-05-05).

5. U.S. Energy Information Administration. U.S. energy mapping sys-
tem. https://www.eia.gov/state/maps.php (Accessed: 2021-05-05).

6. Liao, Y., Weng, Y., Liu, G. & Rajagopal, R. Urban MV and LV dis-
tributiongrid topologyestimation via group lasso. IEEE Trans. Power
Appar. Syst. 34, 12–27 (2018).

7. Gurara, D., Klyuev, V., Mwase, N. & Presbitero, A. Trends and chal-
lenges in infrastructure investment in developing countries. Inter-
national Development Policy∣ Revue Internationale De Politique De
Dévelopement. (2018).

8. Arderne, C., Zorn, C., Nicolas, C. & Koks, E. Predictive mapping of
the global power system using open data. Sci. Data 7, 1–12 (2020).

9. Haklay, M. & Weber, P. Openstreetmap: User-generated street
maps. IEEE Pervasive Comput. 7, 12–18 (2008).

10. Deka, D., Backhaus, S. & Chertkov, M. Structure learning in power
distribution networks. IEEE Transa. Control. Netw. Syst.5, 1061–1074
(2017).

11. Deka, D., Backhaus, S. & Chertkov, M. Estimating distribution grid
topologies: A graphical learning based approach. 2016 Power
Systems Computation Conference (PSCC). pp. 1–7 (2016).

Article https://doi.org/10.1038/s41467-023-39647-3

Nature Communications |         (2023) 14:5006 9

https://doi.org/10.6084/m9.figshare.22723171
https://github.com/wangzhecheng/GridMapping
https://github.com/wangzhecheng/GridMapping
https://github.com/wangzhecheng/GridMapping
https://github.com/wangzhecheng/GridMapping
https://www.iea.org/reports/sdg7-data-and-projections
https://www.iea.org/reports/sdg7-data-and-projections
http://www.enterprisesurveys.org
http://www.enterprisesurveys.org
https://www.reportlinker.com/p05894509/?utm_source=GNW
https://www.reportlinker.com/p05894509/?utm_source=GNW
https://www.eia.gov/state/maps.php


12. Weng, Y., Liao, Y. & Rajagopal, R. Distributed energy resources
topology identification via graphical modeling. IEEE Trans. Power
Syst. 32, 2682–2694 (2016).

13. Yu, J., Weng, Y. & Rajagopal, R. PaToPa: A data-driven parameter
and topology joint estimation framework in distribution grids. IEEE
Trans. Power Syst. 33, 4335–4347 (2017).

14. Yu, J., Weng, Y. & Rajagopal, R. PaToPaEM: A data-driven para-
meter and topology joint estimation framework for time-varying
system in distribution grids. IEEE Trans. Power Syst.34, 1682–1692
(2018).

15. Scully, P. Smart Meter Market 2019: Global penetration reached
14%-NorthAmerica, Europe ahead. https://iot-analytics.com/smart-
meter-market-2019-global-penetration-reached-14-percent (2019).

16. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436–444 (2015).

17. Elvidge, C., Baugh, K., Zhizhin, M., Hsu, F. & Ghosh, T. VIIRS night-
time lights. Int. J. Remote Sens. 38, 5860–5879 (2017).

18. Schmidt, E., Bhaduri, B., Nagle, N. & Ralston, B. Supervised classi-
fication of electric power transmission line nominal voltage from
high-resolution aerial imagery. GISci. Remote Sens. 55,
860–879 (2018).

19. Gomes, M. et al. Mapping utility poles in aerial orthoimages using
atss deep learning method. Sensors 20, 6070 (2020).

20. Huang, B. et al. GridTracer: Automatic mapping of power grids
using deep learning and overhead imagery. IEEE J. Sel. 15,
4956–4970 (2021).

21. Zhang, W. et al. Using deep learning to identify utility poles with
crossarms and estimate their locations from google street view
images. Sensors 18, 2484 (2018).

22. Krylov, V., Kenny, E. & Dahyot, R. Automatic discovery and geo-
tagging of objects from street view imagery. Remote Sensing 10,
661 (2018).

23. Kim, J., Kamari, M., Lee, S. & Ham, Y. Large-scale visual data-driven
probabilistic risk assessment of utility poles regarding the vulner-
ability of power distribution infrastructure systems. J. Constr. Eng.
Manag.147, 04021121 (2021).

24. Tang, Q., Wang, Z., Majumdar, A. & Rajagopal, R. Fine-grained dis-
tribution grid mapping using street view imagery. NeurIPS 2019
Workshop on Tackling Climate Change With Machine Learning.
https://www.climatechange.ai/papers/neurips2019/31 (2019).

25. Nesbit, J. The guide to off-grid homes. https://realestate.usnews.
com/real-estate/articles/the-guide-to-off-grid-homes (Accessed:
2022-12-17).

26. Gershenson, D., Rohrer, B. & Anna, L. A new predictive model for
more accurate electrical grid mapping. https://code.fb.com/
connectivity/electrical-grid-mapping (Accessed: 2020-03-01).

27. Dijkstra, E. A note on two problems in connexion with graphs.
Edsger Wybe Dijkstra: His Life, Work, and Legacy. pp. 287–290
(2022).

28. Pacific Gas and Electric Company. Distributed Resource Planning
(DRP) data and maps. https://www.pge.com/en_US/for-our-
business-partners/distribution-resource-planning/distribution-
resource-planning-data-portal.page (Accessed: 2020-02-19).

29. The World Bank. World Bank country and lending groups. https://
datahelpdesk.worldbank.org/knowledgebase/articles/906519-
world-bank-country-and-lending-groups (Accessed: 2023-06-14).

30. CAL FIRE 2021. Incident archive. https://www.fire.ca.gov/incidents/
2021 (Accessed: 2021-04-27).

31. Cordova, G. Cal Fire investigators point to tree-hitting PG&E power
lines as cause of Dixie Fire. https://www.abc10.com/article/news/
local/wildfire/dixie-fire-cause-pacific-gas-and-electric/103-
03d568e1-b141-48a1-9579-713688a71826 (Accessed: 2022-05-01).

32. Hall, K. Out of sight, out of mind: an updated study on the under-
grounding of overhead power lines. Edison Electric Institute,
Washington, DC. (2012).

33. Unites States Census Bureau. Glossary. https://www.census.gov/
programs-surveys/geography/about/glossary.html (Accessed:
2022-05-01).

34. Neuhold, G., Ollmann, T., Rota Bulo, S. & Kontschieder, P. The
mapillary vistas dataset for semantic understanding of street
scenes. Proceedings of The IEEE International Conference on Com-
puter Vision. pp. 4990–4999 (2017).

35. Google Maps. Street View Static API. https://developers.google.
com/maps/documentation/streetview (Accessed: 2022-12-17).

36. World Bank Group. Africa - Electricity transmission and distribution
grid map. https://datacatalog.worldbank.org/search/dataset/
0040465 (Accessed: 2020-09-01).

37. MicrosoftMaps.Microsoft open building footprints dataset. https://
github.com/microsoft/USBuildingFootprints (Accessed: 2022-
02-01).

38. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z.
Rethinking the Inception architecture for computer vision. Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 2818–2826 (2016).

39. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning
deep features for discriminative localization. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp.
2921–2929 (2016).

40. Deng, J. et al. Imagenet: A large-scale hierarchical image database.
2009 IEEE Conference onComputer Vision and Pattern Recognition.
pp. 248-255 (2009).

41. Illingworth, J. & Kittler, J. A survey of the Hough transform.Comput.
Graph. Image Process. 44, 87–116 (1988).

42. McCarthy, K. Undergrounding electric lines. OLR Research Report.
pp. 2011-R-0338 https://www.cga.ct.gov/2011/rpt/2011-R-0338.
htm (2011).

Acknowledgements
This work was supported by the U.S. Department of Energy’s Office of
Energy Efficiency and Renewable Energy (EERE) under the Solar Energy
Technologies Office Fiscal Year 2020 Funding Program (award number
DE-EE0009359) to R.R. and A.M., and by a Stanford Precourt Pioneering
Project award to R.R. and A.M.

Author contributions
Z.W., A.M., and R.R. conceptualized the research. Z.W. developed the
methodology andperformed themodel evaluation. Z.W.wrote the initial
paper draft. Z.W., A.M., and R.R. edited and revised the paper. A.M. and
R.R. provided funding acquisition support for the research.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-39647-3.

Correspondence and requests for materials should be addressed to
Arun Majumdar or Ram Rajagopal.

Peer review information Nature Communications thanks Budhendra L
Bhaduri, Lucas Kruitwagen and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-023-39647-3

Nature Communications |         (2023) 14:5006 10

https://iot-analytics.com/smart-meter-market-2019-global-penetration-reached-14-percent
https://iot-analytics.com/smart-meter-market-2019-global-penetration-reached-14-percent
https://www.climatechange.ai/papers/neurips2019/31
https://realestate.usnews.com/real-estate/articles/the-guide-to-off-grid-homes
https://realestate.usnews.com/real-estate/articles/the-guide-to-off-grid-homes
https://code.fb.com/connectivity/electrical-grid-mapping
https://code.fb.com/connectivity/electrical-grid-mapping
https://www.pge.com/en_US/for-our-business-partners/distribution-resource-planning/distribution-resource-planning-data-portal.page
https://www.pge.com/en_US/for-our-business-partners/distribution-resource-planning/distribution-resource-planning-data-portal.page
https://www.pge.com/en_US/for-our-business-partners/distribution-resource-planning/distribution-resource-planning-data-portal.page
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://www.fire.ca.gov/incidents/2021
https://www.fire.ca.gov/incidents/2021
https://www.abc10.com/article/news/local/wildfire/dixie-fire-cause-pacific-gas-and-electric/103-03d568e1-b141-48a1-9579-713688a71826
https://www.abc10.com/article/news/local/wildfire/dixie-fire-cause-pacific-gas-and-electric/103-03d568e1-b141-48a1-9579-713688a71826
https://www.abc10.com/article/news/local/wildfire/dixie-fire-cause-pacific-gas-and-electric/103-03d568e1-b141-48a1-9579-713688a71826
https://www.census.gov/programs-surveys/geography/about/glossary.html
https://www.census.gov/programs-surveys/geography/about/glossary.html
https://developers.google.com/maps/documentation/streetview
https://developers.google.com/maps/documentation/streetview
https://datacatalog.worldbank.org/search/dataset/0040465
https://datacatalog.worldbank.org/search/dataset/0040465
https://github.com/microsoft/USBuildingFootprints
https://github.com/microsoft/USBuildingFootprints
https://www.cga.ct.gov/2011/rpt/2011-R-0338.htm
https://www.cga.ct.gov/2011/rpt/2011-R-0338.htm
https://doi.org/10.1038/s41467-023-39647-3
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-39647-3

Nature Communications |         (2023) 14:5006 11

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Geospatial mapping of distribution grid with machine learning and publicly-accessible multi-modal data
	Results
	Overall framework
	Performance in the California test areas
	Performance in the Sub-Saharan Africa test areas
	Estimate the fraction of underground power lines

	Discussion
	Methods
	Datasets
	Weakly-supervised line extraction and pole localization
	Road modeling and link prediction
	Underground grid mapping
	Evaluation metrics

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




