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A mathematical perspective on edge-centric brain
functional connectivity
Leonardo Novelli 1✉ & Adeel Razi 1,2,3

Edge time series are increasingly used in brain imaging to study the node functional con-

nectivity (nFC) dynamics at the finest temporal resolution while avoiding sliding windows.

Here, we lay the mathematical foundations for the edge-centric analysis of neuroimaging

time series, explaining why a few high-amplitude cofluctuations drive the nFC across data-

sets. Our exposition also constitutes a critique of the existing edge-centric studies, showing

that their main findings can be derived from the nFC under a static null hypothesis that

disregards temporal correlations. Testing the analytic predictions on functional MRI data from

the Human Connectome Project confirms that the nFC can explain most variation in the edge

FC matrix, the edge communities, the large cofluctuations, and the corresponding spatial

patterns. We encourage the use of dynamic measures in future research, which exploit the

temporal structure of the edge time series and cannot be replicated by static null models.
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Functional connectivity (FC) refers to patterns of statistical
dependence in brain activity, such as the blood oxygen level-
dependent (BOLD) signal measured via functional magnetic

resonance imaging (fMRI). Static FC is traditionally calculated
over the course of an entire scan session and it is an established
technique of modern neuroimaging1,2, with individual differences
linked to brain disorders and cognitive states3,4. On the other
hand, time-varying FC refers to time-resolved fluctuations in FC,
typically estimated by fitting dynamic models5–8 or by sliding
windows9,10. Differences in time-varying FC at rest are also
associated with a wide range of cognitive and behavioural traits,
as well as psychiatric and neurological conditions (see ref. 11 for a
recent review of this rapidly growing field).

To avoid the temporal blurring caused by sliding windows9, it
is possible to analyse BOLD fluctuations at the resolution of single
frames. Coactivation patterns (CAPs)12 and point-process
analyses13 are early examples of this approach. Initially using a
single seed region, both found that static seed-based FC maps can
be reliably approximated by averaging only a few high-amplitude
frames. Whole-brain extensions of both methods have soon
followed14,15. More recently, edge-centric approaches have gen-
erated excitement as they also go beyond single seeds and addi-
tionally decompose the entire FC matrix into its frame-wise
contributions by omitting traditional time averaging over the
length of the experiment16,17. Such temporal unwrapping of the
FC results in a large number of edge time series, each capturing
the moment-to-moment cofluctuations of a pair of brain regions.
Going one step further, one can measure the similarity between
every pair of edges to obtain a large matrix, referred to as edge FC
(eFC), as opposed to the traditional node-centric FC (nFC). The
eFC is shown to be replicable, stable within individuals across
multiple scanning sessions and reliable across datasets17. Fur-
thermore, clustering the eFC yields overlapping brain commu-
nities that could better suit the study of aspects of cognition and
behaviour that transcend traditional disjoint brain parcellations.
While CAPs focus on patterns of BOLD activity, edge-centric
approaches focus on patterns of cofluctuations between all
regional pairs. However, the analogous finding is that the static
nFC can be faithfully approximated by averaging a few instan-
taneous connectivity patterns. These are characterised by simul-
taneous large cofluctuations across all node pairs, measured as the
root-sum-of-squares (RSS) over all the edge time series values
corresponding to the same frame. Such brief, intermittent, and
high-amplitude cofluctuations drive the nFC and the network
structure over these time points contributes disproportionately to
the overall modularity of the functional brain network16.

Although the edge-centric decomposition of nFC into its
frame-wise constituents is mathematically exact, a comprehensive
treatment of the statistical properties of the edge-centric measures
is lacking and there is a consensus on the need for appropriate
null models17,18. A rigorous mathematical study is especially
important since several widely-acknowledged publications have
warned about the dangers of extracting structure from noise
when studying static or time-varying FC, often using minimal
null models to reproduce existing results19–24. The warnings
concerning sampling variability are particularly relevant to edge-
centric methods as they represent an extreme case of a single-
frame sliding-window approach. High-amplitude cofluctuations
can be observed in temporally-uncorrelated synthetic time series
such that accounting only for static spatial correlations is suffi-
cient to replicate key empirical findings16(Fig. S4). This observation
has been interpreted as further evidence that large cofluctuations
are not fMRI artefacts. However, it arguably raises an equally
pressing conceptual concern: what information do current edge-
centric measures provide beyond the nFC, if any?

Here, we tackle this question mathematically and present a
theoretical explanation for the widespread occurrence of large
cofluctuations across datasets and why a few large events
drive the nFC. This explanation rests on fundamental properties
of subexponential distributions25. Further mathematical deriva-
tions clarify how the nFC eigenvalues shape the RSS distribution
and how the leading nFC eigenvectors underpin the spatial cor-
relation patterns expressed during high-amplitude events. The
influence of functional modules on the eigenvalue distribution
could explain why these events disappear when the modular
structure is disrupted, as recently reported in ref. 26. Finally, we
analytically show that the eFC matrix, the edge communities, the
large cofluctuations, and the corresponding brain activity modes
can all be predicted from the nFC without recourse to the edge-
centric formulation. Many of these derivations are based on the
null hypothesis of i.i.d. Gaussian variables that only takes into
account the observed (static) spatial correlations and ignores
temporal features. Under this assumption, and invoking results
from random matrix theory27, the edge time series variability is
described by the sampling distribution of the nFC, known as the
Wishart distribution28. Testing the analytic predictions using
fMRI data from the Human Connectome Project (HCP)29 shows
that the null model is sufficient to replicate the vast majority of
existing edge-centric features both qualitatively and quantita-
tively, as well as foundational properties of CAPs.

Results
We present six main results showing that the existing findings based
on edge time series16,17 can be derived from the static nFC under the
null hypothesis of i.i.d. multivariate Gaussian variables that preserve
the observed static spatial correlations but not the temporal ones. The
theoretical predictions were empirically tested using a HCP dataset
comprising 100 subjects, preprocessed with the current standard
HCP pipeline, both with and without global signal regression (GSR).
The detailed derivations of the presented equations are in the
‘Methods’ section, reserving the current section for a concise account
of the key results.

The edge FC matrix can be derived analytically from the node FC.
The eFC was introduced in ref. 17 to quantify linear interactions
between edges. For each pair of brain regions, an edge time series is
computed as the element-wise product of the two regional z-scored
time series. Thus, the values of each edge time series represent the
instantaneous cofluctuation magnitudes between the corresponding
pair of brain regions. The eFC is the edge-by-edge matrix obtained by
computing the inner products between all pairs of edge time series,
normalised to the [−1, 1] interval.

Our first result is that the eFC can be analytically derived from
the nFC under the static Gaussian null hypothesis (Fig. 1a, b). As
shown in Eq. (11) of the ‘Methods’ section, the (jk, lm) entry of the
eFC matrix is obtained as a sum of pairwise products between the
(j, k, l,m) entries of the nFC matrix, divided by a normalisation
factor:

eFCjk;lm ¼ rjkrlm þ rjlrkm þ rjmrklffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rjk2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rlm2

p : ð1Þ

Using the HCP dataset, the predicted eFC achieves an average
Pearson correlation of r= 0.93 with the empirical eFC (r= 0.88 if
GSR is applied). The distributions across 100 unrelated HCP
subjects are shown in Fig. 1c. This is a significant improvement on
the linear regression approach adopted in ref. 17, which achieved an
average Pearson correlation of r= 0.72 on pairs of edges not
sharing any nodes, but performed poorly otherwise (r= 0.06).
Moreover, by revealing the mathematical relationship between eFC
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and nFC, Eq. (1) explains why the eFC is highly replicable, stable
within individuals across multiple scan sessions and consistent
across datasets—it will be as long as the nFC is.

The edge communities can be predicted from the nFC. Clustering
the eFC via the k-means algorithm was used to identify commu-
nities of co-fluctuating edges. These were then mapped back to
individual nodes to obtain overlapping regional communities,
offering a new way to study aspects of cognition and behaviour that
transcend traditional disjoint brain parcellations17. Given the high
similarity between the empirical and null eFC demonstrated in the
previous section, it would be reasonable to expect that the edge
communities be well recovered by the null model by applying the
same community detection algorithm to the predicted eFC. Indeed,
the agreement between the empirical and predicted community
assignments is exact on 84% of the 19,900 edges, and 74% if GSR is
applied (Fig. 2a, b). At the node level, the similarity is even stronger.
In ref. 17, the similarity between two nodes, referred to as “edge
cluster similarity”, is measured as the fraction of all edge pairs
starting from those two nodes (and reaching the same target) that
are clustered together. Using the same procedure, the predicted
edge cluster similarity achieves a Pearson correlation coefficient of
r= 0.96 with the empirical one, and r= 0.95 if GSR is applied
(Fig. 2c, d). Note that the rows and columns of the matrices in Fig. 2
have been rearranged to match the ordering of the 16 networks
used in ref. 17 (Fig. 6) to facilitate a visual comparison. Given that
the analysis is performed on the same HCP dataset, the small dif-
ferences in the empirical results are most likely due to the different
preprocessing pipelines (here we use the preprocessed data made
available by the HCP; see the ‘Methods’ section for details). This
adds to the evidence that edge-centric measures are not strongly
dependent on the preprocessing approach, and similarly speaks to
the robustness of the null model predictions.

So far, the results in this subsection have been based on
simulations. Let us now see how a mathematical derivation can
provide further insight into these edge and node similarities. First,
recall that the edge communities are obtained by clustering the eFC
(e.g. via k-means). The main obstacle to a full analytic approach is
that the outcome of stochastic clustering algorithms cannot be
entirely predicted from their input; however, since they are usually

based on a distance metric, it is reasonable to expect that the smaller
the distance between two rows of the eFC, the higher the probability
that the corresponding edges would be clustered together.
Accordingly, we define the distance between two edges (jk) and
ðj0k0Þ as the ℓ1 norm of the difference between the corresponding
rows of the eFC. As shown in Eq. (12) of the ‘Methods’ section, this
edge distance simplifies to

djk;j0k0 ¼ ∑N
l;m¼13 zjðz>l zmÞz>k � zj0 ðz>l zmÞz>k0

��� ���; ð2Þ

where, for a brain region i, the row vector zi is its z-scored BOLD
signal and z>i denotes its transpose. What does this imply for the
node communities? The similarity between two nodes i and j was
measured in ref. 17 as the fraction of all edge pairs starting from i
and j (and reaching the same target) that are assigned to the same
cluster. Here, the analogous analytic step is to compute the distance
between nodes i and j as the sum of the distances between the edges
starting from them. Crucially, the resulting node distance can be
expressed in terms of BOLD signal correlations (see Eq. (13) in the
‘Methods’ section):

di;j ≤ c 1� rij
� �1

2
; ð3Þ

where c denotes a constant term, independent of i and j. This
implies that the edge-cluster similarity17 between nodes i and j can
be predicted from the corresponding rij entry of the nFC, avoiding
the memory-intensive computation of the eFC and
computationally-intensive clustering algorithms (the space com-
plexity of the eFC is OðN4Þ, i.e., it scales with the fourth power of
the number of regions and requires over a terabyte of memory for
fine brain parcellations—for each subject). Using the HCP dataset to
test this prediction shows that the nFC alone achieves an average
Pearson correlation of r= 0.76 with the empirical edge cluster
similarity matrix shown in Fig. 2c. Once again, the static, node-
centric, second-order features of the BOLD signal are sufficient to
replicate key findings that appear at first to rely on the specific
temporal sequence of BOLD cofluctuations at the single-frame
resolution.
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Fig. 1 The edge functional connectivity (eFC) can be derived analytically from the node functional connectivity (nFC) under the static Gaussian null
model. a The eFC of the first subject from the Human Connectome Project (HCP) fMRI dataset is plotted as an example. This matrix scales with the fourth
power of the parcellation size: in the current case of 200 parcels, it has ~400 million elements. The (jk, lm) entry of the eFC matrix (black square at the
intersection of the black lines) is computed as the inner product of two edge time series jk and lm, normalised to the [−1, 1] interval. b Under the static null
model, the eFC of each subject can be derived analytically as a sum of pairwise products between the (j, k, l,m) entries of the corresponding nFC matrix as
per Eq. (1). Since the nFC is symmetric, only six entries are necessary to represent all pairwise combinations (marked by each of the black squares at the
intersections of the black lines). c Distribution of Pearson correlation coefficients between the empirical and null eFC computed over 100 HCP subjects.
Results are reported with and without global signal regression (GSR) and the mean correlation values are indicated by the dashed lines.
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The null model reproduces the high similarity of the top RSS
frames to the nFC. Let us now consider the root-sum-of-squares
(RSS) of the edge time series introduced in ref. 16. The RSS is a
univariate time series defined as the Euclidean norm of the edge
time series vector at each frame. In other words, the RSS peaks
when all the cofluctuations (i.e., the edge time series) are simulta-
neously high in absolute value, either positive or negative. The key
finding in ref. 16 is that only a small fraction of frames exhibiting
large RSS values are required to explain a significant fraction of
variance in the nFC, as well as the network’s modular structure30.
Both results are perfectly reproduced by the static null model, as
shown in Fig. 3a, b and Supplementary Fig. 1. What is particularly
remarkable is that the timing of the high-amplitude RSS events
produced by the null model are arbitrary, and yet a small fraction of
frames corresponding to these large cofluctuations is still sufficient
to explain the observed nFC. Furthermore, Fig. 3c shows that the
null model frames with the largest RSS also exhibit high similarity

to the empirical frames with the largest RSS from the HCP dataset
—occurring at entirely different times. Note that, unlike temporal
dependencies, spatial correlations are necessary to reproduce the
results: if the null model is chosen to be both temporally and
spatially uncorrelated, high-RSS frames are no more similar to the
empirical nFC than low-RSS frames (see Supplementary Fig. 2).
Another interesting note is that high-RSS frames exhibit the
strongest average correlation with all other BOLD frames and this
average similarity decreases with the RSS magnitude, both in
empirical and null cases (see Supplementary Fig. 3).

A theoretical explanation for these findings will be provided in
the ‘nFC eigenvectors underpin spatial patterns of high BOLD
activity’ section and supported by detailed derivations in the
‘Methods’ section. Interestingly, most of these points were also
reported in ref. 16(Fig. S4), where they were taken as evidence that
large RSS events are not fMRI artefacts. While settling that
methodological issue, these observations raise a conceptual concern:
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Fig. 2 The edge communities can be predicted from the nFC under the static Gaussian null model. a Empirical edge communities obtained by k-means
clustering of the eFC computed on the HCP dataset. The edge labels are reshaped into an NxN matrix where each (i, j) entry represents the community
label of the edge linking i to j. For each edge, the representative community assignment shown here is the statistical mode (i.e., the most common label)
across 100 HCP subjects. b Predicted edge communities obtained by k-means clustering of the eFC predicted by the static null model. The agreement with
the empirical labels in panel a is exact on 84% of all 19900 edges (74% if GSR is applied). c Empirical edge cluster similarity on the HCP dataset. The
similarity of edge communities involving nodes i and j is computed as the fraction of matching elements between the corresponding two rows of the edge
community matrix in panel a. d Predicted edge cluster similarity based on the static null model. The Pearson correlation with the empirical edge cluster
similarity in panel c is r= 0.96 (r= 0.95 if GSR is applied).
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if matching the timing of the RSS events is not essential and the
results can be replicated by the static null model, does the edge-
centric approach provide any information about the time-varying
connectivity that cannot be explained by the static nFC? We will
address this question in the next section, by examining the statistical
properties of the RSS.

The RSS distribution is determined by the nFC eigenvalues.
Having established that the large RSS events are not an exclusive
feature of neural signals, let us investigate how their ubiquitous
appearance across datasets can be analytically explained and why
the corresponding frames account for the largest fraction of var-
iance in the nFC. As a first step, the RSS can be computed as the
squared Euclidean norm of the z-scored BOLD signal z (full deri-
vations provided in the ‘Methods’ section, see Eqs. (14) to (16):

RSSallðtÞ ¼ zðtÞ
�� ��2: ð4Þ

The intuition behind this equivalence is that summing over the
pairwise products of the elements of a vector is the same operation
that is performed when squaring a polynomial; in this case, the
vector is the squared BOLD signal, its pairwise products are the
squared edge time series, and the polynomial is the squared
Euclidean norm. The key message is that, although it was intro-
duced in ref. 16 as the Euclidean norm of the edge time series, the
RSS is mathematically equivalent to the squared Euclidean norm of
the BOLD signal, i.e., a measure of the overall BOLD signal
amplitude at each time step, akin to the variance. We can then
proceed without resorting to the edge time series, which is not only
convenient in practice but also shifts the conceptual focus back to
the BOLD time series—which are more readily interpretable. For a
large family of common (sub-Gaussian) distributions, the squared
Euclidean norm of a random variable (RV) is heavy-tailed (more
specifically, it is subexponential31). The RSS being a squared norm,
large cofluctuations are then to be expected due to its heavy-tailed
distribution (see Eq. (28)), offering an explanation for the large RSS
peaks observed in the BOLD time series.

In the specific case of Gaussian variables (i.e., the null hypothesis),
the RSS can be expressed as a sum of N independent Gamma
(k ¼ 1=2; θ ¼ ffiffiffi

2
p

λi) variables, each related to an eigenvalue of the
nFC matrix (λi, i= 1…,N). This is summarised by the moment-
generating function in Eq. (27). The largest eigenvalues capture the
distribution tail and including smaller eigenvalues provides an
increasingly complete characterisation of the empirical RSS distribu-
tion (Fig. 4b). This distribution can be used for testing the statistical
significance of the empirical RSS observed in the HCP dataset against
the static null hypothesis of spatially correlated noise. Figure 4a
illustrates the convergence of the empirical RSS distribution to the
null distribution as more and more time frames are observed (i.e.,
over longer fMRI sessions). When all the 1200 time frames available
in the HCP data are utilised, the null hypothesis cannot be rejected
for 58% of the participants at a 5% significance level and on 90% of
the participants after Bonferroni correction for multiple comparisons
(p-values given by the two-sided Kolmogorov–Smirnov test).

nFC eigenvectors underpin spatial patterns of high BOLD
activity. High-amplitude BOLD cofluctuations were observed to be
underpinned by a particular spatial mode of brain activity in which
default mode and control networks are anticorrelated with sen-
sorimotor and attentional systems16. This particular spatial mode
was defined as the first principal component of the BOLD activity
and, as such, it can be obtained as the largest eigenvector of the
static nFC matrix by mathematical equivalence and without
recourse to null models (Fig. 5a).

The only question left to answer is whether the RSS is predicted
to peak when the BOLD activity aligns with the largest eigenvector.
This can be proven to be true even beyond the static null hypothesis
(see Eqs. (23) to (24) in the ‘Methods’ section). An intuitive
understanding can be gained once the RSS is seen as the fluctuation
of the BOLD signal amplitude over time: high-amplitude frames
have a larger variance, which is captured by a larger coefficient of
the first principal component since the latter is the vector that aligns
with the direction of maximum variance (Fig. 5c). We can then
refine our theoretical understanding of the RSS peaks: not only do
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they occur when the Euclidean norm of the BOLD signal vector is
large but, most likely, when it is well aligned with the leading
eigenvector of the nFC. However, the alignment with the leading
eigenvector need not be perfect: in general, large RSS values can be
expected whenever the BOLD vector is a mixture of the top
eigenvectors (Fig. 5b and Supplementary Fig. 4). Additional
principal components are included as more large-RSS frames are
averaged, suggesting why the top 5% frames alone are sufficient for
an almost perfect reconstruction of the nFC (Fig. 3). We have thus

explained why the nFC estimates corresponding to frames with the
largest RSS exhibit the highest similarity with the nFC. Moreover,
since the nFC features multiple communities, high-RSS frames
naturally reflect this property by exhibiting high modularity, as well
as higher values than low-RSS frames, which are less similar to the
nFC (see Supplementary Fig. 1).

One could speculate that the cofluctuation patterns correspond-
ing to large nFC eigenvectors would be closely related to empirical
cofluctuation patterns obtained by clustering high-RSS frames as in
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On the horizontal axis, the cumulative distribution function (CDF) of the empirical RSS is evaluated for each null RSS observation; the CDF of the resulting
distribution is then plotted on the vertical axis. Identical distributions would produce points on the diagonal (dotted line).
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Fig. 5 The static Gaussian null model can explain the spatial patterns of BOLD activity and the cofluctuation patterns that characterise high-amplitude
frames. a The spatial mode underpinning high-amplitude cofluctuations is captured by the leading eigenvector of the nFC matrix. The 200 brain regions
were partitioned into the same 16 networks used in ref. 16 (Fig. 2e) to facilitate a visual comparison. In addition to a scatter plot of the data, the violin plots
show the probability densities and the box plots indicate the quartiles, with the maximum whisker length specified as 1.5 times the interquartile range. The
sample sizes of the box plots are the sizes of the 16 networks, that is, n= [16, 15, 6, 14, 17, 6, 12, 10, 14, 16, 10, 19, 15, 6, 12, 12]. b Frames corresponding to
large RSS values exhibit high similarity to the leading nFC eigenvectors. The similarity is measured as the Pearson correlation between the instantaneous
FC estimate from a single frame and each of the estimates from the four leading nFC eigenvectors. c Higher principal component (PC1) coefficients are
associated with large RSS events. In addition to a scatter plot of the data, the box plots indicate the quartiles and the whisker length is specified as 1.5 times
the interquartile range (sample size n= 6000). Compare this figure with the results published in ref. 16 (Fig. 2c).
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ref. 18. For example, the leading nFC eigenvector has the highest
similarity to all BOLD frames and the corresponding cofluctuation
pattern would resemble the most frequently occurring cluster.

A null model for binary edge time series. It was recently observed
that thresholding the edge time series retains most of the information
about the nFC since averaging the binarised edge time series over
time still yields a very accurate approximation of the nFC both at the
voxel15 and parcel level32. As a premise, the latter finding is
empirically replicated here using the HCP dataset, with a resulting
Pearson correlation r= 0.98 between the average binarised edge time
series and the nFC (average correlation over 100 unrelated subjects).
How to explain this almost perfect correlation? Furthermore, it was
noted that the binary edge time series are highly constrained by the
nFC32. What is the nature of such constraints? Both questions can be
answered mathematically under the static Gaussian null hypothesis.
Consider two brain regions or parcels j and k with z-scored BOLD
activity Zj(t) and Zk(t) and their corresponding edge time series
Cjk(t)= Zj(t)Zk(t). The thresholded edge time series CjkðtÞ is equal to
1 when the cofluctuations between j and k are positive, i.e., when Zj(t)
and Zk(t) have the same sign. Under the null hypothesis, Zj(t) and
Zk(t) are normal Gaussian RVs with correlation coefficient denoted
as rjk. If the two parcels are uncorrelated (rjk= 0), their sign is
positive or negative with equal probability and can be described
mathematically as a Bernoulli(1/2) RV, which is a formal way to
model a fair coin draw. The corresponding binary edge time series
CjkðtÞ can also be modelled as a fair coin draw since the two signs are
expected to agree half of the times. The situation clearly gets more
complicated in the case of 200 correlated parcels as in the HCP
dataset considered here. Intuitively, we would expect CjkðtÞ ¼ 1 if the

two parcels were perfectly correlated and CjkðtÞ ¼ 0 if they were
perfectly anticorrelated, i.e., in consistent disagreement. This intuition
can be formalised mathematically and extended to all intermediate
cases as shown in Eq. (30) of the ‘Methods’ section. A trigonometric
argument proves that CjkðtÞ can be modelled as a biased coin, i.e., a
Bernoulli(pjk) RV with success probability

pjk ¼
1
2
þ arcsinðrjkÞ

π
: ð5Þ

This result reveals the exact analytic relationship between the binary
edge time series and the nFC, answering the second question.
However, it is straightforward to show that Eq. (5) also predicts the
approximated nFC obtained by averaging the binary edge time series.
This follows from the fact that the time average of ergodic processes
(including the null model) converges to their expectation, and that
the expectation of a Bernoulli RV is equal to its success probability,
pjk. Testing this analytic prediction on the HCP dataset confirms its
accuracy (see Supplementary Fig. 5b). Finally, we can explain the
strong correlation between the original and approximated nFC by
noting that pjk in Eq. (5) is very close to rjk for small values of the
correlation (see Supplementary Fig. 5a), which are the most
frequent ones.

Relationship with coactivation patterns (CAPs). CAPs12,33 pre-
ceded edge-centric approaches in the study of spatial patterns of
BOLD activity at the single-frame resolution. These patterns differ
from established resting-state functional networks and it was
speculated that they may originate from a neuronal avalanching
phenomenon. Both CAPs and edge-centric studies report a strong
similarity between high-amplitude frames and the nFC, and both
employ k-means to assign these frames to different clusters12,18.
However, there are important differences between the two methods.
CAPs are patterns of node coactivations (i.e., they are defined in node
space), while the frame-wise FC patterns studied in edge-centric

analyses are defined in edge space. Moreover, CAPs are seed-based,
i.e., frames to be clustered are selected based on high activity levels of
a single node rather than simultaneous high activity across all nodes.
For example, choosing the posterior cingulate cortex (PCC) as the
seed, Liu and Duyn12 observed a strong correlation between the
BOLD activity at times where PCC is highly active and the corre-
sponding seed-based FC map.

The static Gaussian null model employed in this study can predict
this strong correlation, which is the fundamental conceptual and
practical property guiding the selection of frames that are
subsequently clustered into CAPs. As shown in Eq. (32) of the
‘Methods’ section, frames selected based on the high activity of a seed
node are expected to exhibit BOLD activity patterns that reflect the
corresponding column of the nFC. Furthermore, the correlation is
directly proportional to the activity level and thus peaks at frames
with the highest activity of the seed. This relationship is illustrated in
(Fig. 6a), where frames are sorted in descending order based on the
seed node activity. It is important to note that parcels are used instead
of voxels, in alignment with the rest of the simulations herein;
however, the mathematical results hold true in both cases. What
happens when more frames are averaged? The answer is shown in
Fig. 6b and follows intuitively from Fig. 6a. Let us again consider the
frames sorted in descending order; as the activity threshold is lowered
(i.e., set to a lower percentile), more frames are averaged. The first
frames are best aligned with the seed FC vector (i.e., the nFC column
corresponding to the seed node) and their average quickly converges
to the same direction. The alignment (or similarity) reaches a plateau
as the middle frames are added to the average since they have low or
zero correlation with the seed FC vector. Finally, as the last and most
negatively-correlated frames are added to the average, the similarity
drops sharply. This explains and replicates the first findings of the
seminal CAPs paper by Liu and Duyn12.

To summarise, analytic predictions in the case of CAPs differ from
the edge-centric case in that the high-amplitude frames are best
explained by individual nFC columns rather than its eigenvectors.
However, there is an intuitive link between the two: if we select
frames where a specific node is highly active (CAPs approach), the
BOLD signal will most likely resemble the corresponding nFC
column; if we select frames where all nodes are highly active (edge-
centric approach), the BOLD signal will most likely resemble all the
nFC columns, i.e., it will align with the leading nFC eigenvector.

Discussion
We have presented mathematical proofs and numerical analyses of
real HCP data supporting our claim that the static nFC is sufficient to
replicate the main resting-state edge-centric findings in refs. 16,17

both qualitatively and quantitatively, without relying on the edge time
series nor any temporal correlations. Specifically, the eFC, the edge
communities, the edge time series norm (RSS) distribution, and the
spatial BOLD patterns underpinning large cofluctuations can all be
predicted from the nFC under the null hypothesis of i.i.d. multi-
variate Gaussian variables. As further shown, key properties of binary
edge time series32 and CAPs12 can similarly be predicted. The
inability to reject the null hypothesis on most of the HCP 100
unrelated subjects does not support the conclusion that these edge-
centric metrics provide additional information beyond the nFC.
These results are not an attempt to disprove the existence of finely
timed neural events—they just warn that the evidence provided by
fMRI data may not be sufficient to reject simpler explanations, based
on the established nFC literature, for the edge-centric features studied
in refs. 16,17. In fact, previous influential studies have raised similar
warnings in the context of sliding-window approaches to time-
varying FC19,21,22.

However, it would be premature to conclude that the nascent
edge-centric approach has no merit, and we acknowledge the fast
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progress in its development and applications at the time of
writing18,26,32. Particularly interesting is the influence of structural
modules on the edge cofluctuations26, which we briefly address in the
‘Methods’ section. The size of the functional modules shapes the
spectrum of the nFC: larger functional modules allow for larger
eigenvalues, which underpin the high-amplitude cofluctuations. This
offers a mathematical insight into the relationship between modular
structure and large cofluctuations, and why the latter disappear if the
modular structure is disrupted. While fully addressing the latest (and
increasingly large number of) preprints is beyond the scope of this
work, it is possible that model-based approaches will reveal the role of
edge-centric properties in bridging brain structure and function.
Indeed, temporally-unfolded (or point-wise) dependence measures
have been instrumental in studying the structure-function relation-
ship in canonical complex systems34,35; seeing the edge time series as
point-wise mutual information under the Gaussian assumption could
create new links to the existing literature.

It would also be unreasonable to assume that the null
hypothesis of i.i.d. variables is a good description of the BOLD
signal, which is slowly-varying and highly autocorrelated. Thus,
the fact that such null model is able to replicate the edge-centric
features in refs. 16,17 is an indication that the temporal structure
of the edge time series has not been fully exploited. Indeed,
besides the notable cases of the synchronisation of the cofluc-
tuations across subjects watching the same movies and the peak-
to-peak interval distribution (see Fig. 6), most of the proposed
edge-centric metrics are unaffected by time shuffling (i.e., they are
static measures) and can thus be replicated by the i.i.d. null
model. Our mathematical derivations do not directly apply to
sliding-window approaches since windowed correlations are
changed by time shuffling, but it is important to remember that
many common time-varying FC analysis pipelines have inter-
mediate steps that alternately leverage and neglect temporal
ordering11. For example, one might estimate sliding-window
correlations (dynamic stage), apply k-means clustering to the
resulting time-resolved FC matrices (static stage, since k-means
ignores the temporal ordering of the windows), and then evaluate
state properties such as dwell times and transition probabilities
(dynamic stage). While dynamic measures cannot be predicted
from the static nFC, it is not unlikely that static null models could

reproduce some of the static measures involved, e.g. the state
patterns found via k-means, but not their transition probabilities.

Let us note, however, that the role of null models in time-varying
FC is a matter of current debate19,36, and not all features that can be
explained by null models are clinically irrelevant or to be dismissed.
For example, using a small fraction of high-amplitude frames to
approximate the nFC has been suggested as a way to compress the
BOLD signal and alleviate the computational burden of analysing
large fMRI datasets without compromising the prediction
accuracy15. Future studies may find other useful criteria for filtering
the frames using the edge time series. As a final contribution, we
have analytically shown that the predominance of a few frames in
shaping the nFC is to be expected: the nFC captures the BOLD
signal variance, which is a second-order statistic and heavy-tailed
(even if the BOLD signal were Gaussian). Therefore, the nFC is
necessarily shaped by a few tail events corresponding to large
amplitude frames. These frames determine the direction of max-
imum variance and thus the first principal components of the
BOLD signal, forming the leading eigenvectors of the nFC.

In conclusion, we have laid out the mathematical foundations for
the edge-centric FC analysis with the goal of informing future
studies, in an interplay with empirical observations and simulations.
Future work could leverage this mathematical framework and focus
on dynamic measures that cannot be easily explained by minimal
null models like the one presented herein.

Methods
Definition of edge-centric FC. Functional connectivity is defined as the magnitude
of the statistical dependence between pairs of brain parcels37. This dependence is
typically estimated from their time series (here, the BOLD signal) using the
Pearson correlation coefficient. Let N be the number of parcels, T be the number of
recorded frames, and xi= [xi(1),…, xi(T)] be the time series recorded from parcel i,
with 1 ≤ i ≤N. The correlation between two parcels i and j can be computed as
rij ¼ 1

T�1∑tziðtÞzjðtÞ, where zi and zj are their z-scored time series row vectors, i.e.,

zi ¼ xi�μi
σ i

(with μi and σi indicating the time-averaged mean and standard devia-

tion). Repeating this procedure for all pairs of parcels results in a node-by-node
(N ×N) correlation matrix R= [rij], which is an estimate of the (node-centric)
functional connectivity.

The edge time series between two parcels i and j is the vector resulting from the
element-wise product of zi and zj, which encodes the magnitude of their
cofluctuations over time:

cijðtÞ :¼ ziðtÞzjðtÞ: ð6Þ
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Fig. 6 The static Gaussian null model can explain the spatial similarity between high-amplitude frames based on a seed node and the corresponding
correlation map—a core feature of coactivation patterns (CAPs). a For each seed node (i.e. parcel), the frames are sorted in descending order based on
the BOLD activity of the seed (horizontal axis). The Pearson correlation is computed between each frame and the seed-based correlation map (i.e., the
column of the nFC matrix corresponding to the seed). The curves represent the average similarity over all 200 seed nodes and over 100 HCP subjects. As
predicted analytically, the similarity is proportional to the BOLD activity and it decreases as lower-amplitude frames are considered (lower percentiles). The
null model is in excellent agreement with the empirical results. b Same as in panel (a), but the BOLD activity of all the frames above a given threshold
(percentile) are averaged before computing the correlation with the seed-based FC map. Only a small fraction of high-amplitude frames is required to
explain most of the nFC variance, reproducing a well-known result in the CAPs literature12.
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We will denote the random variable (RV) associated with the edge time series cij(t)
with a capital letter, i.e., Cij(t). The column vector of all the N2 edge time series
values at a given time t can be reshaped into a N ×N matrix that is an
instantaneous estimate of the dynamic functional connectivity based on a single
frame. This matrix is symmetric since each edge time series is independent of the
order of the node pair it involves, i.e., cij(t)= cji(t), ∀ i, j. For this reason, only the
upper-triangular portion is typically computed, for a total of N(N− 1)/2 edge time
series instead of N2.

It is also possible to go one step further and estimate the statistical dependence
between each pair of edge time series, where each edge corresponds to a pair of
parcels. This fourth-order statistic results in a large NðN�1Þ

2 ´ NðN�1Þ
2 matrix named

edge functional connectivity (eFC)17, with normalised entries defined as

eFCjk;lm :¼ ∑t cjkðtÞ clmðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑t cjkðtÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑t clmðtÞ2

q : ð7Þ

Null hypothesis. Let z be the N × T (parcels × frames) matrix of z-scored BOLD
observations. Since our goal is to derive the (dynamic) edge-centric properties from
the (static) nFC matrix (R= [rij]), we need to define a null hypothesis that dis-
counts any temporal dependencies but retains the observed spatial correlations in
R. A simple null hypothesis on the distribution of (the columns of) z that satisfies
this criterion is ZðtÞ � N ð0;RÞ, that is, i.i.d. multivariate Gaussian RV with a
covariance matrix R matching the observed nFC. If we denote the state of the
system at time t as the column vector zðtÞ ¼ ½z1ðtÞ; ¼ ; zN ðtÞ�> , the null hypothesis
simply states that z(t) is drawn from the same multivariate Gaussian distribution at
each time t, independently of the other samples.

Derivation of edge FC. With capital letters denoting RVs, the expected product
between two edge time series Cjk(t) and Clm(t) at time t is

E½CjkðtÞClmðtÞ� ¼ E½ZjðtÞZkðtÞZlðtÞZmðtÞ�
¼ κðZjðtÞZkðtÞZlðtÞZmðtÞÞ

þ E½ZjðtÞZkðtÞ�E½ZlðtÞZmðtÞ�
þ E½ZjðtÞZlðtÞ�E½ZkðtÞZmðtÞ�
þ E½ZjðtÞZmðtÞ�E½ZkðtÞZlðtÞ�;

ð8Þ

which follows from the definition of the joint cumulant κ(Zj(t)Zk(t)Zl(t)Zm(t)), also
noting that the products involving the expectation of a single variable are equal to
zero (i.e., E½ZiðtÞ� ¼ 0) since zi are z-scored. The expression of the expectation in
terms of joint cumulants is sometimes referred to as moment-cumulants
formula38,39. The joint cumulant is equal to zero for Gaussian RVs39, allowing a
simplification of Eq. (8) known as Isserlis’ theorem40:

E½CjkðtÞClmðtÞ� ¼ E½ZjðtÞZkðtÞ�E½ZlðtÞZmðtÞ�
þ E½ZjðtÞZlðtÞ�E½ZkðtÞZmðtÞ�
þ E½ZjðtÞZmðtÞ�E½ZkðtÞZlðtÞ�:

ð9Þ

If we additionally assume that Z(t) is ergodic (which does not preclude it from
being a multivariate autoregressive process19), all the involved terms become
independent of time and Eq. (9) further simplifies to

E½CjkðtÞClmðtÞ� ¼ rjkrlm þ rjlrkm þ rjmrkl : ð10Þ

In a mathematical sense, the expectation is to be intended over the population
(ensemble), whereas the eFC is computed from a single session (sample). However,
the ergodic assumption guarantees that sample estimates converge to the ensemble
expectation as the number of time frames increases. We can then obtain an esti-
mate of the eFC by substituting Eq. (10) into Eq. (7):

eFCjk;lm ¼ rjkrlm þ rjlrkm þ rjmrklffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rjk2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rlm2

p : ð11Þ

The i.i.d. multivariate Gaussian null model clearly satisfies the ergodic hypothesis
since it has no memory. However, note that neither the i.i.d. nor the Gaussian
properties are necessary since the derivations in this section assume ergodicity with
the only additional constraint that the joint cumulant is equal to zero.

Derivation of edge communities. In order to formalise the intuition that two
edges (jk) and ðj0k0Þ with similar rows of the eFC are likely to be clustered together,
let us define their distance djk;j0k0 as the ℓ1 norm of the difference between the

corresponding rows of the (unnormalised) eFC:

djk;j0k0 :¼ ∑
N

l;m¼1

1
T
jE CjkC

>
lm

h i
�E Cj0k0C

>
lm

h i
j

¼ ∑
N

l;m¼1
jrjkrlm þ rjlrkm þ rjmrkl

� rj0k0 rlm � rj0 l rk0m � rj0mrk0 lj

¼ ∑
N

l;m¼1
jzjz>k zlz>m þ zjz

>
l zkz

>
m þ zjz

>
mzkz

>
l

� zj0 z
>
k0 zlz

>
m � zj0z

>
l zk0z

>
m � zj0 z

>
mzk0 z

>
l j

¼ ∑
N

l;m¼1
3jzjðz>l zmÞz>k � zj0 ðz>l zmÞz>k0 j:

ð12Þ

We now have the necessary ingredients to build a measure of similarity between the
nodes, which can be used to predict the edge cluster similarity in ref. 17. There, the
similarity between two nodes is measured as the frequency with which the cor-
responding edges are clustered together (having fixed the number of communities
to 10). Instead of discrete assignments to 10 communities, Eq. (12) provides a
continuous measure of the distance between two edges. The distance between two
nodes i and j can then be defined as the sum of the distances between the edges
starting from i and j and reaching the same target:

di;j ¼ ∑
N

k¼1
dik;jk

¼ ∑
k;l;m

3jðzi � zjÞðz>l zmÞz>k j

≤ ðzi � zjÞ
��� ��� ∑

k;l;m
3 ðz>l zmÞz>k
�� ��

¼ ∑
t
ðziðtÞ � zjðtÞÞ2

� �1
2

∑
k;l;m

3 ðz>l zmÞz>k
�� ��

¼ ðT � 1ÞðVar½zi� þ Var½zj� � 2rijÞ
� �1

2
∑
k;l;m

3 ðz>l zmÞz>k
�� ��

¼ 1� rij
� �1

2 ð2ðT � 1ÞÞ12 ∑
k;l;m

3 ðz>l zmÞz>k
�� ��	 


/ 1� rij
� �1

2
;

ð13Þ

where we used the Cauchy-Schwarz inequality and noted that the terms in the
square brackets form a constant (independent of i and j). It is then apparent that
the edge-cluster similarity17 between nodes i and j can be approximated by the
nFC. Once again, note that the i.i.d. Gaussian RV assumption can be relaxed since
the derivations in this section are based on Eq. (10), which requires ergodicity with
the only additional constraint that the joint cumulant is equal to zero.

Derivation of RSS from the BOLD signal. Recalling the definition of the edge
time series cij(t) in Eq. (6), the RSS defined in ref. 16 can be approximated as the
squared Euclidean norm of the z-scored BOLD signal, up to a constant factor:

RSSðtÞ : ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i < j

cijðtÞ2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

∑
N

i;j¼1
cijðtÞ2 � ∑

N

i¼1
ciiðtÞ2

� �s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

∑
N

i;j¼1
ziðtÞ2zjðtÞ2 � ∑

N

i¼1
ziðtÞ4

� �s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

zðtÞ
�� ��4 � ∑

N

i¼1
ziðtÞ4

� �s

� 1ffiffiffi
2

p zðtÞ
�� ��2:

ð14Þ

The approximation does not rely on the i.i.d. assumption; it is valid under the
Gaussian null hypothesis and, more generally, for distributions with finite kurtosis

—including fMRI data. Under this assumption, zðtÞ
�� ��4 dominates ∑izi(t)4 in Eq.

(14), as can be seen from the ratio of their (expected) values:

E ∑
i
ZiðtÞ4

	 


E ZðtÞ
�� ��4h i ≤

∑iKurt½ZiðtÞ�
N2 �!

N!1
0: ð15Þ

The approximation in Eq. (14) can be replaced by an exact equality if all the N2

edge time series are included in the RSS definition (that is, all the (i, j) tuples, rather
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than only the pairs with i < j):

RSSallðtÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i;j
cijðtÞ2

r
¼ zðtÞ
�� ��2: ð16Þ

Why are frames with the largest RSS most similar to the nFC? Having
rewritten the RSS as the squared Euclidean norm in Eq. (14), we can more easily
investigate the conditions underpinning the largest RSS fluctuations. Let us withen
the BOLD vector Z(t) to obtain the RV

WðtÞ :¼ R�1
2ZðtÞ ð17Þ

and let

R ¼ UΛU> ð18Þ
be the eigendecomposition of the correlation matrix R, with Λ= diag(λ1,…, λN)
and U being the unitary matrix of eigenvectors of R (since R is symmetric).
Without loss of generality, assume that the eigenvalues are sorted in descending
order, such that λ1 is the largest eigenvalue and u1 is the corresponding leading
eigenvector. The RSS can be treated as a RV and rewritten in terms ofW(t) and the
eigenvector matrix U:

RSSðtÞ � 1ffiffiffi
2

p ZðtÞ
�� ��2

¼ 1ffiffiffi
2

p WðtÞ>ðR1
2Þ> R

1
2

� �
WðtÞ

¼ 1ffiffiffi
2

p ðWðtÞ>UÞΛðU>WðtÞÞ

¼ 1ffiffiffi
2

p ∑iλi ðU>WðtÞÞi
� �2

¼ 1ffiffiffi
2

p ∑iλi ui;WðtÞ �2

ð19Þ

¼ 1ffiffiffi
2

p ∑
i
λi ui
�� ��2 WðtÞ

�� ��2cos2ΘiðtÞ; ð20Þ

where ui is the i-th eigenvector and Θi(t) is the RV representing the angle formed

by the vectors ui and W(t) at time t. Also note that ui
�� ��2 ¼ 1 because U is unitary.

For any realisations w(t) with squared norm wðtÞ
�� ��2, an upper bound on the RSS

is obtained as

RSSðtÞ≤ 1ffiffiffi
2

p wðtÞ
�� ��2 max

i
λi ∑

i
cos2θiðtÞ

¼ 1ffiffiffi
2

p λmax wðtÞ
�� ��2; ð21Þ

noting that

∑
i
cos2θiðtÞ ¼ ∑

i

hui;wðtÞi2
ui
�� ��2 wðtÞ

�� ��2 ¼ UwðtÞ
�� ��2
wðtÞ
�� ��2 ¼ 1: ð22Þ

The upper bound is reached when θ1ðt0Þ ¼ 0 or θ1ðt0Þ ¼ π, which implies that
wðt0Þ ¼ c u1, where c is a constant. In other words, wðt0Þ is aligned (parallel or
antiparallel) with the leading eigenvector u1. When this happens, the BOLD signal
vector zðt0Þ must also be aligned with u1:

zðt0Þ ¼ R
1
2wðt0Þ ¼ R

1
2c u1

¼ UΛ
1
2U>u1 ¼ c λ

1
2
1u1:

ð23Þ

We can then refine our theoretical understanding of the RSS peaks: not only they
occur when the Euclidean norm of the BOLD signal vector is large (as per Eq. (14))
but, most likely, when it is well aligned with the leading eigenvector of the static
nFC (see Fig. 5b). If the alignment were perfect at a frame t0 , the instantaneous
estimate of the nFC would be

zðt0Þzðt0Þ> ¼ c2λ1u1u
>
1 ; ð24Þ

i.e., an approximation of the nFC obtained from its leading eigenvector only (and
independent of the sign of c). This approximation would achieve an average
similarity (Pearson correlation coefficient) of r= 0.69 with the nFC over 100
unrelated participants of the HCP dataset (while, in practice, the highest similarity
achieved by the top frame was r= 0.53). However, the alignment with u1 need not
be perfect: in general, large RSS values can be expected whenever the BOLD signal
is a mixture of the top eigenvectors. Additional principal components are expressed
as more large-RSS frames are averaged, suggesting why the top 5% frames alone are
sufficient for an almost perfect reconstruction of the nFC (Fig. 3). We have thus
explained why cofluctuation patterns corresponding to frames with the largest RSS
exhibit the highest similarity with the nFC. These results are based on Eq. (14) and
hold true under the assumption of finite kurtosis (which also applies in the specific
case of the null hypothesis, i.e., for Gaussian variables). The i.i.d. assumption is not
required.

Null distribution of the RSS. The RSS can be written as a simple quadratic form

RSSðtÞ ¼ 1ffiffi
2

p ZðtÞ
�� ��2 ¼ 1ffiffi

2
p ZðtÞ>ZðtÞ, which is known to follow a generalised χ2

distribution under the null hypothesis of Gaussian variables41. The weights of the
non-central chi-square components are proportional to the eigenvalues of the nFC
matrix, i.e., λ1ffiffi

2
p ; ¼ ; λNffiffi

2
p . Another characterisation of this distribution is provided by

Eq. (19): under the null hypothesis, the inner product 〈ui,W(t)〉 follows a normal
Gaussian distribution since WðtÞ � N ð0; 1Þ and U is unitary. Therefore,
hui;WðtÞi2 follows a χ2 distribution and each term λiffiffi

2
p hui;WðtÞi2 in Eq. (19) follows

a Gamma (k ¼ 1
2 ; θ ¼ ffiffiffi

2
p

λi) distribution. The RSS is thus obtained as a sum of N
independent Gamma-distributed RVs, each associated with one eigenvalue of the
nFC. The tail of the RSS is best approximated by the RVs associated with the largest
eigenvalues (which have the largest mean and variance), while including smaller
eigenvalues provides an increasingly fuller characterisation of the whole distribu-
tion (Fig. 4b). The mean and variance of the RSS can be readily obtained from the
properties of the Gamma distribution:

E½RSS� ¼ 1ffiffiffi
2

p ∑
i
λi ¼

Nffiffiffi
2

p ð25Þ

Var½RSS� ¼ ∑
i
λ2i : ð26Þ

Higher moments of the RSS null distribution can be derived from its moment-
generating function:

MRSSðsÞ ¼
Y
i

ð1�
ffiffiffi
2

p
λisÞ

�1
2: ð27Þ

Why are large RSS fluctuations present in many datasets? The moment-
generating function in Eq. (27) can be employed to show that the RSS is sub-
exponential under the null hypothesis, which explains its heavy tail and the con-
sequent large events25,42. Specifically, the subexponential feature of the null RSS
follows from the sufficient condition

MRSS�E½RSS�ðsÞ ¼
Y
i

ð1�
ffiffiffi
2

p
λisÞ

�1
2 exp� λisffiffiffi

2
p

≤
Y
i

exp λ2i s
2 ¼ exp s2 ∑

i
λ2i ;

8jsj≤ ð4λmaxÞ�1:

ð28Þ

However, we can expect this behaviour under the more general hypothesis that the
z-scored BOLD signal is sub-Gaussian, i.e., its tail decays at least as fast as that of a
Gaussian RV (including, for example, any uniformly-bounded RVs). The reason is
that the square of a sub-Gaussian RV is subexponential, and the sum of inde-
pendent subexponential RVs is also subexponential. Therefore, being the RSS
closely approximated by a sum of squared RVs (as per Eq. (14)), extreme events are
to be expected under the general sub-Gaussian assumption for the BOLD signal,
which offers an explanation for the large RSS fluctuations observed in most fMRI
datasets.

How do nFC modules influence the edge cofluctuations? Interestingly, Pope
et al.26 have recently reported a connection between the presence of structural
modules and the occurrence of large events in the edge cofluctuations (RSS).
Insofar as structural and functional modules are in agreement43,44, we can explain
these findings based on the nFC spectrum. How do functional modules shape the
eigenspectrum of the nFC? In the ideal case of a block-diagonal matrix (with zeroes
outside the blocks), the sum of the eigenvalues corresponding to each block
coincides with the block size (since the diagonal elements are all ones and the trace
is preserved under diagonalisation). As such, the largest eigenvalue is bounded by
the size of the largest block, i.e., larger functional modules allow for larger eigen-
values. In turn, large eigenvalues underpin the high-amplitude cofluctuations, as
shown in the ‘Why are frames with the largest RSS most similar to the nFC?’
section. Therefore, if the size of the modules is reduced via randomisation of the
structural connectivity as in ref. 26(SI Fig. 3), the expected magnitude of the RSS
cofluctuations will drop according to Eq. (21). This offers a mathematical expla-
nation for the lower RSS event count when the modular structure is disrupted.

A null model for binary edge time series. Consider two parcels j and k with
z-scored BOLD activity Zj(t) and Zk(t) and correlation coefficient rjk as defined by
the nFC matrix. Under the static Gaussian null hypothesis, ZkðtÞ � N ð0; 1Þ and

ZjðtÞ ¼ rkjZkðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2kj

q
Vj ; ð29Þ

where Vj � N ð0; 1Þ, and the square root coefficient ensures unit variance for Zj(t)
since both parcels are z-scored. The edge time series corresponding to the two
parcels is Cjk(t)= Zj(t)Zk(t), as per Eq. (6). By definition, the binary edge time
series CjkðtÞ is equal to 1 when the cofluctuations between j and k are positive, i.e.,

when Zj(t) and Zk(t) have the same sign. In other words, CjkðtÞ is a Bernoulli(pjk)
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RV with probability

pjk ¼ P½CjkðtÞ> 0�
¼ P½ZjðtÞZkðtÞ> 0�
¼ 2P½ðZkðtÞ> 0Þ \ ðZjðtÞ> 0Þ�
¼ 2P ðZkðtÞ> 0Þ \ ðrkjZkðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2kj

q
Vj > 0Þ

h i

¼ 2P ðZkðtÞ> 0Þ \ Vj

ZkðtÞ
>� rkjffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2kj
q

0
B@

1
CA

2
64

3
75

¼ 2P½A�;

ð30Þ

where A is the event ðZkðtÞ> 0Þ \ Vj

ZkðtÞ>� rkjffiffiffiffiffiffiffiffi
1�r2kj

p
 !

. From a geometric perspec-

tive, A is satisfied by any vector (Zk,Vj) whose polar angle is between π/2 and
arctanð� rjkffiffiffiffiffiffiffiffi

1�r2kj
p Þ. Therefore,

pjk ¼ 2P½A�

¼ 2

π
2 � arctanð� rjkffiffiffiffiffiffiffiffi

1�r2kj
p Þ

2π

0
B@

1
CA

¼ 1
2
þ arcsinðrjkÞ

π
:

ð31Þ

In conclusion, under the null hypothesis, the binary edge time series CjkðtÞ can be

modelled as a Bernoulli(pjk) RV with pjk ¼ 1
2 þ

arcsinðrjkÞ
π .

Relationship with coactivation patterns (CAPs). Here, we will focus on
explaining a well-known finding in the CAPs literature: choosing a seed node, Liu
and Duyn12 observed a strong correlation between the BOLD activity at frames
where the seed is highly active and the corresponding seed-based FC. Note that the
correlation is measured between two N-dimensional vectors (where N is the
number of nodes): the first vector is the BOLD signal and the second vector is the
column of the nFC matrix that corresponds to the chosen seed node. In the
following, we will show that the i.i.d. Gaussian null model can predict the observed
correlation. Let k be the seed node and zk its z-scored BOLD time series. As usual,
the associated random process is denoted with the capital letter Zk(t). If we con-
dition on a specific value of the seed node, say z�k :¼ Zkðt�Þ, the BOLD activity
vector at the corresponding time t* is expected to align with the k-th column of the
nFC (denoted as R̂k):

E½Zðt�Þ� ¼ E½ZðtÞjZkðtÞ ¼ z�k � ¼ z�k R̂k: ð32Þ
This is an elementary property of multivariate Gaussian RVs that follows directly
from Eq. (29):

E½Zjðt�Þ� ¼ E½ZjðtÞjZkðtÞ ¼ z�k �
¼ E rkjZkðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2kj

q
VjjZkðtÞ ¼ z�k

h i
¼ z�k rkj; 8j ¼ 1; ¼ ;N:

ð33Þ

Perhaps less intuitively, the conditional correlation between the BOLD vector Z(t*)
and the k-th column of the sample nFC (R̂k) is also proportional to the seed value
z�k . In order to prove it, let us first compute their expected inner product:

E½hZðt�Þ; R̂ki� ¼ E ∑
N

j
Zjðt�Þ

1
T � 1

∑
T

t
ZjðtÞZkðtÞ

	 


� ∑
j
E Zjðt�Þ
h i 1

T � 1
∑
t≠t�

E ZjðtÞZkðtÞ
h i

¼ ∑
j
z�k rkj

1
T � 1

∑
t≠t�

rkj

¼ z�k Rk

�� ��2:

ð34Þ

Similarly, the covariance can be approximated as

Cov½Zðt�Þ; R̂k� ¼ E
hZðt�Þ; R̂ki
N � 1

�∑jZjðt�Þ∑l r̂kl
NðN � 1Þ

	 


� z�k
Rk

�� ��2
N

� ∑j≠l rkjrkl
NðN � 1Þ

 ! ð35Þ

The expected sample covariance is directly proportional to z�k and thus peaks at
frames with the highest activity of the seed node k. This remains true after nor-
malising the covariance to obtain the correlation coefficient, as shown in Fig. 6a.

Human Connectome Project fMRI dataset. This study used openly-available and
independently-acquired resting-state fMRI (rsfMRI) data from the Human

Connectome Project (HCP) S1200 release45. In particular, we used the “100
unrelated subjects” dataset: a subset of 100 non-twins adult participants which were
pre-selected by the HCP coordinators (54% female; mean age= 29.11 ± 3.67 years;
age range, 22–36 years). The HCP study was approved by the Washington Uni-
versity Institutional Review Board, and informed consent was obtained from all
participants. All subjects were scanned on a customized Siemens 3T “Connectome
Skyra” with a 32-channel head coil, housed at Washington University in St. Louis.
rsfMRI data were acquired in four runs of 15 min over a 2-day period, with eyes
open and relaxed fixation on a projected bright cross-hair on a dark background
(presented in a darkened room). Resting-state images were collected with the
following parameters: gradient-echo EPI sequence, run duration= 14:33 min,
TR= 720 ms, TE= 33.1 ms, flip angle= 52∘, FOV= 208 × 180 mm (RO x PE),
matrix= 104 × 90 (RO x PE), slice thickness= 2 mm, 2-mm isotropic voxel reso-
lution, multi-band factor= 8, echo spacing= 0.58 ms, BW= 2290 Hz/Px).

Preprocessing and ICA-FIX denoising. Functional images in the HCP dataset were
minimally preprocessed according to the pipeline described in ref. 46. In short, the
data were corrected for gradient distortion, susceptibility distortion and motion and
then aligned to a corresponding T1-weighted image with one spline interpolation
step. This volume was further corrected for intensity bias, normalised to a mean of
10,000, projected to the 32k_fs_LR mesh (excluding outliers), and aligned to a
common space using a multi-modal surface registration.

In addition, the preprocessed rsfMRI data were cleaned of structured noise
through a process that pairs independent component analysis (MELODIC) with
FIX to automatically remove non-neural spatiotemporal components (trained on
25 hand-labelled HCP subjects). The FIX approach and initial results of
classification accuracy are detailed in ref. 47, and the effects of the ICA + FIX
cleanup (and optimal methods to remove the artefactual components from the
data) are evaluated in detail in ref. 48. The cleaning pipeline is described more
comprehensively in the HCP S1200 release reference manual (https://
humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-
release/) and the preprocessing and the cleaning scripts are openly available on
Github (https://github.com/Washington-University/HCPpipelines/). The resulting
ICA-FIX denoised rfMRI grayordinate surface time series are available as CIFTI
files following the naming pattern:
*REST1,2_LR,RL_Atlas_MSMAll_hp2000_clean.dtseries.nii.

The Schaefer200 parcellation was used to define 200 areas on the cerebral
cortex49. This functional parcellation was designed to optimise both local gradient
and global similarity measures of the fMRI signal and is openly available in ‘32k fs
LR’ space for the HCP dataset. The nodes are mapped to the Yeo canonical
functional networks50. The parcellated data were analysed both before and after
regressing the global signal. The theoretical derivations and predictions hold and
perform equally well in both cases, and we report any significant differences when
they occur. Unless otherwise stated, the GSR results are shown in the figures since
they are more directly comparable to those published in refs. 16,17, noting in
particular that GSR was performed in ref. 16. Despite the ICA-FIX preprocessing
pipeline used here is entirely different from those employed in refs. 16,17, our results
are in excellent agreement with the previously published ones.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imaging data from the Human Connectome Project are publicly available and can be
accessed after signing a data use agreement at https://db.humanconnectome.org. Source
data are provided with this paper.

Code availability
The analysis was performed with MATLAB (MathWorks, Inc., version 2020b) and the
code is made freely available on Github for reproducibility (https://github.com/LNov/
eFC). A permanent record is also made available on Zenodo (https://zenodo.org/record/
6238564).
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