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Committed sea-level rise under the Paris
Agreement and the legacy of delayed mitigation
action
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Sea-level rise is a major consequence of climate change that will continue long after emis-
sions of greenhouse gases have stopped. The 2015 Paris Agreement aims at reducing
climate-related risks by reducing greenhouse gas emissions to net zero and limiting global-
mean temperature increase. Here we quantify the effect of these constraints on global sea-
level rise until 2300, including Antarctic ice-sheet instabilities. We estimate median sea-level
rise between 0.7 and 1.2 m, if net-zero greenhouse gas emissions are sustained until 2300,
varying with the pathway of emissions during this century. Temperature stabilization below 2
°C is insufficient to hold median sea-level rise until 2300 below 1.5 m. We find that each 5-
year delay in near-term peaking of CO, emissions increases median year 2300 sea-level rise
estimates by ca. 0.2 m, and extreme sea-level rise estimates at the 95th percentile by up to 1
m. Our results underline the importance of near-term mitigation action for limiting long-term
sea-level rise risks.
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t the 21st UNFCCC climate conference in Paris, countries

renewed their global commitment to combat climate

change and its impacts. The Paris Agreement! sets a
temperature goal of holding the increase in the global-mean
temperature well below 2°C above pre-industrial levels and
pursuing efforts to limit it to 1.5 °C above pre-industrial levels. To
accomplish this, the agreement aims at peaking global greenhouse
gas (GHG) emissions as soon as possible and achieving ‘a balance
between anthropogenic emissions by sources and removals by
sinks of greenhouse gases in the second half of the 21st century’.
This balance can be interpreted as achieving net-zero GHG
emissions between 2050 and 2100 (ref.? 3).

Sea-level rise is one of the major consequences of anthro-
pogenic climate change*™® and the effects of sea-level rise in its
combination with storm surges and land subsidence can already
be observed today’. Global sea-level rise consists of the sum of
several components in response to a common forcing, and shows
a slow and delayed response to today’s atmospheric warming and
GHG emissions. Thermal expansion of ocean water, the retreat of
mountain glaciers and ice caps, and the mass loss of the Green-
land and Antarctic ice sheets are the main drivers of sea-level rise
linked to climate change. These contributors respond in different
ways to a warmer climate, and all respond on timescales that
range from centuries to millennia®. GHG emissions of today and
of the near future hence commit the Earth system to a sea-level
rise legacy, which will only fully unfold in the centuries to come.

Process-resolving® and semi-empirical” 10 assessments of sea-
level rise under climate change predominantly utilize the RCP
scenarios!! and are often limited to the 21st century. Probabilistic
estimates have been published for the 22nd century'? and the
importance of climate policy was highlighted for sea-level rise
during this century'® and until 2300 (ref. '4). A recent 10,000-
year perspective of 21st century climate policy and sea-level rise®
extends earlier assessments of multi-millennial sea-level com-
mitment!>. What has not been examined so far are the sea-level
rise implications of achieving the Paris Agreement’s temperature
and mitigation goals over the coming century and beyond.

We here explore the sea-level legacy until 2300 within the
constraints of the Paris Agreement with a reduced-complexity
carbon cycle and climate model ensemble!® 7 and a component-
based simple sea-level model'®. The sea-level model accounts for
new evidence showing a higher sensitivity of the Antarctic ice
sheet to global climate change!®. We calibrate the Greenland
component to newer observations that include the recent years of
high-mass loss?> 1. We apply the methodology of ref. '® without
changes for thermal expansion and glaciers, which yield estimates
similar to the IPCC ARS for 21st century sea-level rise?. We find
that sea level continues to rise in almost all cases throughout
2300, with sea-level stabilization possible but not probable under
declining global-mean temperatures. In our scenarios, near-term
emissions reductions strongly affect long-term sea-level rise as
post-2050 emissions are constrained by the Paris Agreement.

Results

Paris Agreement scenarios. We investigate scenarios that achieve
the net-zero GHG emission goal of the Paris Agreement and hold
global-mean temperature rise at various levels below 2°C
(Fig. 1d). We also explore scenarios that only achieve net-zero
CO, emissions, while still stabilizing temperature rise below 2 °C
(Fig. 1a). Throughout the manuscript, we discuss the results for
these two subsets of our scenario ensemble. Our stylized emis-
sions scenarios vary CO, emissions of fossil-fuel use and industry
only, and are otherwise equal to RCP2.6. The reduction rates after
peak emissions (0.3, 0.5, and 0.7 GtCyr~2) are set to span the
range between the minimal rate for reaching the Paris
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temperature goal with very early peak emissions and the max-
imum rate assessed in the literature?. See Methods section for a
detailed description.

Projected global sea-level rise. The combination of a reduced-
complexity, uncertainty-propagating model of global-mean tem-
perature with a component-based simple sea-level model allows
us to assess the implications of different emission pathways on
sea-level rise until 2300 (Methods section). Median sea-level rise
reaches 116-164 cm in 2300 under temperature stabilization (net-
zero CO,) scenarios (Fig. 1c, Table 1a) and 73—123 cm under net-
zero GHG scenarios (Fig. 1f, Table 1b; all absolute sea-level rise
projections are expressed relative to 2000 levels). The combined
uncertainty of the climate response to emissions and the sea-level
response to climate warming is asymmetric (Fig. 1lc, f) and
dominated by the high sensitivity of the Antarctic ice sheet under
high warming (Figs. 2d and 3d). We find that a risk of sea-level
rise of up to 5m (or 3 m) is within the 90% uncertainty range for
three net-zero CO, (respectively, net-zero GHG) scenarios at the
higher end of our ensemble (Table 1).

Although median sea-level rises continuously under all
emission pathways through at least year 2300, this is not the
case for the rate at which sea level changes. The rate of median
sea-level rise starts to slow down shortly after emissions peak and
continues to decline thereafter (Supplementary Fig. 2). Also
under our pathways with the fastest and earliest emission
reductions, median sea-level rise has not yet stopped by 2300
despite falling global-mean temperatures (Fig. le and Supple-
mentary Fig. 2b). Median rates at the end of the 22nd century
drop to 0.06-0.17 cmyr~! for net-zero GHG scenarios and to
0.33—0.49 cm yr_1 for net-zero CO, scenarios (minimum and
maximum within scenario ensemble, Table 2). The 16.6th
percentile estimate for net-zero GHG scenarios indicates that
sea level stabilization is possible under declining global-mean
temperatures.

Responses of individual sea-level components. The four indi-
vidual sea-level rise contributions for net-zero CO, (temperature
stabilization) scenarios are displayed in Fig. 2. The median con-
tributions have the same order of magnitude. Due to the high
sensitivity to global temperature change of the Antarctic com-
ponent!?, the low-probability high-end estimate is dominated by
the ice sheets. A 3m contribution from Antarctica cannot be
ruled out for our warmest scenario, which achieves temperature
stabilization through net-zero CO,, peaks emissions in year 2035
and thereafter follows a reduction rate of 0.7 GtC yr~2. This is >2
m above the most stringent temperature stabilization scenario in
our set with peak year 2020 and subsequent reduction rate of 0.7
GtCyr=2 (Supplementary Data 4). A negative Antarctic con-
tribution is not probable but possible under temperature stabili-
zation. In contrast, thermal expansion, mountain glaciers and the
Greenland ice sheet continue to add to sea-level rise under
temperature stabilization (see also Supplementary Fig. 3). Under
the Paris Agreement’s net-zero GHG constraint and the implied
declining global-mean temperatures, all contributions except
Greenland can stabilize during the 22nd century (Fig. 3 and
Supplementary Fig. 4). Thermal expansion, mountain glaciers
and the Antarctic ice sheet can contribute negatively toward the
end of the 22nd century in our model, but only the Antarctic
contribution can be significantly negative. See Methods section
for more details on the responses of the individual components,
including a comparison to results from more comprehensive
models. Percentile estimates for each sea-level component
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Fig. 1 CO, emissions and respective global-mean temperature and sea-level responses. Emission scenarios based on RCP2.6 with CO, emissions from
fossil-fuel use and industry linearly continued with the present day rate until peak year. CO, emissions decline by 0.3, 0.5, and 0.7 GtC yr~2 thereafter until
net-zero CO; a or net-zero greenhouse gas emissions d are reached. Scenarios that do not hold warming to below 2 °C with at least 66% chance are
masked gray. b, e Global-mean temperature responses to emissions scenarios a, d in °C above pre-industrial levels. ¢, f Global-mean sea-level rise relative
to the year 2000. Shading refers to the central 66th percentile range per scenario in b, e and to the central 90th percentile range in c, f

response to each net-zero CO, and net-zero GHG scenario are
provided as Supplementary Data 4.

Linking sea-level rise and near-term climate action. Our sce-
nario ensemble allows us to assess how 2300 sea-level rise changes
as a function of our scenario parameters. All other parameters
being equal, median sea-level rise in 2300 is about 40 cm higher in
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scenarios that only stabilize temperature rise by keeping global
CO, emissions at net-zero levels, compared to scenarios that
additionally reach net-zero GHG emissions and thus peak and
decline global-mean temperatures (Fig. 4a). The spread within
each of these two scenario groups is of similar magnitude. Since
emission levels toward the end of the century are constrained by
the Paris Agreement’s net-zero goal, near-term emissions (for
example in the year 2030) become a predictor for 2300 sea-level
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Table 1 Total climate-driven sea-level rise for (a) net-zero
CO, (temperature stabilization) and (b) net-zero GHG
scenarios in 2300 relative to the year 2000

Percentile 5.0 16.66 50.0 83.33 95.0
(a

Peak year 2020 rate 0.3 56.67 84.41 13727 219.66 355.43
Peak year 2020 rate 0.5 45.66 7436 1225 189.87 275.81
Peak year 2020 rate 0.7 4037 7024 115.88 178.43 247.87
Peak year 2025 rate 0.3 67.47 9695 15698 268.83 4583
Peak year 2025 rate 0.5 56.69 84.41 13729 219.65 354.76
Peak year 2025 rate 0.7 5159 7936 129.64 203.87 313.75
Peak year 2030 rate 0.5 66.54 9583 154.97 262.48 450.6
Peak year 2030 rate 0.7 6133 89.63 14524 236.99 407.48
Peak year 2035 rate 0.7 70.97 100.7 163.7 289.48 4811
(b)

Peak year 2020 rate 0.3 23.65 5885 101.21 159.63 224.06
Peak year 2020 rate 0.5 0.1 4502 8111 13274 1754
Peak year 2020 rate 0.7 -9.61 38.47 7275 12258 159.76
Peak year 2025 rate 0.3 4176 72.05 121.28 195.42 290.79
Peak year 2025 rate 0.5 20.46 56.46 9795 15476 215.79
Peak year 2025 rate 0.7 8.57 49.88 8793 14132 190.25
Peak year 2030 rate 0.5 37.16 6874 116.01 18594 273.78
Peak year 2030 rate 0.7 26.57 61.05 104.71 16536 233.41
Peak year 2035 rate 0.7 42,68 7278 122.86 198.09 295.71
Units of sea-level rise are cm. Units for emission reduction rates are GtC yr~2.

rise. Higher emissions in 2030 imply higher long-term sea-level
rise (see Fig. 4a). A clear relation between 2050 emission levels
(Fig. 4b) and long-term sea-level rise holds for net-zero GHG
scenarios. The net-zero CO, scenarios that have reached zero
emissions in 2050 show a difference of 30 cm for median sea-level
rise in 2300 (Fig. 4b), which is solely caused by difference in
emissions before 2050. This difference reaches >1.5m for the
95th percentile (Fig. 4e), underscoring the importance of early
emission reductions to limit the risk of extreme sea-level rise.
Furthermore, we find that a delay of global peak emissions by 5
years in scenarios compatible with the Paris Agreement results in
around 20 cm of additional median sea-level rise in 2300 (Fig. 4c).
Based on the 95th percentile, we estimate that each 5 years of
delay bear the risk of an additional 1 m of sea-level rise by 2300
(Fig. 4f).

Sea-level legacy of temperature overshoot. Finally, we assess the
sea-level legacy of temporarily exceeding a 1.5°C warming
level® 23, which is at times referred to as temperature overshoot.
The time of overshoot relates quasi-linearly to median sea-level
rise in 2300 for net-zero GHG scenarios, adding ~4 cm of median
sea-level rise per 10 years overshoot above 1.5°C (Fig. 5a). Net-
zero CO, scenarios show that without balancing other GHG
emissions through negative CO, emissions, median sea-level rise
above 1.5m is possible for temperature stabilization below 2 °C.
No scenario in our set shows median sea-level rise below 1.2 m by
2300 once its global-mean temperatures pass the 1.5°C level
(Fig. 5a, half-filled markers). Another way to look at overshoots is
by considering the integrated overshoot temperature over time.
When this overshoot integral is larger than 60 °C-yr (Fig. 5b), the
difference in year 2300 median sea-level rise between net-zero
GHG and net-zero CO, scenarios disappears. This equivalence
can be understood by looking at the characteristic temperature
evolution in both scenario subsets (Fig. 1). Net-zero CO, sce-
narios consistent with the Paris Agreement exhibit small but
persistent overshoot, while net-zero GHG scenarios show higher
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but shorter overshoots. At an integral overshoot value larger than
60 °C-yr, the additional early sea-level rise pulse during the high
overshoot in net-zero GHG scenarios cannot be compensated
through lower rates of sea-level rise later due to declining
temperatures until 2300. Only a limited amount of sea-level rise
can be avoided through falling temperatures over multiple
centuries.

Sea-level rise and Nationally Determined Contributions
(NDCs). Our approach allows to link long-term sea-level rise to
2030 emission levels, the current maximum time frame for the
NDCs under the Paris Agreement. The NDC emissions aggre-
gated for all countries are estimated to result in a range from 49 to
58 Gt COeqyr! (ref. 2%). This is at the upper range of 2030
emission levels assessed here (full range: 27.5-57.5 Gt CO,eq yr™},
Supplementary Data 1). Median sea-level rise in 2300 for the four
net-zero CO, scenarios consistent with the NDCs is between 145
and 164 cm. The four net-zero GHG scenarios consistent with the
NDCs show a median sea-level rise in 2300 between 105 and 123
cm. Our 95th percentile estimates indicate a risk of sea-level rise
between 4.1 m and 4.8 m for the four NDC-consistent net-zero
CO, scenarios and between 2.3 and 3m for the four NDC-
consistent net-zero GHG scenarios (Supplementary Data 2).
These NDC sea-level estimates rely on stylized emission pathways
that successfully reach either net-zero CO, or net-zero GHG
emissions in the 21st century based on very ambitious annual
reduction rates after 2030. Integrated assessment models (IAM:s)
suggest that 2030 emission levels implied by current NDCs need
to be brought down substantially to achieve the Paris Agreement
mitigation and long-term temperature goal®’.

Discussion

In this work, we link stylized emission scenarios that reflect the
Paris Agreement goals to sea-level rise in the year 2300. Our
results indicate that sea-level rise will continue until and beyond
2300 even for scenarios that reach net-zero GHG emissions in the
second half of the 21st century. The long-term sea-level legacy
under the Paris Agreement scenarios are strongly influenced by
emission reductions in the next couple of decades because off-
setting sea-level rise in the 22nd and 23rd centuries is hindered by
its high inertia, low reversibility and the limited effect of net-zero
GHG emissions. By combining climate and sea-level uncertain-
ties, our analysis reveals a persistent risk of high sea-level rise
even under pathways in line with the Paris Agreement. However,
extreme sea-level rise projections at the 95th percentile of our
distribution can be halved through early and stringent emission
reductions.

In our scenario set, we vary fossil-fuel and industry CO,
emissions to create scenarios with different characteristics. Cli-
mate forcers other than CO, are co-emitted when fossil fuel is
burned?®. We do not vary co-emissions in our scenarios as the
difference through changes in co-emissions is limited given the
stringency of each of our scenarios?®. For the achievement of net-
zero GHG emissions levels, residual non-CO, emissions are
balanced by negative CO, emissions. Variations in these residual
non-CO, GHGs could result in higher or lower rates of tem-
perature decline after peak warming.

A model that makes the sea-level assessment feasible for
multiple emission scenarios needs to rely on simplified repre-
sentations of the underlying processes. This comes with a number
of caveats. Our methodology largely builds on the link between
sea-level response and global-mean temperature increase. It
cannot be ruled out that such link is weak for some components
or will get weaker in the future. We have accounted for the
potential of self-sustained ice loss that becomes independent of
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Fig. 2 Response of the sea-level contributors to net-zero CO, scenarios. Time series of the sea-level responses of thermal expansion a, mountain glaciers b,
Greenland mass balance ¢, and Antarctic mass balance d. Sea-level rise is in cm and relative to the year 2000. Colors refer to peak years as in Fig. 1.

Shadings show the central 90th percentile range

global-mean temperature change in our parametrization for the
Antarctic ice sheet (Methods section).

For the Greenland ice sheet, potential self-sustained dynamics
are not included in our parametrization though feedbacks
exist?”> 28 and their future role for Greenland ice loss is not fully
clear. The melt-elevation feedback—lower elevation leads to
increased melt, which lowers elevation—can lead to threshold
behavior and long-term decay of the ice sheet, but it would evolve
slowly under the levels of warming assessed here?’. The melt-
albedo feedback?®>—melting exposes darker ice, which absorbs
more heat and increases melt—is not yet incorporated fully in
process-based simulations. It is also not explicitly modeled in our
approach and enters only indirectly through the calibration to
recent observations of high-surface melting. Anomalous atmo-
spheric conditions are proposed as the main cause for this recent
high melting® 3. This makes it less probable that future ice loss
is dominated by the melt-albedo feedback. Our Greenland solid
ice discharge parametrization does not account for ice flow
instability. The potential for large-scale self-accelerating marine-
ice-sheet-instability-driven ice loss like in Antarctica is limited in
Greenland as it does not have large marine ice basins that are
open to the ocean®!. Warmer ocean temperatures will still affect
ice loss, which is covered in our approach. Our estimate of
Greenland’s solid ice discharge is above the range of ice-sheet
model simulations, but these simulations do not fully resolve
outlet glaciers dynamics and do not fully reflect the observed
continuing solid ice discharge?’. Nevertheless, the absence of

NATURE COMMUNICATIONS | (2018)9:601

feedbacks in the Greenland mass balance representation of our
approach is a caveat and we cannot rule out that such feedbacks
add to the presented numbers here. Changes in land water
storage®> 33 are not covered in our method as they are not
directly linked to climate change. More details are given in
Methods section.

Some earth-system response features associated with falling
global temperatures in net-zero GHG scenarios may not be
captured correctly by the reduced-complexity model MAGICC.
In particular, the hemispheric upwelling-diffusion ocean model
may not comprehensively simulate the ocean response to sus-
tained atmospheric cooling>*. However, sea-level rise from ocean
warming is calculated by the sea-level model and not directly by
MAGICC in our approach.

Due to the slow response to climate warming, sea level will
continue to rise after temperatures have stabilized. Positive rates
of sea-level rise will likely persist through 2300 even under net-
zero GHG emissions and decreasing global-mean temperatures.
Stabilizing global-mean temperature rise or achieving net-zero
CO, emissions can only be seen as a first step to halt global sea-
level rise. Early peaking and stringent emissions reductions
thereafter are vital and important to reduce the risk of
low-probability high-end sea-level rise, yet insufficient to stop
global sea-level rise by 2300. Delayed near-term mitigation action
in the next decades will leave a substantial legacy for long-term
sea-level rise.
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Table 2 Rates of sea-level rise at the end of the 22nd century (2290-2300 mean) for (a) zero CO, and (b) zero GHG scenarios

Percentile 5.0 16.66 50.0 83.33 95.0
(a)

Peak year 2020 rate 0.3 0.12 0.2 0.39 0.74 115
Peak year 2020 rate 0.5 on 0.17 0.36 0.59 1.05
Peak year 2020 rate 0.7 0.07 0.16 0.33 0.58 0.88
Peak year 2025 rate 0.3 0.15 0.26 0.46 0.88 1.6
Peak year 2025 rate 0.5 0.1 0.2 0.39 0.74 1.15
Peak year 2025 rate 0.7 0.12 0.2 0.37 0.65 116
Peak year 2030 rate 0.5 0.16 0.26 0.45 0.83 1.45
Peak year 2030 rate 0.7 0.12 0.22 0.43 0.78 1.55
Peak year 2035 rate 0.7 0.17 0.25 0.49 0.94 176
(b)

Peak year 2020 rate 0.3 -0.17 0.02 0.13 0.3 0.38
Peak year 2020 rate 0.5 -0.27 -0.04 0.06 0.24 0.33
Peak year 2020 rate 0.7 -0.23 -0.03 0.06 0.22 0.29
Peak year 2025 rate 0.3 -0.06 0.07 0.2 0.39 0.54
Peak year 2025 rate 0.5 -0.17 0.0 0.12 0.27 0.43
Peak year 2025 rate 0.7 -0.25 0.0 0.08 0.28 0.41
Peak year 2030 rate 0.5 -0.12 0.05 017 0.35 0.47
Peak year 2030 rate 0.7 -0.15 0.02 0.15 0.29 0.37
Peak year 2035 rate 0.7 -0.07 0.06 0.19 0.41 0.58

Units of rates of sea-level rise are cmyr~™". Units for emission reduction rates are GtC yr~2,
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Methods

Scenarios. We construct our scenarios by modifying the harmonized emissions of
Representative Concentration Pathway 2.6 (RCP2.6)'L. This is the only of four
RCPs that is close to the requirements set by the Paris Agreement. We update this
pathway with observed 2005-2015 fossil-fuel and cement CO, emissions®” and
then modify fossil-fuel and cement CO, emissions, while keeping land use CO, and
GHG emissions other than CO, unchanged. The constructed scenarios, shown in
Fig. 1a, d, vary in two parameters: the peak year of fossil-fuel and cement CO,
emissions (henceforth referred to as CO, emissions) and the reduction rate of those
CO, emissions. We let CO, emissions increase linearly with the mean 20092015
rate until the year of peak emissions (between 2020 and 2040 in steps of 5 years)
and linearly decline emissions after the peak until net-zero CO, (Fig. 1a) or net-
zero GHG emissions (Fig. 1d) are reached. Negative CO, emissions compensate
residual land-use CO, emissions in the net-zero CO, scenarios and compensate
land-use CO, plus all other residual GHG emissions of the RCP2.6 scenario in the
net-zero GHG scenarios. For global-mean temperature and sea-level responses to
the original RCP2.6 scenario see Supplementary Fig. 1 and Supplementary Data 3.
We here use the 100-year global warming potential (GWP-100) from the Second
Assessment Report of the IPCC?% 30 to estimate the amount of CO, needed to
offset the other emissions of the RCP2.6 scenario.

Global-mean temperature projections. We apply the reduced-complexity climate
and carbon cycle model MAGICC!® 17 to determine the climate system response to
the net-zero CO, and the net-zero GHG scenarios (Figs. 1b, e, respectively). To
cover the uncertainty, we sample from 600 sets of climate and carbon cycle
parameters, which are constrained through past climate change and climate models
of higher complexity. Scenarios not in line with the criterion of holding warming
below 2 °C with a likelihood of at least 66% are excluded (gray lines in Fig. 1). The
net-zero CO, emissions scenarios show temperature stabilization (Fig. 1b). In these
scenarios decaying atmospheric CO, concentrations are balancing the evolution
from the transient to the equilibrium temperature response, while non-CO, GHGs
(dominated by shorter lived GHGs like CH4) are approximately constant and thus
result in a constant non-CO, temperature contribution. Scenarios with net-zero
GHGs result in declining temperatures (Fig. le), because atmospheric CO, con-
centrations decline faster than in the net-zero CO, case, and all other contributions

are kept the same®’.

Global sea-level projections. To project future sea-level rise, we apply a
component-based global sea-level model'8, which includes an updated
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parameterization of the Antarctic ice sheet response based on refs. ' 3], For
thermal expansion, glaciers and the Greenland surface mass balance, the model
combines the long-term sensitivity!® of each component to global-mean tem-
perature warming with the individual recent observations. Future evolution is thus
constrained to both long-term sensitivity and past observations. For the three
components, we use a pursuit curve approach, in which the difference between
long-term sensitivity Seq(T,a) and the time-dependent contribution S() drives the
rate of sea-level rise for each component:

a5 _ Su(T(0).) — S(0) "
dt T ’

The sensitivity parameter a is determined from equilibrium simulations for each
component, with uncertainty in the long-term sensitivity covered by variation of
the parameter. Seq(T,) has different functional forms for the different components.
The response time 7 is calibrated to observations for each component, with the
range of 7 reflecting the uncertainty in observations.

We use a response-function approach® 40 for the Greenland solid ice discharge
due to missing long-term sensitivit?r estimates or past trends in observations. This
assumes that frontal stress release*! and runoff lubrication*? can be approximated
as linearly depending on the global-mean temperature anomaly (ref. 1°, equation
4). Both Greenland surface mass balance and solid ice loss are calibrated to new
observations® 21, To cover the recentlgf proposed increased sensitivity of the
Antarctic ice sheet to global warming!®, we update our method to capture the
corresponding Antarctic sea-level contribution. We utilize a parametrization that
combines a slow and gradual response to global warming with a fast discharge term
that mimics ice instability®®, The parametrization has four free parameters that
include a threshold temperature and a rate for fast discharge. Fast discharge
contributes to sea-level rise once the threshold temperature is passed. We create a
29-member ensemble of the four-parameter set by calibrating our parametrization
to the response of each ensemble member available from ref. 1° for the RCP2.6,
RCP4.5, and RCP8.5 scenarios simultaneously.

The long response times of ice sheets, glaciers and ocean make it probable that a
fraction of their contribution originates from their ongoing adaptation to past
climate change, i.e., the little or the last ice age> ® 1% %3 Only for glaciers we are
able to explicitly incorporate such a natural fraction, which is declining and below
30% at present*>, We do not include changes in land water storage as climate
mainly influences its decadal variability** and not its long-term trend. Direct
human influence on land water storage through groundwater pumping®> #* and

|DOI: 10.1038/541467-018-02985-8 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

e Net-zero CO2

+ Peak year 2020 rate 0.3
+V
ob
V +
L
\4

Peak year 2020 rate 0.7
Peak year 2025 rate 0.3
Peak year 2025 rate 0.5
Peak year 2025 rate 0.7
Peak year 2030 rate 0.5
Peak year 2030 rate 0.7
Peak year 2035 rate 0.7
Net-zero GHG

Peak year 2020 rate 0.3
Peak year 2020 rate 0.5
Peak year 2020 rate 0.7
Peak year 2025 rate 0.3
Peak year 2025 rate 0.5
Peak year 2025 rate 0.7
Peak year 2030 rate 0.5
Peak year 2030 rate 0.7
Peak year 2035 rate 0.7

Peak year 2020 rate 0.5
y

a0

‘V

4

a b

1.8 1.8

+
+

E 16 + Y 161
E1e é 6
(9]
@ + \ 4
£ 1.4 + P 1.4 1
o
8 b 1‘7
§12{ ¢ o 1.2 1
2]
c
g v
g 10 ot 1.0 1
= v

0.8 : 0.8

-50 0 50 100 150 200 250 300

Time of overshoot above 1.5°C in years

v

20 40 60 80

Time integral of overshoot above 1.5°C in °C-years

Fig. 5 Sea-level rise in 2300 and temperature overshoot above 1.5 °C. a Median sea-level rise versus the temporal overshoot in years. b Median sea-level
rise versus the time integral of the temperature overshoot. Half-filled markers indicate net-zero CO, scenarios, filled markers net-zero GHG scenarios. Gray
crosses show net-zero GHG scenarios that do not comply with the 2 °C target of the Paris Agreement. Rate in legend refers to the rate of emissions

reductions after the emissions peak in GtC yr~2. The grouping of net-zero CO, scenarios exceeding 1.5 °C in the upper-right corner of a reflects the length

of our simulations and is of limited significance

dam building*? cannot be linked to global climate change and would thus
unnecessarily blur our analysis.

Our aggregate uncertainty estimates are based on Monte-Carlo sampling: for
each sea-level contribution, we draw from the calibrated sets of sea-level functions,
which incorporate the different observational datasets and long-term estimates,
and from the 29 calibrated parameter sets of the Antarctic component. We drive
the selected sea-level functions with a global-mean temperature pathway, randomly
drawn from the 600 member global-mean temperature ensemble for a specific
scenario. The sampling is repeated 10000 times.

Individual sea-level components and comparison to literature. Thermal
expansion: We estimate thermal expansion with the constrained-extrapolation
approach following eq. 1, driven by the global-mean temperature evolution esti-
mated by MAGICC!® 17, The comparison of our thermal expansion estimate for
the year 2300 for the RCP2.6 scenario (median: 26 cm; central 66th percentile
range: 17-36 cm, relative to 2000, Supplementary Data 3) can inform on the
performance of our model. Other studies have reported 2300 steric sea-level rise of
6-37 cm relative to 1986—2005 for an ensemble of models of intermediate com-
plexity*® and 14-27 cm relative to 2006 for a set of six CMIP5 models*”. Sea-level
rise through thermal expansion is thus for RCP2.6 comparable to more complex
models. In line with CMIP5 model experiments*®, our steric sea-level rise com-
ponent does not exhibit a decline in sea-level under the net-zero GHG scenarios
until 2300, despite the projected global-mean temperature decline. Median sea-
level rise ranges from 30 to 38 cm in 2300 for net-zero CO, scenarios and from 19
to 30 cm for net-zero GHG scenarios (Supplementary Data 4).

Mountain glaciers: We estimate the contribution from mountain glaciers
following equation 1. Our estimate for the median contribution from glaciers until
year 2300 is 15.9 cm for the RCP2.6 scenario (Supplementary Data 3). Median sea-
level rise from glaciers ranges from 15.5 to 18.3 cm in 2300 for our net-zero CO,
scenarios and 11 to 15.2 cm for net-zero GHG scenarios (Supplementary Data 4).

Greenland ice sheet: We estimate the contribution from Greenland’s surface
mass balance following eq. 1. We use a response-function approach® 40 for the
Greenland solid ice discharge due to missing long-term sensitivitY estimates or past
trends in observations. This assumes that frontal stress release*' and runoff
lubrication*? can be approximated as linearly depending on the global-mean
temperature anomaly (equation 4 in ref. !8). We recalibrate the Greenland surface
mass balance and solid ice discharge parameterizations to updated
observations®> 2. These observations include the recent years of strong mass
balance changes and lead to a larger spread in our calibrated parameters. Calibrated
parameters are listed in Supplementary Data 5. The spread is reflected in higher
95th percentile estimates for both surface mass balance and solid ice discharge as
compared to ref. 18, Median sea-level rise from the combined Greenland surface
mass balance and solid ice discharge ranges from 45 to 61 cm in 2300 for our net-
zero CO, scenarios and 32—48 cm for net-zero GHG scenarios (Supplementary
Data 4).

Greenland has only limited marine-grounded regions that are open toward the
ocean, ice drains predominantly through narrow fjords. The potential for large-
scale self-accelerating marine ice sheet instability hence is also limited, in contrast
to the Antarctic ice sheet. Warmer ocean temperatures will still affect ice loss, but
this contribution is covered in our response-function approach. The approach
yields continuing Greenland solid ice discharge throughout 2300 (median for
RCP2.6 scenario: 23.5 cm, Supplementary Data 3). This differs from earlier
observations of reduced discharge?” and ice-sheet simulations showing a
diminishing contribution from solid ice discharge®*2 These process-based
simulations can however not fully resolve the narrow outlet glacier flow to the
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ocean that is central for solid ice discharge. They do not incorporate the deeper and
larger subglacial basins®! and deeper fjords> in new ice and ocean floor data,
which suggest increased sensitivity to climate warming. The broad range (16-92 cm
in 2300 for the RCP2.6 scenario, Supplementary Data 3) reflects at least partly our
incomplete knowledge of this term.

Two feedbacks related to the surface mass balance may foster a self-sustained
decay of the Greenland ice sheet. The melt-elevation feedback?” can add to the
directly temperature-driven sea-level contribution of our approach. In the model of
ref. 7 the decay of the ice sheet occurs on a time scale longer than 10,000 years for
2°C temperature increase over Greenland (their Fig. 3). In the SRES A1B
scenario®?, a scenario without any climate policy and estimated year-2100 warming
of 3-4°C™, the ice loss through this feedback has been estimated to be between 3.6
and 16% of the forcing-driven ice loss in 2200 (ref. 56). Relating this fraction to our
scenarios with lower warming is however not straightforward. Still, both ref. 7 and
ref. 5¢ show the bounded role of the feedback. We thus do not see the melt-
elevation feedback sufficiently large to dismiss or invalidate our approach on the
timescales and warming levels assessed here. In three recent publications process-
based ice sheet models have been used to project future Greenland ice loss. Ref. *°
find a total (surface-mass-balance and ice-dynamic) contribution of 9 cm under
RCP2.6 until 2300. Ref. > find 10 cm surface mass balance contribution from
Greenland until 2100 under the RCP4.5 scenario. Ref. */ find 4 (2-6) cm for the
same scenario until 2100. The melt-albedo feedback?® is not fully integrated in
these studies and may render these model results too low. This feedback has a
physical (less snow and more bare ice absorb more radiation) and a biological
component (wetter conditions allow more ice surface algae growth®® >8). There are
currently no process-based simulations available that estimate future Greenland ice
loss while fully including this feedback. Ref. 28 shows that the extreme 2012
conditions had similar low ice albedo conditions as projected for the end of the
century, and therewith highlighted that models are still incomplete for such
projections. Assuming that yearly repeated 2012 conditions can be used as an
upper bound for climate scenarios that stay below 2 °C, the upper bound of 670 Gt
mass loss in 2012 would lead to 56 cm sea-level rise when summed up for 300
years. This is about 13 cm above our 95th percentile surface mass balance estimate
for Greenland for RCP2.6. If the melt-albedo feedback becomes a major driver of
Greenland ice loss, these values could be exceeded. Research however now suggests
that while the melt-albedo feedback enhances the ice loss, changes in the
atmosgheric circulation are the ultimate driver of the high melting in recent
years? 3%, A runaway feedback between atmospheric changes and the Greenland
melt is not evident, which makes a self-sustained ice sheet collapse (as compared to
climate-forcing driven collapse) less probable. Median sea-level rise from the
combined Greenland surface mass balance and solid ice discharge ranges from 45
to 61 cm in 2300 for our net-zero CO, scenarios and 32—48 cm for net-zero GHG
scenarios (Supplementary Data 4).

Antarctic ice sheet: We apply a parametrization for Antarctic mass loss>®, which
incorporates increased sensitivity to global warming through two newly proposed
instability mechanisms®®. The mechanisms suggest a tight link between future
atmospheric warming and Antarctic ice discharge!®. The discharge thus also
depends on the emission scenario. Our parametrization is calibrated to the results
of ref. 1 and combines a slow and gradual response to global warming with a fast
discharge term that mimics ice instability. Once a trigger temperature of 1.9-3.2 °C
global-mean temperature rise is reached, the fast discharge adds to sea-level rise at
a constant rate of 2-20 mm per year. Technical details are available at https://
github.com/matthiasmengel/fast_ant_sid. Median sea-level rise from the Antarctic
ice sheet ranges from 13 to 36 cm in 2300 for our net-zero CO, scenarios and 4-19
cm for net-zero GHG scenarios (Supplementary Data 4).
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Ice sheet loss through the marine ice-sheet instability, which is initiated by
warmer ocean waters, may not be fully covered bgf our method. Such instability
may already be underway in West Antarctica® %%, The instability is difficult to
directly link to anthropogenic climate change. While ref. > does not provide rates
of sea level rise for the main phase of the collapse, simulations for West Antarctica
as a whole indicate an upper bound of 5 cm in the first 200 years®. The risk of
ocean-driven marine-ice-sheet instability hence increases uncertainty in future sea
level rise, but the numbers available from process-based simulations suggest a
minor role for the timescale considered here. Once triggered and independent of
the forcing, it would not affect relative changes between scenarios.

Code availability. The sea-level code is available at https://github.com/
matthiasmengel/sealevel with the version used in the presented analysis archived at
https://doi.org/10.5281/zenodo.1118288. The MAGICC model is not open-source,
but a compiled version can be obtained from the authors.

Data availability. All data to reproduce the presented analysis are available from
https://doi.org/10.5281/zenodo.1116918.
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