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Peak learning of mass spectrometry imaging data
using artificial neural networks
Walid M. Abdelmoula 1, Begona Gimenez-Cassina Lopez1, Elizabeth C. Randall2, Tina Kapur2,

Jann N. Sarkaria 3, Forest M. White 4, Jeffrey N. Agar 5, William M. Wells2,6 & Nathalie Y. R. Agar 1,2,7✉

Mass spectrometry imaging (MSI) is an emerging technology that holds potential for

improving, biomarker discovery, metabolomics research, pharmaceutical applications and

clinical diagnosis. Despite many solutions being developed, the large data size and high

dimensional nature of MSI, especially 3D datasets, still pose computational and memory

complexities that hinder accurate identification of biologically relevant molecular patterns.

Moreover, the subjectivity in the selection of parameters for conventional pre-processing

approaches can lead to bias. Therefore, we assess if a probabilistic generative model based

on a fully connected variational autoencoder can be used for unsupervised analysis and peak

learning of MSI data to uncover hidden structures. The resulting msiPL method learns and

visualizes the underlying non-linear spectral manifold, revealing biologically relevant clusters

of tissue anatomy in a mouse kidney and tumor heterogeneity in human prostatectomy

tissue, colorectal carcinoma, and glioblastoma mouse model, with identification of underlying

m/z peaks. The method is applied for the analysis of MSI datasets ranging from 3.3 to 78.9

GB, without prior pre-processing and peak picking, and acquired using different mass

spectrometers at different centers.

https://doi.org/10.1038/s41467-021-25744-8 OPEN

1 Surgical Molecular Imaging Laboratory, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
2Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA. 3 Department of Radiation Oncology, Mayo
Clinic, 200 First St SW, Rochester, MN 55902, USA. 4 Department of Biological Engineering, Koch Institute for Integrative Cancer Research, MIT, Cambridge,
MA 02142, USA. 5 Department of Chemistry and Chemical Biology, Northeastern University, 412 TF (140 The Fenway), Boston, MA 02111, USA. 6 Computer
Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA. 7Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard
Medical School, Boston, MA 02115, USA. ✉email: Nathalie_Agar@dfci.harvard.edu

NATURE COMMUNICATIONS |         (2021) 12:5544 | https://doi.org/10.1038/s41467-021-25744-8 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25744-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25744-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25744-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25744-8&domain=pdf
http://orcid.org/0000-0003-3117-7389
http://orcid.org/0000-0003-3117-7389
http://orcid.org/0000-0003-3117-7389
http://orcid.org/0000-0003-3117-7389
http://orcid.org/0000-0003-3117-7389
http://orcid.org/0000-0001-7489-4885
http://orcid.org/0000-0001-7489-4885
http://orcid.org/0000-0001-7489-4885
http://orcid.org/0000-0001-7489-4885
http://orcid.org/0000-0001-7489-4885
http://orcid.org/0000-0002-1545-1651
http://orcid.org/0000-0002-1545-1651
http://orcid.org/0000-0002-1545-1651
http://orcid.org/0000-0002-1545-1651
http://orcid.org/0000-0002-1545-1651
http://orcid.org/0000-0003-2645-1873
http://orcid.org/0000-0003-2645-1873
http://orcid.org/0000-0003-2645-1873
http://orcid.org/0000-0003-2645-1873
http://orcid.org/0000-0003-2645-1873
http://orcid.org/0000-0003-3149-3146
http://orcid.org/0000-0003-3149-3146
http://orcid.org/0000-0003-3149-3146
http://orcid.org/0000-0003-3149-3146
http://orcid.org/0000-0003-3149-3146
mailto:Nathalie_Agar@dfci.harvard.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Mass spectrometry imaging (MSI) is a rapidly growing
technology that holds high promise to impact the prac-
tice of anatomic pathology and drug development1–3.

MSI provides simultaneous mapping of hundreds to thousands of
molecules directly from a tissue section in a label free manner4.
Moreover, MSI can provide direct molecular imaging of multiple
types of molecules, such as proteins, peptides, lipids, metabolites,
and drug molecules, with high sensitivity and molecular specificity.
These molecular data can play a substantial role for improving
clinical diagnosis and prognosis5, pathway identification6, bio-
marker discovery7, and surgical guidance3. Sample preparation,
ionization techniques, and instrumentation are determinants for
the effectiveness of analyte detection. Matrix-assisted laser deso-
rption ionization (MALDI) and derivatives of electrospray ioni-
zation (ESI) such as desorption (DESI) and continuous flow
surface sampling are among the most common ionization techni-
ques for MS towards clinical applications1. For a mass spectro-
metry image acquisition, molecules are desorbed and ionized from
the surface of a sample, and then separated in a mass analyzer
based on their mass-to-charge ratio (m/z) and detected to measure
their relative abundance forming a mass spectrum.

MSI data are large and complex. For instance, a raw high mass
resolution MSI file size can reach up to a few terabytes of spectral
information. Computational developments that would more
efficiently and accurately mine MSI data to identify molecular
signatures of clinical importance and enable new biomarker
discovery have the potential to expand the applicability of MSI8,9.
However, the complex nature of MSI data hinders efficient data
mining, clustering, visualization, and classification using tradi-
tional machine learning techniques10,11. This data complexity
poses memory and computational challenges, namely due to “the
curse of dimensionality” in which original MSI data hold up to
tens of thousands of spectra each of which has 104�106 m/z
spectral bins, and the nonlinear separability of the underlying
spectral manifold in the high-dimensional space.

Peak picking is currently a fundamental data preprocessing step
for the analysis of original mass spectral data at the basis of bio-
marker discovery12,13. Peak picking is used to alleviate the sparsity
and reduce the original spectral dimensionality while optimally
increasing the signal-to-noise ratio through retaining as many
informative m/z features as possible. In addition, peak picking is
essential for identification, quantification, and discovery of mole-
cular biomarkers14. Despite the generally acceptable performance of
peak picking algorithms, each applied parameter, e.g., baseline
subtraction, peak width, signal-to-noise ratio (S/N), and smoothing
introduces a level of subjectivity that influences the resulting peak
list15. The optimization of parameter selection largely relies on the
user’s expertise and can therefore lead to significant discrepancy in
overall biomarker identification16. These limitations are exacerbated
when applying these workflows to MSI data, which is large and has
an added level of complexity with spatial information17.

Following peak picking the original dimensional complexity is
reduced; however, MSI data are still of high-dimensional nature
as one 2D image is typically composed of thousands of high-
dimensional pixels (spectra) each of which has hundreds of peaks.
High-dimensional statistics for dimensionality reduction are
commonly used18,19. Dimensionality reduction aims at projecting
the high-dimensional points into a smaller subspace to enable the
capture and visualization of the underlying latent variables. Those
latent variables reveal molecular patterns, reflecting clusters of
similar spectra that might hold biological relevance20. Linear
dimensionality reduction methods of principal component ana-
lysis (PCA) and non-negative matrix factorization (NNMF) have
been widely used for MSI data analysis21,22. A limitation of these
methods is their inherited linearity constraints (e.g., the original
data are linearly mapped based on a linear combination of lower-

dimensional vectors) that prevent capturing the complex non-
linear manifold of spectral structures, impacting accurate identi-
fication of latent variables. In contrast, nonlinear dimensionality
reduction methods such as t-distributed stochastic neighbor
embedding (t-SNE) have gained popularity in the last few years
for omics data analysis20,23,24. Nevertheless, t-SNE does not
provide parametric mapping needed to project new unseen data
into the already computed embedding. Despite recent progress on
improving both the t-SNE computational and memory
scalability25,26, it still needs the full data to be loaded into the
RAM, which limits its application on data with large sizes such as
3D MSI27. Loading the full data are necessary for the K-nearest
neighbor graph creation, which is instrumental in establishing
spectral pairwise similarities to compute the final t-SNE embed-
ding. Recent preliminary results, on a single preprocessed 2D MSI
dataset that underwent peak picking, produced by using a neural-
network-based method of autoencoder have shown promise for
efficient nonlinear dimensionality reduction of MSI data com-
pared to PCA and NNMF methods28. We propose to extend this
neural-network approach by developing a deep learning archi-
tecture that can analyze MSI data, without prior peak picking,
independent of the nature of the specimen and of the mass
spectrometer (ionization source and analyzer).

We introduce msiPL, a deep learning tool for the analysis and
peak learning of MSI data, which is based on a fully connected
variational autoencoder neural network29. This is a probabilistic
generative model that learns unsupervised and nonlinear para-
metric mapping between high and low-dimensional spaces and
has been efferently applied to other fields such as single cell
omics30 and medical image segmentation31. The low-dimensional
embedding learns a nonlinear manifold that captures latent vari-
ables that we refer to as encoded features. The encoded features
represent molecular patterns that are used to predict the original
data. Therefore, minimizing the error between original and pre-
dicted data would imply capturing accurate encoded features.
Batch normalization is incorporated into the proposed neural-
network architecture to correct for co-variate shift and improve
both learning stability and convergence32. We also propose a
method based on analyzing the neural-network weight matrix to
relate the encoded features to the original m/z features. Both the
encoded features and their associated m/z ion features would
support clustering and classification tasks required for biomarker
identification. The performance of the proposed method was
tested using various 2D and 3D MSI data of biological samples
collected from different organs and acquired in different labora-
tories using different MSI platforms. Namely, MSI data from both
human and animal tissue specimens were acquired using: MALDI
TOF MSI, DESI MSI, and 9.4 Tesla MALDI FT-ICR MSI with
some of these datasets already publicly available27 and some newly
acquired datasets (see Project ID (2703) on the metabolomics
workbench https://www.metabolomicsworkbench.org).

Results
Variation inference for manifold learning of MSI data. The
computational architecture, shown in Fig. 1, is based on a
probabilistic generative model to establish efficient unsupervised
learning, nonlinear dimensionality reduction and stochastic var-
iational inference using neural networks29. The variational
autoencoder (VAE) aims to jointly optimize two distinct models,
namely: probabilistic encoder for variational inference and
probabilistic decoder for unsupervised learning. The probabilistic
encoder is used as a recognition model qϕ(z|x) to infer approx-
imate estimate of the true but intractable distribution pϴ(z|x) of
the k-dimensional latent variable z (i.e., encoded features)
underlying the complex high-dimensional MSI data
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X ¼ fx 1ð Þ; x 2ð Þ; ¼ ; xðNÞg, where N represents the total number of
spectra and each spectrum x ið ÞϵRd is of d�dimensions, and
d � k. The probabilistic encoder model assumes sampling of the
latent variable z from a multivariate normal distribution with
parameters μϕðxÞ and σϕðxÞ; both are functions of x and com-
puted by a fully connected neural network. The probabilistic
decoder is used as a generative model pϴ(x|z) for data recon-
struction given solely the encoded features. Both the recognition
and generative models’ parameters, ϕ and ϴ, are jointly optimized
and computed from the neural-network parameters. More details
are provided in the Methods section and we refer to ref. 29 for
more information on VAE.

Hyperparameters and implementation details. Original MSI
data were analyzed using msiPL, a VAE architecture of a fully
connected neural network given in Fig. 1b. The proposed neural-
network architecture consists of five layers, namely: input layer
(L1), three hidden layers (h1; h2; and h3), and output layer (L5).
The number of artificial neurons for both L1 and L2 is equivalent
to the number of m/z bins, whereas for the hidden layers
h1; h2; and h3 it is 512, 5, 512 neurons, respectively. The hidden
layer h2 captures the encoded features, which represent nonlinear
dimensionality reduction of original MSI data and compressed in

a five-dimensional space. Batch normalization was applied on
each layer’s input before any neuron activation to correct for co-
variate shift that would degrade the learning process32. Following
the batch normalization, the rectified linear unit (ReLU) function
was used for neuron activation in all layers except the neurons of
the output layer L5, which were activated using the sigmoid
function33. The unsupervised learning occurs through minimiz-
ing the reconstruction loss between original and predicted data
mainly by optimizing the VAE cost function, which consists of
Kullback-Leibler divergence (KL-divergence) and marginal like-
lihood modeled as a categorical cross-entropy29. The Adam sto-
chastic gradient optimizer with learning rate of 0.001 was used to
train the network on minibatches of 128 spectra for 100 epochs34.
This network was trained on total-ion-count (TIC) normalized
spectra and implemented using the open source deep learning
library of Keras35 and running on Tensorflow36.

Linking encoded features to observed m/z variables. The
encoded features represent the learned nonlinear manifold in the
lower-dimensional space, and enabled capturing spatial patterns
of molecules from the original high-dimensional space. These
patterns were formed based on a smaller subset of m/z features
and it is therefore of interest to identify those underlying m/z
features that are expected to hold biological relevance. We pro-
pose a backpropagated-based threshold analysis on the weight
parameter W Lð Þ of the neural network at layer L, as visually
illustrated in Fig. 1d and demonstrated in Eq. (4). Since the
original MSI data were analyzed without prior preprocessing for
peak picking, the identified m/z features can then be assigned to a
peak. As such, a peak is identified on the average spectrum as the
nearest local maximum of a given m/z feature. More details are
given in the Methods section.

Analysis of FT-ICR MSI data from human prostate cancer
tissue specimen. Ultrahigh spectral resolution 2D FT-ICR MSI
data from a human prostate cancer specimen was computation-
ally analyzed using msiPL. The original MSI data encompassed
12,716 pixels (spectra) and each pixel is a high-dimensional
datapoint that contained 730,403m/z values (dimensions) for the
mass range m/z 250–1000. The data were exported in the stan-
dardized format imzML37 and converted to HDF5 format38

(using the python package “h5py”) for variational autoencoder
analysis. The original dataset was highly sparse and with enor-
mous dimensionality and comprised 730,403m/z values causing
computational and memory challenges to optimize the 748 mil-
lion parameters of the proposed neural network. To reduce the
sparsity and the large number of m/z values and avoid allocating
unnecessary memory, local maxima were identified on the aver-
age spectrum using the python function “argrelextrema” in which
a local maximum is defined as a datapoint of intensity higher
than its two neighbors. This significantly reduces the spectral
dimensionality from approximately 730,403 to 61,343m/z values,
and this has significantly impacted the spectral sparsity but not
the spectral representation (See Supplementary Fig. 1). The neural
network performs unsupervised learning in an iterative manner
to minimize the reconstruction loss and as shown in Fig. 2a, the
optimizer converged after less than 100 iterations with a total
running time of about 40 min on a PC workstation (Intel Xenon
3.3 GHz, 512 GB RAM, 64-bit Windows, 2 GPUs NVIDIA
TITAN Xp). The distributions of TIC-normalized average spectra
of both original and predicted data are given in Fig. 2b and their
overlay reflects high estimation quality. The encoded features,
shown in Fig. 2c, serve as a nonlinear embedding that enables
visualization and reveals molecular patterns embedded in a
compact representation of the original high-dimensional data
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Fig. 1 The proposed neural-network architecture of variational
autoencoder (VAE) for mass spectrometry imaging data analysis and
peak learning. a Schematic overview of the VAE model, which was
impelemnted as a fully connected neural network (b) of five layers and
trains on TIC-normalized spectra without considering their spatial
relationships (b). The parametrized lower-dimensional latent variable (Z) is
captured at hidden layer h2. c The neural network is regularized using batch
normalization (BN), and informative mass-to-charge ratio (m/z) values
were identified using statistical analysis on the neural-network weight
parameter (d).
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solely in the latent space of five dimensions. The generative model
estimated the observed spectral data given only these five-
dimensional encoded features, with an overall reconstruction loss
of mean squared error (MSE) of 2:42´ 10�5 between TIC-nor-
malized spectra of original and predicted data. To visually com-
municate the reconstruction quality of the MSI data, spatial
distributions of a few selected m/z ions of both original and

predicted data are presented in Fig. 2d. The encoded features were
then linked to the original m/z variables, using Eq. (4) with setting
parameter β to 2.5. A reduced list of 244m/z values revealed the
main determinants of molecular patterns captured in the latent
space (Supplementary Data 1).

Identification of molecular patterns associated with tumor
regions in human prostate tissue. The histopathological anno-
tation of the prostate tumor regions revealed a Gleason score (GS)
of (3+ 4)= 7 (with cribriform cell morphology) (Fig. 2e)39. The
understanding of molecular patterns underlying the annotated
histopathological tumor region could contribute to the development
of molecular diagnostics. The encoded features were clustered by
the Gaussian-mixture model (GMM) with k-clusters (k= 6)
(Fig. 2f) where the light-blue structure (cluster#1) represents a
molecular-based tumor pattern with concordance to the histologi-
cally annotated tumor regions. This molecular-based tumor cluster
was segmented (Fig. 2g) and correlated with the reduced MSI data
of 244m/z values. For example, the ion feature m/z
739.4664 ± 0.001 with a Pearson correlation coefficient of 0.7 was
tentatively assigned to C39H73O8P by searching the Human Meta-
bolome Database (HMDB)40 based on the accurate mass and with a
tolerance window of 1.44 ppm, m/z 985.5567 ± 0.001 with a cor-
relation coefficient of 0.65 was tentatively identified as PIP(P-42:6)
with an error of −0.14 ppm, and m/z 738.4548 ± 0.001 with a
correlation coefficient of 0.64 was tentatively identified as PI-
Cer(t30:2) with an error of 0.53 ppm. A list of the top determinant
m/z values for this tumor cluster with tentative molecular assign-
ments are presented in Supplementary Table 1.

Tumor-specific metabolic signatures identified in a PDX
mouse brain model of glioblastoma. Four consecutive tissue
sections of 12 µm thickness were sampled from a patient-derived
xenograft (PDX) mouse brain model of glioblastoma (GBM12) and
analyzed by MALDI FT-ICR MSI. The original MSI data was highly
sparse and constituted of 3,570 spectra each of 661,402m/z bins,
which was reduced to 21,241m/z values as presented above. The
unsupervised learning process reached stable convergence within
less than 100 iterations with a computational time of about 3.6 min
(Fig. 3a). The original data were predicted with an overall mean
squared error of 4:5 ´ 10�4 (Fig. 3b, e). The five-dimensional
encoded features shown in Fig. 3c capture molecular structures
located at a nonlinear manifold in the original high-dimensional
space. These encoded features were clustered using GMM (k= 8)
and the clustered image (Fig. 3d) reveals molecularly distinct tissue
regions such as heterogenous tumor regions (cluster#2 and clus-
ter#8) and a tumor rim (cluster#4). Figure 3e shows spatial dis-
tribution of some m/z values that were determinant of some
molecular clusters. The EGFR inhibitor erlotinib (m/z
394.1757 ± 0.001) and m/z 529.9846 ± 0.001 (tentatively identified
as ATP/dGTP with an error of 0.69 ppm) show colocalization with
tumor cluster#2, whereas m/z 558.2953 ± 0.001 (tentatively identi-
fied as lysoPC(18:2) with an error of 0.62 ppm) is found as part of a
second tumor cluster#8. The tumor rim cluster#4 was defined in
part by m/z 438.2978 ± 0.001 (tentatively assigned to palmi-
toylcarnitine with an error of 0.27 ppm). There is a noticeable
inverse relationship between the intensity distributions of ATP/
dGTP and palmitoylcarnitine within the tumor region. The
increased distribution of the palmitoylcarnitine at the interface
between normal and tumor tissues was discussed in more details by
Randall et al.41. Analysis of the neural-network weight variable
using Eq. (4) and setting parameter β to 2.5 enabled identification of
186m/z values from the original 21,241m/z values. Interestingly,m/
z 394.175 ± 0.001, which corresponds to the EGFR inhibitor erlo-
tinib was identified despite a mean peak intensity of less than 1%
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Fig. 2 Deep-learning-based analysis of an ultrahigh spectral resolution of
2D FT-ICR MSI of prostate cancer tissue. a Distribution of the
optimization convergence with the number of iterations (epochs). b The
TIC-normalized distribution of original and predicted average spectra.
c Five-dimensional-encoded features (latent variable z) represent the
learned nonlinear manifold that enabled visualization and captured
molecular patterns of the original high-dimensional MSI data of 61343
dimensions. These encoded features are of high quality as it were used to
predict the original data with an overall mean squared error of 2:42 ´ 10�5.
d Spatial distribution of a few arbitrary m/z peaks for original and predicted
MSI data and it reveals high estimation quality of the original observed data.
Comparison between H&E stained histology and clustered molecular
patterns reveals molecular-based tumor region: e Histopathological
annotation of the tumor regions, f Gaussian-mixture model (with k= 6)
was applied to cluster the encoded features, and the tumor-associated
pattern is represented by the light-blue structure (cluster#1) that was
extracted (g) and correlated with the reduced MSI data. The highest
Pearson correlation value was with the ion feature at m/z
739.4664 ± 0.001 and it reveals elevation in the tumor region (h).
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the value of the largest peak from the mean spectrum. For each of
the identified tumor clusters, a list of the top determinant m/z
values with tentative molecular assignments are presented in Sup-
plementary Tables 2–4.

Rapid analysis of 3D MSI data with ultrahigh spectral resolu-
tion from a PDX mouse brain model of glioblastoma. The
trained VAE model presented in Fig. 3 was used to analyze an
unseen 3D FT-ICR MSI dataset acquired from three consecutive
tissue sections (12 µm thickness) with a separation distance of
160 µm of a PDX mouse brain model (GBM12). The dataset was
constituted of 11,263 spectra each of 661,402m/z bins, which was
reduced to 21,241m/z values as presented above and was ana-
lyzed using the trained VAE model with a total running time of
6 s for the probabilistic encoder to capture latent variables
(encoded features) and about 8 s for the generative model to
reconstruct the original spectral data. As shown in Fig. 4a, the
original spectral data was predicted with an overall mean squared
error of less than 4:12 ´ 10�4. The captured encoded features act
as a nonlinear embedding of the high-dimensional data and
reveal distinct molecular patterns in the lower-dimensional space
of five dimensions (Fig. 4b). Unsupervised clustering of these
encoded features using GMM (k= 11) (Fig. 4c) revealed biolo-
gically relevant clusters of two heterogenous regions in the tumor
core (clusters# 4 and 11) and a tumor rim (cluster#8). Analysis of
the neural-network weight variable, using Eq. (4) with setting
parameter β to 2.5, enabled identification of 198m/z values from

the original 21,241m/z values. The reduced peak list was corre-
lated with the identified biologically relevant clusters and ion
features at m/z 438.2978 ± 0.001, 558.2953 ± 0.001, and
529.9846 ± 0.001, which were found to be distributed in the
tumor rim region and each of the two heterogenous regions
within the tumor core, respectively. Tentative molecular assign-
ment of these m/z values is presented in Supplementary
Tables 2–4.

Scalability on 3D MALDI MSI dataset. A 79 gigabytes volu-
metric MSI sample of a mouse kidney that encompasses 73
consecutive tissue sections, each with a thickness of 3.5 µm, was
acquired by MALDI MSI in the mass range m/z 2000–20,000 and
yielded a 3D spectral image that encompasses 1,362,830 spectra
each of 7671 dimensions (i.e., m/z bins)27. Of note, this public
dataset is available without prior peak picking but underwent
some conventional spectral preprocessing such as Gaussian
spectral smoothing and baseline subtraction27. The computa-
tional model was first trained on 18,536 spectra from a 2D
MALDI MSI acquisition (section #1), and then tested on the 3D
MSI data of the withheld 72 tissue sections (1; 342; 294 spectra).
The unsupervised learning process of the training model reached
convergence after less than 100 iterations with a total running
time of ~8.6 min (Supplementary Fig. 2a) and provided a
reconstruction of the original TIC-normalized spectra with an
overall mean squared error of 5:5´ 10�3 (Supplementary
Fig. 2b–d). The five-dimensional encoded features revealed
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structural information with distinct molecular patterns (Supple-
mentary Fig. 2e) that were clustered using GMM (k= 7) as
shown in Fig. 5f. The molecularly clustered image revealed ana-
tomical structures of the kidney such as the renal cortex (clusters#
2&6), renal medulla (cluster# 1), renal pelvis (cluster# 7), renal
artery and vein (cluster# 4), and ureter (cluster# 5) in accordance
with histology and previous studies8,42. Supplementary Figure 2h
shows the spatial distribution of selected m/z values found as part
of these molecular patterns. The highly weighted spectral features
that constitute the molecular patterns captured by encoded fea-
tures were identified using Eq. (4) with setting parameter β to 2.5
and highlighted in the mean spectrum with m/z bins highlighted
in red and resulting peaks highlighted in green (Supplementary
Fig. 2g). The complete peak list with 124m/z values is provided in
the Supplementary Data 1.

The trained model was then applied on the 3D MSI data of
the withheld 72 tissue sections with spectra corresponding to
each 2D MSI tissue section independently loaded into the RAM
and analyzed by the trained probabilistic model with an overall
running time of about 10 s. The approach was four times faster
with 20 times less memory requirement compared to previously
reported computational development used to analyze the same
dataset8. Figure 5 shows results from selected test samples at
different volumetric depth within the tissue volume, and results
from the analysis of the complete test data are presented in
Supplementary Fig. 3. The low-dimensional latent space
captured molecular patterns from the high-dimensional space
(Fig. 5b) and the encoded features of the entire 3D MSI data
were clustered using the GMM (k= 8) revealing molecular
patterns that highlight anatomical structures of the kidney
(Fig. 5c and Supplementary Fig. 3). The original TIC-normalized
MSI data were predicted with an overall mean squared error
of 3:11 ´ 10�3.

Identification of tumor and connective tissue types in 3D DESI
MSI of colorectal adenocarcinoma dataset. DESI MSI data was
acquired from 26 consecutive (acquired at every 100 µm) 10 µm
thickness tissue sections to reconstruct a 3D MSI volume from a
human colorectal adenocarcinoma specimen in the mass range
m/z 200–1,05027. The 148,044 spectra each of 8,073 dimensions
constituting the 3D DESI MSI data volume was analyzed using
msiPL. Data from a single tissue section were arbitrary selected
(section#1) to train the model with 5,694 spectra, and the model
converged after tens of iterations (Supplementary Fig. 3a) with a
total running time of ~3.2 min. Based on the learned latent
variables, the original spectral data was predicted with an overall
mean squared error of 2:02´ 10�4 (Supplementary Fig. 4) and the
encoded features were then linked to the original m/z values using
Eq. (4) with parameter β set to 2.5 resulting in a reduced peak list
with 24m/z values. The encoded features were then clustered by
GMM (k= 5), revealing a tumor region (red cluster#5) and
connective tissue (light-blue cluster#2) in agreement with histo-
logical evaluation (Supplementary Fig. 4). These two clusters were
correlated with the reduced peak list revealed ions at m/z
279.2 ± 0.1 and m/z 421.3 ± 0.1 that were found to be elevated in
the tumor and connective tissue clusters with Pearson correlation
values of 0.773 and 0.574, respectively.

The trained model was then applied to analyze the 3D MSI
data volume from the remaining 25 tissue sections with
142,350 spectra. To gain memory advantages, the spectra
corresponding to each 2D MSI dataset were independently
loaded into the memory and analyzed by the VAE model with a
running time of approximately 2 s for the probabilistic encoder to
predict the encoded features and another 2 s for the generative
model to reconstruct the data. The 3D MSI data was predicted
with an overall mean squared error of 1:77 ´ 10�4 (Supplemen-
tary Figs. 4 and 6) and the 3D encoded features are presented in
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Supplementary Fig. 5, representing a five-dimensional nonlinear
embedding of the original high-dimensional data. Further GMM
clustering (k= 5) of these encoded features revealed two distinct
molecular clusters associated with tumor and connective tissues
in accordance with previous studies8,27 and images of the H&E
stained tissue sections (Supplementary Fig. 6).

Identification of α-defensins in human oral squamous cell
carcinoma by 3D MALDI MSI data analysis. The deep learning
data analysis strategy was further applied to a 3D MALDI MSI
data volume acquired from 58 consecutive tissue sections (10 µm
thickness) of a human oral squamous cell carcinoma (OSCC)
specimen. Data were acquired in the mass range m/z 2000–20,000

and resulted in a total of 825,558 of preprocessed spectra
(Gaussian spectral smoothing and baseline subtraction) each of
7,665 dimensions27. The computational model was first trained
on a single 2D MALDI MSI dataset (12,875 spectra) of an arbi-
trary chosen tissue section (section #1), and then tested on MSI
data from the withheld 57 tissue sections (815,683 spectra). The
training phase reached a stable convergence after less than 100
iterations (Supplementary Fig. 7a), with a total running time of
approximately 6.1 min. The original spectral data were predicted
with an overall mean squared error of 3:7 ´ 10�3 (Supplementary
Fig. 7). The captured encoded features were clustered by GMM
(K= 7) and revealed clusters (Supplementary Fig. 7) with
underlying distribution of peptide ions at m/z 3,445 and 3,488
found to be elevated (Pearson correlation coefficient of 0.713)
with cluster#3. These peptides have previously been proposed to
be putative defensins HNP1-3 produced by neutrophils, which
can induce tumor angiogenesis27,43. Analysis of the neural-
network weight variable using Eq. (4) with parameter β set to 2.5
enabled the identification of 177m/z bins (red markers in Sup-
plementary Fig. 7f) that contributed in forming the molecular
patterns captured by the encoded features, leading to a reduced
peak list of 44m/z values (green markers in Supplementary
Fig. 7f; Supplementary Data 1).

Spectra from each of the 2D MSI datasets from the remaining
57 tissue sections were independently loaded into the RAM and
analyzed by the VAE with an average running time of ~8 s. The
proposed approach was 4 times faster and used 30 times less
memory compared to reported analysis of the same dataset8.
Results from a subset 2D MSI datasets taken at different
volumetric depth within the tissue volume are presented in
Supplementary Fig. 8 with results from the complete data volume
(Supplementary Fig. 9). The original TIC-normalized MSI data
was predicted with an overall mean squared error of 3:03 ´ 10�3

(Supplementary Fig. 8a) and the encoded features captured
molecular patterns that were clustered by GMM (k= 7).
Cluster#2 (Supplementary Fig. 8e) highlighted a molecular
structure in which lipid ions at m/z 3373, 3445, and 3488 were
colocalized and elevated (Supplementary Fig. 8f) as described
above for the 2D MSI data analysis and in agreement with a
previous study8. A reduced list of 57m/z values strongly
correlated to the identified patterns (Supplementary Fig. 8) and
results from the complete 57 tissue section volume are shown in
Supplementary Fig. 9.

Discussion
We have proposed msiPL, a generic neural-network-based
method for the analysis and peak learning of MSI data from
different types of mass spectrometer and tissue type. The neural
network showed stability and provided time and computation
efficient analysis of various types of MSI data (see Table 1 and
Supplementary Table 7). The regularization provided by both the
KL-divergence and batch normalization resulted in the stability of
the neural network and minimized its reliance on optimization of
the hyperparameter initialization32. The KL-divergence is
embedded in the VAE loss function29, and the batch normal-
ization was incorporated into the proposed network to normalize
each layer’s input right before any neuron activation to correct for
the co-variate shift32. Of note, the number of latent space
dimensions is a tunable parameter, which was here empirically set
to five dimensions. Generally, a main consideration for choosing
the number of latent space dimensions is to minimize the
reconstruction error of the generative model through optimizing
the VAE cost function shown in Eq. (3). For example, supple-
mentary Table 5 shows the effect of different model parameters
on the model complexity and the quality of data reconstruction.
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Those five-dimensional encoded features are a compressed
representation capturing molecular patterns from original high-
dimensional data, with each encoded feature combining a set of
spectral features rather than a single spectral feature. The link
between the encoded features and the original m/z variables was
established through backpropagated threshold-based analysis on
the neural-network weight matrix. The same threshold weight
was given to each encoded feature as indicated by the parameter β
as defined in Eq. (4). Since some encoded features could capture
more significant molecular patterns than other encoded features,
the β parameter can therefore be optimized for each of those
encoded features, which would require further investigation.

The performance of the network was evaluated using five dif-
ferent MSI datasets including 2D MALDI FT-ICR MSI data from
human prostate cancer (exported in an imzML file of 9.4 giga-
bytes of spectral data), 3D DESI MSI data from human colorectal
adenocarcinoma (8.9 gigabytes of spectral data), 3D MALDI MSI
data from human oral squamous cell carcinoma (47.3 gigabytes of
spectral data), and 3D MALDI MSI data from a mouse kidney
(78.9 gigabytes of spectral data), and 3D MALDI FT-ICR MSI
data from PDX mouse brain model of glioblastoma (3.3 gigabytes
of spectral data).

Of note, prior to utilizing the msiPL processing the MSI data
was normalized based on the common method of total-ion-count
(TIC). However, there are different normalization strategies for
MSI data, for example such as those covered i n ref. 44. It is up to
the end users to choose their best MSI normalization strategy;
however, the msiPL expects the normalized input data to be
bounded within the interval [0,1]. That is because the output layer
of the msiPL is based on a sigmoid activation function, which
yields values within the range [0,1]. The consistency in the
dynamic range at both the input and output layers is crucial to
properly optimize the VAE loss function shown in Eq. (3) and
eventually minimizing the reconstruction error. The reconstruc-
tion error of msiPL was further compared to other methods
previously applied on MSI data19 such as PCA, memory efficient
PCA, and Discrete wavelet transform (DWT) followed by PCA.
see Supplementary Table 8.

The proposed computational model is set to be trained on the
spectral level without considering spatial information with each
pixel providing a spectrum as part of a training sample. Indivi-
dual spectra should be aligned to a common reference, inde-
pendently of their spatial organization with a 2D or 3D image.
The neural network also features mini-batch implementation for
parallel processing and for improving memory complexity as it
only needs to load a small subset of spectral data into the memory
allowing to process large and complex data such as FT-ICR MSI
or 3D MSI. This provides an advantage over computational
approaches that require the full data loaded into memory to
calculate pairwise similarities between spectra8,42 (see Table 1),
allowing the msiPL to be trained on a workstation with a RAM
capacity of 32–64 GB. However, and due to the complexity of the
neural network that involves optimizing millions of parameters,
training the msiPL on the GPU would significantly improve the
running time compared to utilizing only the CPU as

demonstrated in Supplementary Table 6. The proposed devel-
opment provides computational boost and memory advantages
that could support a wide variety of MSI applications.

The computational performance of msiPL was compared to
two methods for nonlinear dimensionality reduction, namely: 1-
Uniform Manifold Approximation and Projection (umap)45, and
2-Hierarchical Stochastic Neighbor Embedding (HSNE)26, which
is the scalable version of t-SNE25. These methods have been used
to analyze different types of high-dimensional data46–49 and a
comparison of msiPL to these methods is presented in Table 1
showing improved computational performance for the analysis of
large scale MSI data.

The proposed strategy for 3D MSI data analysis is based on a
training/testing framework. The training phase runs on a subset
of spectra from MSI data from either a single or several tissue
sections. The training constitutes of unsupervised learning of the
underlying spectral manifold that can subsequently be clustered
to identify molecularly distinct regions. The testing phase is
applied on the withheld data that do not necessarily need to be
fully loaded into the memory at once since the computational
model can analyze a subset and capture its underlying molecular
patterns in few seconds. This new data analysis approach enabled
the overall analysis of 3D MSI data with 20 times less memory
and reduced computational time in comparison to umap and
HSNE48, see Table 1. Once identified, the molecular patterns
from distinct tissue sections in the volumetric specimen can be
reconstructed to form a 3D volume representing the specimen. As
an interesting observation, the neural network was able to iden-
tify, on test data, spectral patterns of different morphological
appearance but similar molecular phenotypes to those encom-
passed by the training data (e.g., see artery and vein structures in
the encoded features of Supplementary Fig. 3 and Fig. 5). It is
natural to observe such variations in the morphological pheno-
type of the tissue anatomy at different locations within the
volumetric specimen, but their spectral phenotype should be
similar. Therefore, if a certain spectral phenotype was not pre-
sented in the training data it would probably not be detected
during testing. It should be taken into consideration to balance
the spectral phenotypes held in both training and testing datasets,
for instance through cross-validation50 as shown in Fig. 6 and
Supplementary Fig. 10, especially in 3D MSI data that may expose
molecular heterogeneity within the volumetric specimen.

The stability performance of the computational model was
investigated using five-fold cross-validation on the 3D MALDI
MSI dataset of mouse kidney as shown in Fig. 6 and Supple-
mentary Fig. 10. The full 3D MSI dataset was randomly shuffled
and split into a 20% training set (spanning spectra from 14 tissue
sections) and 80% testing set (spanning spectra from 58 tissue
sections), see Fig. 6a. For each of the five cross-validation itera-
tions, the msiPL method was applied on the training set to
optimize the artificial neural network and the optimized model
was then applied on the unseen test set. These analyses revealed
comparable performance on both the training and testing sets, as
shown in Supplementary Fig. 10. The best cross-validation model
was able to reconstruct the original MSI dataset with minimal

Table 1 Nonlinear algorithmic performance of MSI spectral data (time and memory comparison).

Dataset umap HSNE msiPL

3D MALDI MSI of Mouse Kidney
#Spec= 1,362,830
#m/z= 7671

Memory/Time Computationally intractable 121.8 GB RAM/43min <6 GB RAM/
Training: 8.6 min
Testing: 10 sec/tissue

3D MALDI MSI of Human OSCC
#Spec= 828,558
#m/z= 7665

Memory/Time 155 GB RAM/99.95min 90 GB RAM/25min <6 GB RAM/
Training: 6.1 min
Testing: 8 sec/tissue
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mean squared error of 6:18 ´ 10�3 and 5:17 ´ 10�3 for the asso-
ciated training and testing sets, respectively, as given in Fig. 6b, c.
The stability of peak learning was investigated across the different
cross-validation models. Figure 6d. shows the frequency dis-
tribution of all m/z peaks identified in the five-fold cross-vali-
dation analyses and the peak count for each frequency is given in
Fig. 6e. Overall, 69.6% of the m/z peaks were found stable as they
were consistently identified in 80% of the cross-validation ana-
lyses. Figure 6f shows 3D spatial distribution of some of those
stable m/z peaks and each of which reveals high colocalization to
a specific structure that reconciles the kidney’s anatomy—
reflecting quality of the learned peaks. The full peak list from the
different cross-validation models is provided in the Supplemen-
tary Data 2. Similarly, another cross-validation analysis was
applied on the 3D DESI MSI dataset of colorectal carcinoma and
it revealed stable peaks such as m/z 279.2 and m/z 766.5, which

are localized and elevated in the tumor and normal tissue clusters,
respectively, as shown in the Fig. 7.

While the neuron activation function of rectified linear unit
(ReLU) was used in all layers of the proposed deep learning network,
it was not used in the output decoder layer in which the sigmoid
function was employed instead. The main reason is that the sigmoid
function at the output layer is more adequate for the underlying
VAE loss function. The VAE loss function, as illustrated in Eq. (3)
consists of summation of two terms of KL-divergence and the
marginal likelihood estimate that was modeled using categorical
cross-entropy. The KL-divergence acts as a regularizer for the
probabilistic encoder to measure the similarity between the
approximate estimate distribution qϕ(z|x) and the true but intract-
able distribution pϴ(z|x). The categorical cross-entropy was used to
measure the reconstruction loss between two probability distribu-
tions of original input and the estimated marginal likelihood
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the training set to optimize the artificial neural network and the trained model was then applied on the unseen test set. b The best cross-validation model
was able to predict the original associated training dataset with minimal mean squared error of 6:18 ´ 10�3; and showing close distribution of their average
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peaks count for each frequency (e). Overall, 69.6% of the peaks were found stable as they were consistently identified in 80% of the cross-validation
analyses. f 3D Spatial distribution of selected stable m/z values and each of which reveals high localization to a specific structure that reconciles with the
kidney’s anatomy, thereby reflecting relevance of the learned peaks.
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represented by the decoded output. Unlike the ReLU activation
function, the sigmoid function output can be interpreted as a
probability since its range varies between 0 and 151.

The peak learning performance of msiPL was benchmarked
against a classical approach by performing peak picking on a
mean spectrum. The classical approach is based on the ortho-
gonal matching pursuit (OMP) algorithm52,53, which is imple-
mented in the software SCiLS lab (version 2020a, Bruker). The
OMP algorithm for peak picking was applied on the mean
spectrum of the 3D MALDI MSI PDX GBM dataset using the
software’s default values. The peaks identified by both msiPL and
the OMP are highlighted in Supplementary Fig. 11a, and listed in
the Supplementary Data 3. While 38% of the peaks were picked
by both methods, the msiPL method exclusively picked 53% of
the total identified peaks whereas 9% of the peaks were exclu-
sively picked by the classical approach (Supplementary Fig. 11).
The performance of msiPL in identifying peaks of lower inten-
sities, as shown in Supplementary Fig. 11b, c, is attributed to the
underlying employed concept of manifold learning that focuses
on learning m/z patterns regardless of peak intensity and shape.
The majority of peaks identified by msiPL in the 3D MSI PDX
GBM dataset (Supplementary Tables 2–4) were missed by the
classical OMP method applied to the mean spectrum for rapid
analysis (few seconds). The sensitivity for peak identification with
such a classical method could be improved by optimizing peak
picking parameters15 and by analyzing a wider number of
spectra17,41, which results in longer processing time (Supple-
mentary Table 7). Moreover, a recent study by Murta et al.
showed that the selection of peak picking parameters does not
only affect the clustering analysis but could in turn impact bio-
logical interpretations54.

Analysis of mass spectrometry imaging data with bypassing
conventional spectral preprocessing would enrich the biomarker
discovery process by increasing identification sensitivity and
specificity for molecular ions with biological relevance. For

instance, this would minimize the effect of optimization in pre-
processing steps required for feature extraction such as peak
picking that have an impact on overall biomarker identification.
Despite manufacturers currently offering default parameter set-
tings for the peak picking process (e.g., spectral smoothing,
signal-to-noise ratio (S/N), peak shape, and peak threshold), these
default values are general and may lack the sensitivity needed to
identify peaks of lower intensity15 (e.g., Supplementary Fig. 11).
Additionally, the quadratic computational complexity of the
analysis slows down the peak picking process with an increase in
the number of spectra17, see Supplementary Table 7. Of note, the
local maxima detection applied here to reduce the original FT-
ICR MSI data complexity conceptually differs from peak picking.
The former identifies local maxima between three consecutive m/
z variables13,17, while the latter seeks to identify relevant peaks
induced by molecules which are spectrally characterized by a
structure that includes (peak height, width, slope, and baseline)
and minimize the contribution of noise-to-signal ratio. However,
the local maxima approximation applied to the FT-ICR MSI data
could be avoided in future developments through, for example,
investigating an integrated multi-spectral scale neural-network
architecture. Such future work would allow to cope with even
more complex spectral data such as those acquired by ultrahigh
resolution FT-ICR MSI instruments55. Future developments may
also consider another level of spectral complexity such that
provided by the collision cross section property of the trapped ion
mobility spectrometry (TIMS) based technology which holds
promise for molecular identification56. Classical machine learning
approaches are of limited capabilities to analyze original mass
spectrometry data at full spectral dimensions. Mainly, because
those approaches suffer a common issue known as curse-of-
dimensionality that deteriorates the clustering/classification
accuracy on high-dimensional data57. In contrast, deep-learning-
based approaches have shown the ability to avoid the curse-of-
dimensionality and to establish self-learning of relevant features
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that increase classification accuracy58. This expansion in data
analysis could impact complex applications such as multiclass
classification required to resolve molecular intratumor
heterogeneity.

The GMM-based clustering method on the encoded features
has been found computationally fast (i.e., a few seconds) as well as
efficient in identifying spatial clusters of biological relevance such
as distinguishing normal and tumor clusters. The number of
K-clusters is a user tunable parameter that could be set either
manually or automatically. In our strategy, an iterative approach
was followed in which the GMM clustering process was applied
on a different number of K-clusters within an expected range. The
best model was then manually chosen as such it exhibited a
clustering balance that avoids under-/overestimation, but an
information theory-based optimization process can be utilized for
automated model selection, see Supplementary Fig. 12. That is the
Bayesian information criterion (BIC) algorithm in which the best
model is theoretically expected to achieve the minimal BIC
score59. Since the distribution of the BIC scores is gradually
decreasing within the searchable range, as shown in Supple-
mentary Fig. 12, the Kneedle algorithm60 (using the python
public package “Kneed”) was then applied on the BIC scores to
detect the critical point of maximum curvature (also known as
elbow/knee point) at which the best model was selected. Com-
pared to the manual approach, there was a noticeable under-
estimation for the PDX GBM dataset in which intratumor het-
erogeneous clusters were missed whereas an overestimation was
observed for the colorectal cancer dataset.

We sought to investigate the capabilities of a trained msiPL
model to analyze unseen data of similar tumor type but from a
different subject with different tumor grade. Here, the model
trained with a MALDI FT-ICR MSI dataset from prostate can-
cerous tissue with a Gleason score (3+ 4) (Fig. 2) was applied to
the analysis of a distinct MALDI FT-ICR MSI dataset, see Sup-
plementary Fig. 13. The histopathological annotation of the test
tissue section revealed two cancerous regions with distinct
Gleason scores of (5+ 4) and (3+ 4) (Supplementary Fig. 13d).
The test MSI dataset, constituting of 13,471 spectra each with
61,343m/z values, was analyzed by the trained msiPL model in
56 s. The model was able to predict and reconstruct the original
test data with an overall mean squared error of 2:273 ´ 10�5, and
the overlay of the average TIC-normalized spectrum of both
original and predicted data are shown in Supplementary Fig. 13a.
The distribution of the GMM model selection criterion based on
the Bayesian information criterion (BIC) and Kneedle algorithm
revealed an optimal number of K-clusters (K= 11) (Supple-
mentary Fig. 13b), which was applied to a clustering analysis of
the encoded features (Supplementary Fig. 13c, e). Of interest, the
model captured a spatial cluster associated with the histopatho-
logical annotation of Gleason score (5+ 4) (Supplementary
Fig. 13f), and the Pearson correlation analysis revealed the highest
correlated ion feature at m/z 786.5981 ± 0.001 (Supplementary
Fig. 13g). In accordance with a recent study that analyzed the
same dataset, we noticed clustering distinction between two
Gleason scores of (5+ 4) and (3+ 4)61. While our results support
the efficiency of msiPL for unsupervised mining of different MSI
datasets and identification of spatial patterns of biological rele-
vance, we envision future extensions of the msiPL model to
enable classification and predictive tasks for tumor type and grade
directly from the mass spectral data.

Taken together, the deep learning data analysis strategy pre-
sented here provides the ability to learn the underlying nonlinear
manifold required to identify and visualize molecular patterns
from original high-dimensional data, avoiding preprocessing
computation. The resulting workflow provides improved data
analysis time of large and complex new data, while delivering an

enriched biomarker discovery process through unsupervised
identification of complex molecular patterns with identification of
their determinant m/z values.

Methods
Experimental datasets. MSI datasets from five different tissue types were analyzed
and their description is given in the Supplementary Materials and Methods. Briefly,
three of these MSI datasets are publicly available27, which include: 3D DESI MSI
dataset of human colorectal adenocarcinoma, 3D MALDI MSI dataset of human
oral squamous cell carcinoma, and 3D MALDI MSI data of mouse kidney. The
other two MSI datasets were collected and acquired at our institution, which
include: 2D MALDI FT-ICR MSI dataset of human prostate cancer62, and 3D
MALDI FT-ICR MSI dataset of PDX mouse brain model of glioblastoma63. The
MSI datasets, without prior peak picking, were exported in the standardized format
imzML37 using SCiLS Lab (2019c, Bruker) and converted to HDF5 format38 for
variational autoencoder analysis.

Variational autoencoder. Mathematically, spectra of MSI data can be represented
as a set of high-dimensional vectors X ¼ fx 1ð Þ; x 2ð Þ; ¼ ; xðNÞg, where N represents
the total number of spectra (or pixels) and each spectrum x ið ÞϵRd is of d-dimen-
sions. We assume these d-dimensional i.i.d. vectors were generated by a random
process that involves an unobserved lower-dimensional latent variable zϵRk , where
d � k. The latent variable is sampled from a prior distribution pϴ*(z) and the
datapoint x(i) is generated from the conditional distribution pϴ*(x|z). The true
posterior distribution pϴ*(z|x) would provide a compressed representation (we
referred to it as encoded features) of the observed high-dimensional data. The high-
dimensional nature of x(i) makes the posterior distribution computationally
intractable. The variational inference aims therefore at introducing a recognition
model qϕ(z|x) that approximates the true intractable posterior pϴ(z|x). The
recognition model is assumed to be sampled from a normal distribution para-
meterized by μϕ(x) and σϕ(x) as shown in Eq. (1). The inference of the latent
variable z would enable the generative model of marginal likelihood estimator pϴ(x|
z) to reconstruct datapoint x(i).

qϕ z; j; xð Þ�N ðμϕ xð Þ; σϕðxÞIÞ: ð1Þ
The variational parameter ϕ needs to be estimated as such it makes qϕ(z|x)

as close as possible to the true posterior pϴ(z|x). The Kullback-Leibler (KL)
divergence, given in Eq. (2), can assess the closeness between these two
distributions. Because the KL-divergence is always non-negative, the term
ðEqϕðzjxÞ½log qϕðzjxÞ� � EqϕðzjxÞ½pθðz; xÞ� ¼ LÞ represents the variational lower

bound on the marginal distribution, where L ≤ logpϴ(x). The optimum
estimate of the parameters ϕ and ϴ would maximize the variational lower
bound that can be rewritten as shown in Eq. (3).

KLðqϕðzjxÞ k pθðzjxÞÞ ¼
Z

qϕðzjxÞ log
qϕðzjxÞ
pθðzjxÞ

dz

¼ EqϕðzjxÞ½log qϕðzjxÞ� � Eqϕ ðzjxÞ½pθðz; xÞ� þ log pθðxÞ:
ð2Þ

In variational autoencoder (VAE), the recognition model represents a
probabilistic encoder and the generative model represents a probabilistic decoder.
The recognition and generative model parameters ϕ and ϴ are computed from the
neural-network parameters and jointly optimized by maximizing the cost function
of the variational lower bound ℒ(ϕ, ϴ;x(i)), given in Eq. (3), which eventually
would minimize the overall VAE loss. The first term of this cost function acts as a
regularizer for the encoder and it measures the closeness between the approximated
posterior and the prior. The second term represents the expected value of the
prediction error which we modeled as a cross-entropy.

Lðϕ; θ; xðiÞÞ ¼ �KL qϕðzjxðiÞÞ k pθðzÞ
� �

þ EqϕðzjxðiÞ Þ½log pθðxðiÞjzÞ�: ð3Þ
Kingma et al. introduced a reparameterization trick to make ℒ(ϕ, ϴ;x(i))

differentiable with respect to ϕ and ϴ. That is, incorporating first an auxiliary variable
ε � N ð0; 1Þ with an input datapoint x(i) to form a continuous function gϕðε; x ið ÞÞ that
can then be used to sample the latent variable from the approximated posterior

z ið Þ � qϕ z; j; x ið Þ� �
as such z ið Þ ¼ gϕ ε; x ið Þ� � ¼ μϕ x ið Þ� �þ diag σϕ x ið Þ� �� �

:ε. For

more information on variational autoencoder, we refer to ref. 29.

Identification of Informative m/z peaks. The inferred multivariate latent variable
z represents encoded features that capture molecular patterns in the original MSI
data. It is therefore of interest to identify m/z features underlying those learnt
patterns. We propose a threshold analysis on the weight parameter W(L) of the
neural network at layer L, as depicted in Fig. 1d. Briefly, for each encoded feature
represented by the ith neuron at layer h2 we first identify the jth neuron at the
previous hidden layer h1 with maximum scaler weight value w 2ð Þ

ij � W 2ð Þ, see red
line in Fig. 1d. Then, a threshold T was computed, Eq. (4), using the weight vector
w 1ð Þ
dj � W 1ð Þ , which is a one-dimensional vector holds the weights between all d

neurons of the input layer L1 and the identified jth neuron at h1. Eventually, a set of
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p neurons at the input layer L1 whose weights are larger than T ði:e:; w 1ð Þ
dj ≥TÞ were

retrieved and each of which represents an m/z variable, for schematic illustration
see blue highlighted lines in Fig. 1d. Since the original MSI data were analyzed
without prior preprocessing for peak picking, the retrieved observed variables
represent m/z bins that need then to be assigned to its associated m/z peak. As
such, an m/z peak has been identified on the average spectrum as the nearest local
maximum to a given m/z bin.

T ¼ meanðwð1Þ
dj Þ þ β � std ðwð1Þ

dj Þ;where β 2 ½1; 2:5�: ð4Þ

Data clustering using Gaussian Mixture Model (GMM). The encoded features
reduce the original dimensional complexity and enable application of a simple
clustering algorithm such as Gaussian-mixture model (GMM)64. The encoded
features are expected to learn a nonlinear manifold to allow capturing and visua-
lizing molecular patterns from original high-dimensional data. The clustering
algorithm would cluster those patterns to form one image in which distinct clusters
represent molecularly distinct regions. The number of clusters (k) for the GMM
clustering algorithm is a user tunable parameter that can also be automated using
the Bayesian information criterion59. A cluster of interest is then correlated with
the MSI data of reduced peak list to identify colocalized m/z peaks with the highest
Pearson correlation coefficient.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
These three MSI datasets (3D MALDI TOF MSI data of human oral squamous cell
carcinoma, 3D MALDI TOF MSI data of mouse kidney, and 3D DESI Orbitrap MSI data
of human colorectal adenocarcinoma) were previously published and publicly available
by Oetjen et al.27. The 2D MALDI FT-ICR MSI data generated from human prostate
tissue, and the 3D MALDI FT-ICR MSI data generated from a PDX glioblastoma mouse
model in this study have been deposited in the NIH Common Fund’s National
Metabolomics Data Repository (NMDR) Metabolomics Workbench (https://
www.metabolomicsworkbench.org) under project id (PR001171) with https://doi.org/
10.21228/M8BM4Q. The Human Metabolome Database (https://hmdb.ca/) was used for
annotation of m/z values.

Code availability
Source code is publicly available on GitHub: https://github.com/wabdelmoula/msiPL.git.
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