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Real-time determination of earthquake focal
mechanism via deep learning
Wenhuan Kuang 1✉, Congcong Yuan 2 & Jie Zhang 3✉

An immediate report of the source focal mechanism with full automation after a destructive

earthquake is crucial for timely characterizing the faulting geometry, evaluating the stress

perturbation, and assessing the aftershock patterns. Advanced technologies such as Artificial

Intelligence (AI) has been introduced to solve various problems in real-time seismology, but

the real-time source focal mechanism is still a challenge. Here we propose a novel deep

learning method namely Focal Mechanism Network (FMNet) to address this problem. The

FMNet trained with 787,320 synthetic samples successfully estimates the focal mechanisms

of four 2019 Ridgecrest earthquakes with magnitude larger than Mw 5.4. The network learns

the global waveform characteristics from theoretical data, thereby allowing the extensive

applications of the proposed method to regions of potential seismic hazards with or without

historical earthquake data. After receiving data, the network takes less than two hundred

milliseconds for predicting the source focal mechanism reliably on a single CPU.
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M itigating the damaging level of earthquake hazards has
been a long endeavor in seismology1–3. When a
destructive earthquake occurs, real-time reporting of

the earthquake parameters is of crucial importance for immediate
destruction assessment and emergency evacuations. Recent efforts
have been refined towards applying artificial intelligence (AI)
technologies to estimate the source parameters because of its full
automation, high efficiency, and human-like capability4–6, which
has been remarkably demonstrated in numerous seismic pro-
cessing tasks such as earthquake detection7,8, seismic
phase picking9–11, magnitude estimation12, and others13–18.
Besides reporting the three basic parameters of an earthquake
(i.e., origin time, location, and magnitude), it is also exceedingly
important to derive the source focal mechanism in time to better
understand various aspects of the earthquake. For example, we
can use source focal mechanisms to characterize faulting geo-
metry and faulting mechanism19,20. A group of focal mechanisms
can be used to invert the spatial stress field distribution21–23. We
can also use the focal mechanism of the mainshock to calculate
the static Coulomb stress changes24–26 for examining the earth-
quake triggering theory of the aftershocks27–29. Furthermore, the
timely derived source focal mechanism can provide significant
additions such as fault orientation and slipping mode to the
point-source ground motion prediction model that is currently in
practice30–32, and thus has the potential to help improve the
predicted ground shakings for early warning purpose. The
immediate determination of the source focal mechanism is
therefore of great importance to monitor and assess seismic
hazards.

Compared to determining other source parameters of an
earthquake (i.e., origin time, location, and magnitude), the esti-
mation of the source focal mechanism usually requires much
more human interactions and lacks full automation and effi-
ciency. Approaches for conventionally resolving the focal
mechanism mainly have three categories based upon the wave-
form information used, such as first motions of P waves33,34,
amplitudes of P and/or S waves35,36, and full waveforms37,38.
After receiving the seismic data, these conventional methods
usually take a few minutes to tens of minutes for retrieving the
focal mechanism solution, and hence incapable of realizing the
real-time reporting. Several recent studies first apply deep
learning to estimate the P wave first-motion polarities9,39–41, and
then apply the first motions to carry out focal mechanism
inversion using programs such as HASH42. One of such efforts
leads to improved focal mechanisms in California compared to
existing catalogs9. Several seismological studies suggest that uti-
lizing waveform data can provide better constraints for deriving
the focal mechanism than using the P wave first-motion pola-
rities37,38,43. More importantly, our objective is to develop a
seamless real-time solution for obtaining the focal mechanism in
a fully automated fashion. Directly obtaining the focal mechanism
of an event from waveform data with processing effort as little as
possible is more appealing. Another recent progress that took
advantage of an advanced search engine was performed44 to
estimate earthquake source parameters in less than 1 s. Although
this approach reduces the time cost significantly, its imple-
mentation may be infeasible and impractical since it requires a
tremendous search database (~hundreds of Gigabits) for each
upcoming search. Besides, the search engine approach needs to
reorganize the recorded waveforms as one-dimensional (1D)
super trace and it is infeasible in implementation. Hence, the
challenge remains in the full automation and practical imple-
mentation for real-time determination of the source focal
mechanism.

In this study, we leverage the powerful advances in deep
learning and propose a novel deep convolutional neural network

(Focal Mechanism Network, FMNet) for estimating the source
focal mechanism rapidly using full waveforms. Unlike common
applications in which the training of supervised neural network
models demand voluminous real data, the proposed FMNet can
be trained with synthetic data at first and then applied to real data
directly. FMNet learns the universal characteristics of waveforms
concerning the source focal mechanisms from the synthetic
training data. This considers the scenarios without enough his-
torical source focal mechanisms for training the neural network
model, especially for those regions with limited seismicity but
having the potential seismic hazards. For generating the large
training dataset, we discretize the three-dimensional (3D) grid
space of the study area of interest. We simulate theoretical
waveforms with a variety of focal mechanisms at each spatial grid
point. We train the FMNet model with the synthetic dataset and
then apply it to predict the focal mechanisms of four real
earthquakes with magnitudes larger than 5.4 of the Ridgecrest
sequence which occurred in July 2019 in southern California.
Additionally, we produce a by-product of the encoder, which is a
sparse representation of the input waveforms, to analyze the
working mechanism and robustness of the FMNet.

Results
Study area and data preparation. The study area is located in the
region of Ridgecrest in southern California (Fig. 1), where a
damaging earthquake sequence proceeded by an Mw 6.4 fore-
shock and followed by an Mw 7.1 mainshock in July 2019. Four
moderate-to-large earthquakes (Mw > 5.4) in the sequence are
selected for this study. We collect the three-component (3-C)
seismograms from 16 seismometers that are deployed by the
Southern Californian Seismic Network (SCSN) around the Rid-
gecrest area. They are utilized as the testing data for examining
the validity of the proposed FMNet. Before the applications of the
FMNet model, sufficient training data are vital for assuring a well-
trained neural network. Here, instead of using the historic data,
we simulate hundreds of thousands of synthetic data as training
data since there are very limited source focal mechanisms of
historical earthquakes available in this area.

Fig. 1 Grid discretization of the study area. The study area is located in the
Ridgecrest region of southern California. The range of monitoring area is
about 100 km × 100 km in both latitude and longitude directions. The 3D
grid discretization has a depth range from 2 to 20 km. In all, 16 seismic
stations (black triangles) within 150 km are used to model the 3-C synthetic
training data. Red star denotes the mainshock in the Ridgecrest sequence.
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As shown in Fig. 1, the study area is discretized from 35.4˚ to
36.2˚ in latitude direction, from −118.0˚ to −117.2˚ in longitude
direction, and from 2 to 20 km in depth. The intervals are 0.1˚,
0.1˚, and 2 km for latitude, longitude, and depth, respectively. We
have 9 × 9 × 10= 810 virtual grid locations in 3D space.
Assuming a double-couple source model45 and a 1D velocity
model of southern California46, we simulate the 3-C waveforms at
16 seismic stations by adopting the Thompson-Haskell propa-
gator matrix47. For each virtual 3D grid, we simulate synthetic
waveforms for all combinations of the strike, dip, and rake angles
in the ranges of 0˚ to 360˚, 0˚ to 90˚, and −90˚ to 90˚37,
respectively. The used intervals of the strike, dip, and rake angles
are 30˚, 10˚, and 20˚, respectively. Hence, we have 12 × 9 × 9=
972 focal mechanisms for each virtual grid and overall 810 × 972
= 787,320 synthetics as training samples, of which each sample
contains the 3-C waveforms of 16 seismic stations with a time
length of 128 s. Since we normalize the waveforms of each
synthetic sample based on the maximum amplitude, we choose a
fixed magnitude for all events when modeling the synthetic
waveforms. We use 1 s as the sampling rate in all the simulations.
Therefore, each training sample has a size of 48 (3 components ×
16 stations) × 128 (data length). Additionally, we have prepared
another 1000 synthetic samples as the validation dataset. The
validation dataset serves as unseen data to evaluate the training
performance.

The training samples are processed by filtering between 0.05
and 0.1 Hz, aligning with the theoretical P wave first arrivals, and
normalizing to the maximum amplitude. For real data, we need to
take the picked onset time of each trace for carrying out the
waveform alignment. These preprocessing procedures are impor-
tant because they help us get rid of the effect from other source
parameters such as location and magnitude, and mitigate the
dependence on the heterogeneity of velocity media. Considering
the real data may present noise and picking errors, we generate
realistic scenarios by adding realistic noise and a random time
shift (<2 s) to the synthetics (Supplementary Fig. 1) since
advanced techniques have greatly reduced the picking errors9–11.
The realistic noise is extracted from the real recordings at each
seismic station. When adding the realistic noise, we randomly
scale the amplitudes of noise to account for different signal-to-
noise ratios (SNR). The random time shifts are added to each trace
of the training samples to account for the picking errors. We
process all the synthetic data in the same way and use them to
train the network. After the FMNet is well trained, in case that one
real earthquake is identified with the existing algorithms of
automatic detection and phase picking7–11, we first remove their
instrument responses and then perform the bandpass filtering,
arrival-time alignments, and amplitude normalizations on the data
prior to feeding them to the FMNet.

FMNet training and prediction. The framework of the real-time
determination of the source focal mechanism is presented in
Fig. 2. It consists of two parts: FMNet training and prediction. For
the training part, we train the FMNet with the synthetic data
prepared previously along with the corresponding training labels.
We describe the architecture of the FMNet, training labeling, and
the associated training parameters in the Methods section. In the
training process, both the training and validation losses, and the
goodness of fitting between true and predicted labels of validation
data are viewed as metrics to evaluate the performance of the
training process (Supplementary Figs. 2 and 3). The stabilized
training and validation loss curves after 50 iterations with suffi-
ciently low resultant values and the high fitting level of between
true and predicted labels, both indicate that the FMNet has been
stably trained. When it comes to the prediction part, we can

directly feed the processed recordings of a real earthquake into
the trained FMNet to predict the source focal mechanism. The
training process takes about 5 h with 4 GPUs of NVIDIA Tesla
V100 for acceleration. However, once well trained, the designed
FMNet can output a focal mechanism solution in only 196ms on
a single CPU. Moreover, the trained network model can be
deployed to estimate the source focal mechanisms in areas of
interest permanently.

To evaluate the general performance and estimate the errors of
our model, we generate another test dataset of about 1000 unseen
synthetic samples simulated with a diversity of focal mechanisms
of normal, strike-slip, and reverse faulting mechanisms (Supple-
mentary Fig. 4). Using the well-trained model, we predict the
focal mechanisms on this test dataset. For these predicted focal
mechanisms, we adopt the Kagan angle analysis48,49 to quantify
the estimation errors, in which each Kagan angle quantitatively
characterizes the difference in rotation angle between the true and
the predicted focal mechanisms. From the results of Kagan angle
distribution (Supplementary Fig. 5), we find that 97.8% of the
Kagan angles are within 20˚ and only a small fraction of about
2.2% of the estimates have an error larger than 20˚. Investigating
the remaining 2.2%, we find it is probably caused by the
equivalent property of the two nodal planes of the focal
mechanism (the true and the auxiliary nodal planes are
equivalent). Including more constraints such as first-motion
polarities should possibly mitigate this issue and further improve
the model. Nevertheless, this test shows that our model can stably
predict most events (97.8%) on testing a variety of unseen data
with acceptable estimation errors. Furthermore, this test also
validates that our model has learned the general ability to predict
a diversity of focal mechanisms.

FMNet prediction results. The source focal mechanisms of four
large earthquakes (Mw > 5.4) in the Ridgecrest sequence are
estimated with the trained FMNet. We show these results as red
beach balls in Fig. 3. The predicted focal mechanisms generally
reveal the strike-slip faulting with very steeply dipping fault
planes. Among them, the three focal mechanisms in the southern
region, including the Mw 6.4 foreshock and Mw 7.1 mainshock,
demonstrate pressure axes in the north–south direction and
tension axes in the east–west direction. The other one in the
northernmost region shows a slight rotation in the fault plane
azimuth. For comparison, we also plot the focal mechanism
results from the SCSN moment tensor catalog as reference
solutions (in black) in Fig. 3. We can see that the predicted focal
mechanisms by the FMNet and the reference focal mechanisms
from the SCSN catalog are essentially consistent for the three
earthquakes in the southern region, considering the differences in
methods, parameterization, velocity model, and the number of
recording stations used. The northernmost event is not included
in the SCSN catalog for comparison. For this event, we conduct
the widely used generalized cut-and-paste method (gCAP)38 to
invert its focal mechanism as shown in gray. We observe that the
inverted focal mechanism and the predicted focal mechanism
match well for this event. Moreover, the slight rotation of fault
azimuth is consistent with the distribution pattern of the after-
shock event locations (gray dots). Comparing to other studies
regarding this earthquake sequence20,23,50, the predicted focal
mechanisms by our FMNet are essentially consistent with pre-
vious results. All these results demonstrate that the proposed
FMNet enables us to determine the source focal mechanisms
effectively. Additionally, the trained FMNet only takes 196 ms
with a minimum requirement of computing resources and
memory storage, which outperforms both the conventional
methods and the fast search method.
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The comparison of waveforms is the most straightforward way
to evaluate the predicted results. For this purpose, we simulate the
synthetic waveforms using the predicted source focal mechanisms
by our FMNet and analyze the similarity between real waveforms
and synthetic waveforms (Supplementary Fig. 6). After compar-
ison, we find that both the amplitude and phase information of
waveforms across different seismic stations are overlapped well
and the computed cross-correlation coefficients reach 0.86, which
indicates that the FMNet has learned the ability to recognize the
waveforms and mapping them to the corresponding source focal
mechanism solution reliably.

Interpreting the FMNet using the encoder. To further investi-
gate the working mechanism of our FMNet, by adopting an idea

developed for face recognition, where the network learns a
mapping from face images to a compact Euclidean space where
distances directly correspond to a measure of face similarity51,52,
we output the extracted features to analyze the reliability and
robustness of our model. The last layer of the compression part of
the FMNet is exported as a by-product of the encoder (see Fig. 6
and Methods section for details). After training, this encoder can
take any training input with the size of 1 × 48 × 128 and output
the extracted feature with the size of 128 × 1 × 1. With the
encoder, we verify the hypothesis that a measure of feature
similarity in feature domain is equivalent to a measure of wave-
form similarity in data domain through adopting the following
steps: First, we calculate the extracted features using the encoder
for the whole training dataset to build an encoded database in
feature domain. Then, we calculate the extracted features of the
data that records a real earthquake. Finally, we measure the L2-
norm misfits between the encoded database of training data and
the encoded features of the real data in feature domain. For
comparison, we also calculate the L2-norm misfits in data domain
measuring the waveform differences between real data and
training database. By finding the smallest L2-norm misfit, if the
retrieved best solution in feature domain corresponds to the best
solution retrieved in data domain, we can therefore validate the
above hypothesis.

We take the Mw 6.4 foreshock as an example. With the steps
illustrated above, we display the comparison of L2-norm misfit
distributions that are calculated in data domain (in red) and in
feature domain (in black) in Fig. 4a, after ranking in ascending
order. Since the whole training dataset is too large, we plot only
the first 5000 smallest misfits for clarification. We can see that the
L2-norm misfit distributions calculated in data domain and
feature domain present a similar shape. Meanwhile, Fig. 4b–d
show the corresponding training labels of the strike, dip, and rake
angles, respectively, for the L2-norm misfits in feature domain
(the black curve in Fig. 4a). By finding the smallest L2-norm
misfit, the retrieved best solution of the strike, dip, and rake
angles in feature domain are highlighted as magenta circles. Then
we compare the best solutions retrieved in data domain and
feature domain as shown in Fig. 5. We can observe that the best
solution retrieved in feature domain (in magenta) matches well
with the best solution that is retrieved in data domain (in red).
These analyses and comparison results validate our hypothesis
that the extracted features in feature domain maintain the

3D discretization to model synthetic data

Train

Output
(strike/dip/rake)

Predict
Real data

Deep learning

Fig. 2 Schematic flowchart illustrating the framework of determining source focal mechanism via deep learning. First, we discretize the monitoring area
of interest into three-dimensional (3D) grids and simulate the theoretical waveforms (red waveforms) as training data to train a designed FMNet. Then,
when a real earthquake occurs (red star), we directly feed the recorded waveforms (black waveforms) into the well-trained FMNet and output the
earthquake focal mechanism directly.

07060418 Mw5.44

07060319 Mw7.1

07051107 Mw5.4
07041733 Mw6.4

 AI        SCSN

Fig. 3 The application results to the July 2019 Ridgecrest sequence in
southern California. Four large earthquakes with magnitudes larger than
5.4 (red stars), including the foreshock of Mw 6.4 and the mainshock of
Mw 7.1, are tested. The determined focal mechanisms from artificial
intelligence (AI) are shown in red, and the reference solutions from
Southern California Seismic Network (SCSN) moment tensor catalog are
shown in black for comparison. The northernmost focal mechanism (gray)
is inverted using gCAP method since it is not included in SCSN moment
tensor catalog. Gray dots show background seismicity.
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essential information of the original waveforms in data domain
under the least-square sense, thus the extracted features are
sufficient to identify its corresponding source focal mechanism.
Moreover, the 10 best solutions (in magenta and black) retrieved
in feature domain are generally consistent with minor variations,
which illustrates the stability of the trained network.

From the above analysis, the compression part of our FMNet
(i.e., the encoder) can be interpreted as a sparse transformation of
the input waveforms, where the input data have been compressed

from 1 × 48 × 128 to 128 × 1 × 1 in size by a decreasing factor of
48 times while keeping the key information in the data. The
encoder also provides an alternative way to rapidly retrieve the
best-matched source focal mechanism by searching in the dataset
with encoded features that are prepared with the training data in
advance. The expansion part of the FMNet mainly takes these
extracted features to reconstruct a mapping function that yields
the Gaussian distributions to represent the three angles of a focal
mechanism. We address all these analyses presented in this
section are for understanding the working mechanism of the
FMNet and also for robustness analysis. When the proposed deep
learning methodology is applied in a real case, we can directly
feed the real data into the well-trained FMNet and output the
focal mechanism rapidly. The intermediate output of the
extracted feature maps can be used to further evaluate the
reliability of the solution.

Discussion
The proposed FMNet is a deep-learning-based intelligent algo-
rithm that allows us to estimate the source focal mechanism using
data from a specific seismic network. The FMNet extracts and
learns the essential features of the waveforms from the training
dataset, thereby memorizing all the information into the neural
network, and hence re-visiting the database is unnecessary. The
proposed FMNet only stores the neural weights of a few Mega-
bytes for the memory usage, which enables the FMNet to be
feasible for automatic real-time applications. In earthquake
monitoring, it may take several tens of seconds to over a minute
for receiving the full waveform data needed at a number of

(c) Dip (d) Rake

(b) Strike(a) Ranked misfit

Fig. 4 Interpreting the neural network using the encoder. a The comparison of the L2-norm misfit distributions that are calculated in data domain (in red)
and feature domain (in black) for the Mw 6.4 foreshock, which are ranked in ascending order. For clarification, only the first 5000 smallest misfits are
plotted. b–d The corresponding training labels represented in the discretized strike, dip, and rake angles, for the L2-norm misfit distribution in feature
domain as shown in the black curve in (a). The best solutions of the strike, dip, and rake angles retrieved by finding the smallest L2-norm misfit are
highlighted in magenta circles.

Fig. 5 The comparison of best solutions retrieved in data domain (in red)
and feature domain (in magenta). The 10 best solutions (in magenta and
black) with the smallest L2-norm misfits retrieved in feature domain are
also shown for comparison after ranked in ascending order.
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seismic stations depending on the source–station distance. From
that point, our neural network system takes about an additional
200 ms for analysis, which is negligible.

For resolving the focal mechanism of an earthquake, we are
able to train the FMNet with a synthetic waveform dataset.
Therefore, we can apply the proposed method to areas with low
seismicity but high risks of potential earthquake hazards. How-
ever, the calculation of synthetics requires an accurate velocity
model corresponding to the frequency band of data. In the case of
southern California, this is not a major concern since velocity
models have been well studied. For other areas, it may require
substantial effort on modeling and inversion to ensure an accu-
rate velocity model before applying the approach. We present a
numerical study using a velocity model with perturbations
(Supplementary Fig. 7). We perturb the true velocity model by a
maximum of 10% in each layer to generate a different model.
From the testing results (Supplementary Fig. 8), we can tell that
the estimation errors for dip and rake are 8˚ and 20˚, respectively,
and their prediction probabilities are lowered as well.

Approach using the P wave first motions requires sufficient
azimuthal station coverage to constrain the focal sphere, however,
inverting three-component waveform data from a single seismic
station should be able to resolve the entire source focal
mechanism in theory53–56. The FMNet utilizes the three-
component full waveform information and it shows smaller
estimation errors compared to the approach based on the P wave
first motions (Supplementary Figs. 9 and 10). The deep learning
approach is different from inversion. When some of the stations
do not offer data for input, missing data are replaced by zeros as
input while the training data still keep the full set. We design a
test with the distribution of the halved number of stations on one
side of the event and the rest of the stations with zero traces for
data (Supplementary Fig. 11). The event is assumed to occur in an
area with training data available. From the test results, we find
that the strike and dip angles are well resolved, but the rake angle
is off by nearly 20˚, and the prediction probability of rake is
significantly lower (about 0.5) (Supplementary Fig. 12). There-
fore, it is important to evaluate the prediction probabilities.

Since we use synthetics associated with a 1D velocity model to
create a dataset for training and testing, it limits the application to
low-frequency data, which are generally available from moderate
and large events. In this study, the FMNet is evaluated on four
earthquakes with magnitudes larger than 5.4. Hundreds of
earthquakes below Mw 5.4 in the same area could not be used for
testing because of missing low-frequency signals in the data or
poor data quality. Further development efforts are needed to

combine the P wave first motions and waveform data to handle
smaller events. Generating a 3D velocity model with great details
could help model the high-frequency data as well.

To further verify our model on the cases with outliers, we test
the scenario that some of the recording stations have data issues
and waveforms are missing, but the azimuthal coverage is still
good (Supplementary Fig. 13). We find that the predicted prob-
ability distributions can match well with the true distribution in
terms of their shape and maximum values when partial data are
missing (Supplementary Fig. 14). We also test a case where an
event occurs out of the study area (Supplementary Fig. 15). The
test results show that the predicted probability is much smaller
(about 0.6), which can help quantify the reliability of the pre-
dicted results (Supplementary Fig. 16). From these test results, we
find that an inaccurate velocity model, poor azimuthal coverage,
or events out of the network might degrade the prediction per-
formance with low probability. Therefore, using the predicted
probability to quantify the reliability of the predicted result is
essential.

Seismic waveforms have been often used to model source
depth. However, simultaneously returning the focal depth along
with parameters of the focal mechanism from the FMNet is
unlikely. This is because the sensitivity of the focal depth to
waveform data is far smaller than the focal mechanism (Supple-
mentary Fig. 17). After obtaining the focal mechanism, never-
theless, one can find the focal depth by applying a grid search to
match waveforms with a fixed focal mechanism.

The current FMNet is designed for monitoring local or
regional events within the coverage of a seismic network. Similar
to the state-of-the-art methodology for resolving source focal
mechanisms by applying moment tensor inversion, the FMNet is
limited to moderate and large earthquakes that can be numeri-
cally modeled. Developing the capability to simulate waveforms
of small earthquakes in high frequency warrants further study.
Despite these limitations, the FMNet offers a rapid and reason-
ably accurate solution to the focal mechanism, a critical compo-
nent of earthquake information, for which it used to take several
minutes in automated earthquake reporting systems, and some-
times it requires quality assurance by humans. With the FMNet, it
could potentially help advance automated earthquake monitoring
to a new level.

Methods
FMNet architecture. The neural network we design is in the category of fully
convolutional network (FCN). FCN is a supervised deep learning network mainly
based on convolutional layers but without fully connected layers and it has the

Conv2D

MaxPooling

UpSampling

LeakyRelu

BatchNormalization

By-product:
Encoder (128x1x1)

1 64
64

64
64

64
128

128
128

128
64

64
64

32
32

16 3

Input (1x48x128) Output (3x128x1)

Channels Channels

Fig. 6 The FMNet architecture. The designed FMNet contains 16 trainable layers as well as MaxPooling, UpSampling, LeakyRelu, and BatchNormalization
layers. The input data have the size of 1 (channel of input) × 48 (3-C waveforms of 16 seismic stations) × 128 (trace length). The left part of the FMNet
gradually compresses the input data from 1 × 48 × 128 to 128 × 1 × 1, and then the right part of the FMNet gradually expands the extracted features from
128 × 1 × 1 to 3 × 128 × 1 as the output of three Gaussian probability distribution representing the three angles of the focal mechanism. The intermediate
layer of the encoder, with the size of 128 × 1 × 1, is also exported as a by-product to interpret the neural network.
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merit of fewer model parameters and high computing efficiency57. Figure 6 shows
the architecture of the FMNet containing a bunch of Convolutional layers, Max-
Pooling layers, UpSampling layers, and also with some necessary operations such
as LeakyRelu and BatchNormalization (Supplementary Software). There are 16
trainable layers. The input to the FMNet is a two-dimensional (2D) array repre-
senting the 3-C waveforms from 16 seismic stations. The output of the FMNet is
three Gaussian probability distributions of the three angles of the focal mechanism.
FMNet consists of two parts: a compression part that extracts the features of the
input waveforms and an expansion part that transforms the extracted features to
yield the output label of the focal mechanism.

In the compression part, the FMNet gradually compresses the input data from
the size of 48 (3 components × 16 stations) × 128 (data length) to 1 × 1, by
downsampling the input data layer by layer. At the same time, the number of filter
channels gradually increases from 1 (channel of input) to 128. The data size has
been changed from 1 (channel of input) × 48 (3 components × 16 stations) × 128
(data length) to 128 (channels after compression) × 1 × 1. The compression part of
the FMNet can be regarded as an encoder process that compresses the data size by
a factor of 48 times. The encoder is also exported as a by-product in this study for
interpreting the FMNet. The encoder can take any waveform as input and output
the extracted data features with the size of 128 ×1 × 1 (Supplementary Fig. 18). On
the contrary, in the extension part, the FMNet gradually expands the extracted
features by upsampling the features layer by layer. The upsampling operation is
only carried out in the first dimension of the data, thus the size of the data in each
channel is expanded from 1 × 1 to be 128 × 1. Meanwhile, the number of filter
channels gradually decreases from 128 to 3. For the expansion part, the data size
has been altered from 128 (channels after compression) ×1 × 1 to 3 (channels) ×
128 (output length) × 1. Each output channel has a size of 128 × 1, representing a
1D Gaussian distribution. All layers use the same configuration when employing
convolutional and pooling operations. Filter sizes are 3 × 3 for the compression
part and 3 × 1 for the expansion part since we only expand along the first
dimension of data.

FMNet labeling and training parameters. We design the network as a regression
problem. The training label is three Gaussian probability distributions, in which the
maximum probability of each distribution corresponds to one component of the
source focal mechanism (i.e., strike, dip, and rake). Thus the output training label
has a size of 3 × 128 × 1 (Supplementary Fig. 19). The predicted focal mechanism of
the real data can be retrieved by finding the peak values of the three output
Gaussian probability distributions. This formalization of training labels greatly
helps the convergence when training the network, and the standard deviation of the
Gaussian probability distribution affects the training convergence16. If the standard
deviation of the Gaussian probability distribution is too small, the training process
tends to be difficult to converge and if the standard deviation is too large, it may
decrease the resolution of the outputs. After testing, we find that the standard
deviation of 10° achieves a stable training convergence for our neural network and
thus is used in this study.

Since we have designed the network as a regression problem, the mean square
error (MSE) option is chosen as the training loss function58. For the training
process, the Adam method59 is tested to be effective in our FMNet and thus it is
chosen as the optimizer, though other optimizers may also work decently. A total
of 50 iterations with a batch size of 16 are implemented during the training.
Besides, the learning rate is another crucial parameter that affects the level of final
convergence60. We test different learning rates and keeping other factors the same
(Supplementary Fig. 20). The performance of each learning rate is evaluated by the
final training loss after the same training iterations. After testing, we find the
learning rate of 0.001 achieves the smallest convergence and is therefore used for
the training in this study.

Data availability
The three-component (3-C) seismograms from 16 seismometers can be downloaded
from the Southern California Seismic Network (SCSN) website.

Code availability
The codes of FMNet and a demo on test data are submitted as a Supplementary file and
they are also available from the corresponding author.
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