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Transcriptomic alterations during ageing reflect the
shift from cancer to degenerative diseases in the
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Disease epidemiology during ageing shows a transition from cancer to degenerative chronic

disorders as dominant contributors to mortality in the old. Nevertheless, it has remained

unclear to what extent molecular signatures of ageing reflect this phenomenon. Here we

report on the identification of a conserved transcriptomic signature of ageing based on gene

expression data from four vertebrate species across four tissues. We find that ageing-

associated transcriptomic changes follow trajectories similar to the transcriptional alterations

observed in degenerative ageing diseases but are in opposite direction to the transcriptomic

alterations observed in cancer. We confirm the existence of a similar antagonism on the

genomic level, where a majority of shared risk alleles which increase the risk of cancer

decrease the risk of chronic degenerative disorders and vice versa. These results reveal a

fundamental trade-off between cancer and degenerative ageing diseases that sheds light on

the pronounced shift in their epidemiology during ageing.
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The process of ageing has been studied across many diverse
species and is recognized as the dominant risk factor for
most human diseases1,2. There is a remarkable conserva-

tion of ageing-associated pathologies such as cancer, cardiovas-
cular disease, as well as cognitive decline across vertebrates,3–5

and a strong association between life-history traits and gene
expression across the mammalian tree of life6. Despite these
similarities, previous studies that have investigated transcriptomic
signatures of ageing have identified only few genes that show a
conserved transcriptional regulation across species7–11. In con-
sequence, even though a number of ageing-associated tran-
scriptomic changes have been linked to lifespan10,12,13, the
relationship between ageing-associated transcriptional changes
as well as ageing-associated pathologies has remained
largely unclear8,14. This is quite surprising as it has been
shown that human diseases including ageing-associated pathol-
ogies are often associated with specific transcriptional signatures
and that reverting these gene expression states back to their
original healthy patterns can successfully point to potential
treatments15–17.

One particular reason for this discrepancy might be the pre-
vailing view that ageing-associated changes necessarily have to
promote ageing-associated diseases such as cancer, cardiovascular
diseases, neurodegenerative diseases and metabolic diseases.
Thus, when investigating the influence of ageing-associated
changes on ageing diseases it is often not taken into account
that ageing might have different influences on specific ageing
disorders8,18,19. Indeed, as reported previously in the context of
cancer20, epidemiological data shows pronounced shifts in the
cause of mortality between different subtypes of diseases during
ageing (Fig. 1a). In particular, the contribution of cancer to all-
cause mortality is highest among the 60 year olds, and then
steadily decreases while the contribution of degenerative dis-
orders gradually increases (Fig. 1a). This inverse pattern man-
ifests also when examining the incidence of these disorders
(measuring the number of new diagnoses of a disease relative to
population size). Here the incidence of degenerative ageing-
associated diseases keeps rising monotonically to the oldest old
while cancer incidence peaks in the 75–84 year olds and then
tapers off (Fig. 1b, cf. ref. 20). Furthermore, malignant transfor-
mation rates, which measure the rate at which pre-malignant cells
progress through the steps of carcinogenesis, grow most rapidly at
the age of 50 and decline across all cancer types above the age of
70 years (Fig. 1c, Supplementary Note 1). Similar observations
characterize ageing-associated cancer mortality in mice (Supple-
mentary Note 1). Pathologically, these ageing-associated changes
in cancer epidemiology are reflected by slower growth, a reduced
metastatic potential and a generally reduced life-threatening
potential of cancer in the oldest old21. Different explanations for
these observations, including the antagonistic role of some tumor
suppressive mechanisms on degenerative ageing disorders and
antagonisms between individual disorders, have been dis-
cussed20,22–25. However, the underlying causes for the marked
difference in ageing-associated epidemiology between cancer and
degenerative diseases in the old have remained unclear20,22.

On the basis of these observations, we hypothesized that
transcriptomic alterations may account for the shift from cancer
to degenerative diseases in the late stages of ageing. To address
this hypothesis, we generate a comprehensive transcriptomic data
set of ageing covering four tissues in four different vertebrate
model organisms. Analyzing this data, we find that the ageing
transcriptome is associated with a shift toward the expression
signatures of chronic degenerative diseases (cardiovascular,
metabolic and neurodegenerative disorders) while it shifts away
from cancer-associated gene expression signatures. Considering
genomic risk variants associated with susceptibility to ageing-

associated diseases, we find a strikingly similar antagonistic trend,
whereby shared risk alleles between cancer and degenerative
disorders antagonistically predispose to either type of disease
while protecting from the other. These results provide a clear link
between ageing-associated transcriptomic changes as well as
ageing diseases and reveal a fundamental, conserved trade-off
between the molecular changes occurring in cancer and degen-
erative disorders of ageing.

Results
A conserved functional signature of transcriptomic ageing. To
investigate the hypothesis that ageing-associated transcriptomic
alterations are linked to pronounced shifts in the epidemiology of
ageing-associated diseases, we analyzed a cross-species ageing
transcriptomic data set covering 531 samples including five age-
ing time points (Supplementary Note 2 and Supplementary
Fig. 1) and four tissues (blood, brain, liver and skin) in four
model organisms of ageing: humans, mice, the zebrafish Danio
rerio and the short-lived killifish Nothobranchius furzeri (Sup-
plementary Fig. 1 and Supplementary Note 2). All samples (of
which 297 are first presented in this study) were generated on the
same platform following standardized protocols (Methods). Apart
from mouse, human and zebrafish as most important vertebrate
model organisms of ageing, we included data from N. furzeri
which is the shortest-lived vertebrate with an average lifespan of
three months for the shortest-lived strain26 and shows a high
concordance in its ageing phenotypes with other vertebrates5.

Previous studies have reported only little overlap in ageing-
associated differential expression of individual genes between
species7,8. Thus, to obtain a transcriptomic signature of ageing,
we assessed ageing-associated changes on an aggregate, functional
level by determining conserved differentially regulated processes
(Methods). Processes were derived across three different
ontologies: Gene Ontology27, KEGG Pathway28 and a genome-
scale reconstruction of human metabolism29 (Methods section).
As the number of differentially regulated processes across species
increases steadily with age for all ontologies considered
(Supplementary Fig. 2), we chose the first and the two last
sampled time points (cf. Supplementary Note 2) for deriving a
transcriptomic signature of ageing. Using unbalanced type-II
analysis of variance, we find 171 of 900 processes that are
significantly differentially regulated using Gene Ontology, 18 of
74 processes for KEGG Pathways and 10 of 43 human metabolic
pathways (Fig. 2, Methods section). Most of the processes
differentially regulated between individual age groups were also
differentially regulated in the comparison between the young and
the two old age groups (Methods section). This functional ageing
signature shows a high concordance with previously reported
ageing-associated transcriptional changes in individual species
and tissues: we find an induction of the immune system,
indicative of the low-grade inflammation in the elderly30,
downregulation of cell cycle-associated processes31 and down-
regulation of many developmental as well as cell differentiation
pathways32. In addition, we detected an upregulation of glycan
degradation pathways, the downregulation of co-factor-associated
metabolic processes and a pronounced induction of several
signaling pathways. In difference from previous studies7,8, we
observe a strong conservation of ageing-associated changes on a
functional level both across species (including humans) as well as
across tissues (Supplementary Fig. 3 and Supplementary Note 3),
also on the level of individual genes (Supplementary Note 3).

Association with cancer and degenerative diseases. To quantify
the similarity between ageing and disease-associated tran-
scriptomic data we defined an ageing-mediated disease alignment
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score (AMDA score, Methods section). The AMDA score is
positive if ageing aligns the transcriptome with that of a given
disease, that is, ageing is associated with similar changes in the
transcriptome to that observed in a disease vs. healthy controls
(called disease signature alignment). The AMDA is negative if
ageing moves the transcriptome away from a disease signature,
that is, ageing is associated with transcriptomic changes that are
opposite to those observed in disease vs. healthy controls (called
disease signature reversion). Please note that the AMDA by its
definition measures the shift toward or away from a disease sig-
nature and hence does not imply that a particular tissue has a
specific disease state.

We determined AMDA scores for 22 ageing-associated data
sets and 30 data sets of different human ageing-associated
diseases. The 22 ageing data sets include the data sets that we
have generated and reviewed above, tissue-specific ageing

signatures and previously reported human age-regulated gene
sets (Supplementary Note 2). Hence, we did not only include gene
sets based on differentially regulated processes but also on the
basis of differentially expressed genes in the individual species
and tissues. The 30 disease data sets include 14 different cancer
data sets, 7 cardiovascular diseases data sets, 5 data sets of
neurodegenerative diseases and 4 type 2 diabetes data sets
(Supplementary Note 2). For cancer, data sets originates from
affected tissue while for degenerative diseases data mostly
originates from blood (Fig. 3) or affected tissue in several cases.

Computing the AMDA scores using these data we find that the
expression signature of old individuals is shifted toward the
signature of patients with cardiovascular diseases (including
hypertension and atherosclerosis), neurodegenerative diseases
(including mild cognitive impairment) and type 2 diabetes
(including insulin resistance), compared to young individuals.
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However, ageing moves the transcriptome away from cancer-
associated gene expression signatures (Fig. 3a). Examining the
transcriptomic changes occurring in cancer driver genes,
oncogenes are enriched with ageing-repressed genes while tumor
suppressors as well as genes that are frequently lost during
tumorigenesis are enriched with ageing-induced genes (Supple-
mentary Note 4).

Cellular senescence has been demonstrated to contribute to
ageing-associated pathologies33 and senescent cells have been
reported to accumulate with age in many tissues across
species34,35. We, therefore, tested to which extent cellular
senescence contributes to the observed shifts in the ageing
transcriptome relative to ageing diseases. We found that after
removing gene sets from the analysis that are differentially
expressed in senescing cell cultures or belong to proliferation-
associated processes, we still observe a strong alignment of the
ageing transcriptome with the expression signatures of degen-
erative ageing diseases and a reversal of the expression signature
of cancer (Supplementary Fig. 4).

We further tested whether ageing-mediated disease alignment
scores also reflect changes in cancer epidemiology in the middle
age. This age group from 30 to 45 years is associated with

considerable changes in human reproductive biology36,37 and
shows a marked increase in malignant transformation rates
(Fig. 1). For these age groups, in contrast to later age groups, we
observed a strong alignment of the transcriptome with cancer in
agreement with an acceleration of cancer incidence observed
from malignant transformation rates (Supplementary Note 5).

Comparison of longitudinal and cohort ageing. Next, we per-
formed a longitudinal analysis of ageing-mediated disease align-
ment at the individual’s level, asking how they are associated with
lifespan. To this end, we analyzed mice and N. furzeri ageing
transcriptomic data for which samples were obtained at two time
points of ageing from the same individual (Methods section). As
in the cross-sectional analysis, the observed longitudinal ageing-
associated changes occur in an opposite trend to gene expression
signatures of cancer and are aligned with the expression signature
of degenerative diseases (Fig. 3a), involving similar processes
(Supplementary Note 6). We obtain similar results when con-
sidering subsets of age groups in our data for which the influence
of cohort effects (changes in gene expression between age groups
due to more susceptible individuals dying first) is mitigated
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(Supplementary Note 7). These results suggest that the observed
ageing-associated transcriptomic changes occur as a part of the
ageing process in individuals. Changes in population hetero-
geneity, which arise due to an earlier death of individuals that are
more susceptible to specific diseases, thus appear to have only
small impact on the transcriptomic signature which we have
identified.

As expected, the activities of processes induced during ageing
are negatively correlated with lifespan while the activity of
processes repressed during ageing shows mostly positive correla-
tions (Fig. 3b, c). Thus, despite the ageing-associated reversion of
cancer gene expression signatures, there is an overall negative
association with lifespan.

Key drivers of ageing-mediated disease alignment. To assess
which of the ageing-regulated processes has the strongest impact
on the alignment between ageing and disease signatures, we
defined a disease alignment contribution (DAC) score. This score
measures the contribution of genes belonging to a specific process
to the overall alignment of disease-specific expression signatures
with ageing (a positive score denotes a process whose genes shift
the ageing signature toward the given disease and a negative score
denotes an inverse trend, cf. Methods section and Supplementary
Note 8). The top ranking DAC score processes show the same
direction of changes in the chronic degenerative diseases surveyed
but an opposite one in cancer (Fig. 4a, b). Thus, processes
induced in cancer are downregulated in degenerative diseases and

vice versa. This antagonism is also visible in a multi-dimensional
scaling plot including all ageing and disease data, where the
degenerative disease samples cluster together with the ageing data
while cancer samples form a separate cluster (Fig. 4c, d, Sup-
plementary Note 8). The upregulation of immune-associated and
cell cycle-associated processes most strongly contributes to
ageing-mediated disease alignment, either when considering all or
just the human ageing data (Fig. 4b). This is in concordance with
the important role of chronic inflammatory processes in the
genesis of cardiovascular diseases, neurodegenerative diseases and
type 2 diabetes2,30 that drive tissue decline due to a constant
activation of the immune response38. In context of cancer, the
immune system, though often attributed a dual role39,40, is the
principal systemic response against the development of cancer if
cell-autonomous mechanisms for cancer prevention fail41, also
reflected by the often immunosuppressive microenvironment of
tumors42. Among the ageing-repressed processes, cell cycle-
related functions (Figs. 2 and 4) show the strongest contribution
to ageing-mediated disease alignment (Fig. 4b). This concurs with
the role of cellular senescence as an important contributor to
ageing-associated pathologies33. Moreover, cellular senescence is
an essential tumor suppressive mechanism even though some
aspects of the senescent phenotype can also contribute to
tumorigenesis in pre-malignant cells33.

We sought to identify potential transcription factors that
mediate the observed antagonism. To this end, we determined
motifs that are enriched in the promoter regions of
most consistently ageing-regulated genes using mSigDB43
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(Supplementary Note 2). We found that binding sites of the
transcription factors E2F1, NF-AT, CEBPB, and AP1 showed the
strongest enrichment among these genes. Intriguingly, all of these
transcription factors are important regulators of both cancer as
well as degenerative ageing diseases and are key regulators of
immune as well as cell cycle processes44–50. This supports their
central role in mediating the antagonism between cancer and
degenerative ageing diseases.

Antagonism between ageing diseases on the genetic level. An
intriguing quandary in the study of genetic determinants of
human lifespan is the detection of yet only two genes that have
been reproducibly associated with human longevity, ApoE and
FOXO3A51,52. This is especially puzzling given the existence of
hundreds of risk variants for ageing-associated diseases53,54 and
sizable study populations51. Indeed, the very old seem to possess a
comparable number of genomic risk variants as younger con-
trols55. Given these previous observations, we hypothesized that,
analogous to the antagonism between cancer and degenerative
ageing diseases on the transcriptomic level, there might exist
antagonistic effects occurring on the genomic level that may at
least partially contribute to this paucity of genomic findings
associated with human longevity. Thus, risk alleles that predis-
pose to cancer may actually protect from degenerative ageing
diseases and vice versa. Through such antagonistic effects, the

influence of risk alleles on longevity would be reduced or even
canceled out in the extreme case. In line with our hypothesis, for
one of the two known lifespan-associated genes, ApoE56, only one
variant shows an impact on lifespan while two other variants
show no influence on lifespan but are antagonistically associated
with age of onset of cancer and cardiovascular diseases25. While
previous systematic studies have reported that ageing-related
processes are enriched for shared genes that are associated with
different types of ageing diseases18,19, they have failed to account
for the direction of effects, that is, how alternative alleles at the
same genomic location influence disease risks.

To test our hypothesis, we compiled a list of all known genomic
single-nucleotide polymorphisms (SNPs) associated with human
ageing-associated diseases from GWAS Catalog57. Subsequently,
we identified risk SNPs shared between cancer and degenerative
diseases and determined how alleles at these loci influenced
disease risk, while accounting for shared heritability through
linkage disequilibrium (Methods section). We defined synergistic
risk SNPs as those for which the same allele predisposes to at least
one type of cancer as well as one degenerative ageing disease and
antagonistic risk SNPs as those where one allele predisposes to at
least one type of cancer and the alternative allele to at least one
degenerative ageing disease (Methods section). Thus, in the case
of antagonistic risk SNPs, one allele predisposes to one type of
disease while protecting from the other and vice versa.
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Overall, we identified 12 independent genomic loci containing
40 shared risk SNPs between cancer and degenerative ageing-
associated diseases with 36 of them being antagonistic and only 4
being synergistic risk SNPs (Fig. 5a, Supplementary Data 1). This
represents a highly significant bias toward antagonistic risk SNPs
(binomial test p-values of 7.28×10−15 and 1.99×10−9, comparing
the frequency of antagonistic risk SNPs for degenerative ageing
diseases and cancer to non-ageing-associated traits, respectively,
Supplementary Note 8). In contrast, comparing degenerative
diseases among each other, we identified an opposite bias,
composed of 15 synergistic and 4 antagonistic risk SNPs (Fig. 5a,
Supplementary Note 8). More generally, we find that cancer as
well as degenerative ageing diseases tend to have more synergistic
than antagonistic risk SNPs with other non-ageing-associated
traits contained in GWAS catalog (Fig. 5b, c). Furthermore, the
overlap of risk SNPs between cancer and degenerative ageing
diseases is much larger than expected by chance based on the
overlap between both individual disease categories and non-
ageing-associated traits reported in GWAS catalog (Fig. 5b, c,
Supplementary Note 8).

The genomic locus with the largest number of shared risk SNPs
contains the long non-coding RNA ANRIL that has been found
to regulate several adjacent cell cycle regulators including one of
the most important markers of cellular senescence and ageing,
p16INK4a58. This locus encompasses the strongest known
genomic risk variant for cardiovascular disease59 as well as risk
loci for neurodegenerative diseases60 and type 2 diabetes61. Our
analysis reveals that these risk SNPs are antagonistic to risk
variants for several major cancers62,63. Another locus is contained
within the coding region of SH2B3, also known as Lnk, which is
an important component of inflammatory signaling64 containing
risk SNP predisposing to cardiovascular diseases and their risk
factors65. The alternative allele at this genomic position has been
reported as a risk SNP for several major cancers62,66.

Discussion
We find that ageing is associated with an antagonism between
cancer and degenerative chronic diseases. It is important to
emphasize that the trade-off that we have identified is distinct
from other trade-offs considered in the context of the evolu-
tionary theory of ageing such as the concept of antagonistic
pleiotropy67 or trade-offs identified in the context of the

disposable soma theory68. The concept of antagonistic pleiotropy
posits that ageing-associated changes might be driven by pro-
cesses that are benefiting the survival to reproduction in the
young while having deleterious effects in the old67. The dis-
posable soma theory states that the rate of ageing is driven by a
trade-off between the investment into reproduction and the
maintenance of the individual68. Thus, antagonistic pleiotropy
considers trade-offs in the effects of molecular processes between
young and old individuals while the disposable soma theory
considers trade-offs involving the ageing process as a whole. In
contrast, we have identified a trade-off between cancer and
degenerative diseases as integral part of the ageing process.

The antagonism between cancer and degenerative diseases is
evident, though manifested differently, on both the tran-
scriptomic and genomic level. On the transcriptomic level, this
antagonism is reflected by a shift of the ageing transcriptome
toward that of degenerative diseases and its divergence from
cancer-associated gene expression signatures. Examining these
alterations at the cellular process level, we find an inverse relation
between the direction (up/downregulation) of transcriptomic
changes occurring in key processes altered in cancer vs. degen-
erative ageing disorders. On the genomic level, this trade-off is
reflected by the existence of a large number of risk alleles having
opposite effects on the predisposition to cancer vs. degenerative
ageing diseases. The latter may contribute to the observation that
most genomic variants detected for ageing-associated diseases
have no influence on human lifespan. As our analysis indicates,
key contributors to ageing-mediated disease alignment are
immune-associated as well as cell cycle-related processes, with the
former being suppressed in cancer and induced in degenerative
diseases and the latter induced in cancer and downregulated in
degenerative ageing diseases. Since the immune system is the
principal systemic barrier to cancer development41 and there is
an accumulation of potentially carcinogenic DNA damage with
age69,70, our results suggest that ageing-associated inflammatory
processes that purport chronic diseases might actually be geared
to counteract precancerous events. These results show that
ageing-associated changes do not necessarily always promote
ageing diseases but emphasize a separate consideration of cancer
vs. degenerative disorders.

As the transcriptomic signatures of cancer and degenerative
disorders antagonize each other in key cellular processes
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involving the immune response and cell cycle regulation, it
logically follows that the transcriptomic alterations occurring late
in life may thus not be able to drive us away (or bring us closer) to
the expression signatures of both cancer and degenerative dis-
orders. Our analysis shows that the ageing transcriptome moves
closer to that of the degenerative disorders, which is in agreement
with their ever-increasing incidence. Finally, the conservation of
the ageing response indicates that the trade-off between cancer
degenerative ageing diseases might represent a fundamental
characteristic of ageing in vertebrates.

In summary, our work provides a reference for conserved
ageing-associated alterations on the transcriptional level and
demonstrates a link of these alterations to ageing-associated
pathologies. While we mostly report on associations and cannot
infer causal relationships, these results represent an important
basis for future functional studies that examine the mechanisms
that mediate the antagonism between cancer and degenerative
ageing diseases.

Methods
Zebrafish samples. Zebrafish of the TüAB strain were kept in groups of 20–30
animals under standard husbandry conditions. For expression profiling, zebrafish
were killed with MS-222 and cooled on crushed ice. Sampling was performed at
noon/early afternoon to avoid effects of circadian rhythms. Brain, liver, and skin
tissue from randomly selected male zebrafish at the age of 6, 12, 24, 36, and
42 months were dissected and stored in RNAlater (Qiagen, Hilden, Germany) at
−80 °C. Total RNA was isolated with TRIzol (Life Technologies, Darmstadt, Ger-
many) according to the instructions of the manufacturer. The protocols of animal
maintenance and experiments were approved by the local authority in the State of
Thuringia (Veterinär- und Lebensmittelüberwachungsamt, reference number J-
SHK-2684-04-08/11).

Nothobranchius furzeri samples (cross-sectional/longitudinal). For expression
profiling we obtained brain, liver and skin from randomly selected male animals of
N. furzeri (strain MZM-04/10) from the corresponding cohorts at 5, 12, 20, 27, and
39 weeks of age. To avoid effects of circadian rhythms and feeding, animals were
always sacrificed at 10 a.m. in fasted state. For tissue preparation, fish were killed
with MS-222 and cooled on crushed ice. The protocols of animal maintenance and
experiments were approved by the local authority in the State of Thuringia
(Veterinär- und Lebensmittelüberwachungsamt, reference number J-SHK_22-
2684-04-03-011/13).

Mouse (cross-sectional/longitudinal) samples. Male C57BL/6J mice at 2, 9, 15,
24, and 30 months of age were randomly selected from a breeding facility and
deeply anaesthetized. Whole blood was taken by heart puncture and stabilized in
PAXgene Blood RNA tubes according to manufacturer’s instruction (PreAnalytiX
GmbH, Switzerland). Furthermore, one cm2 hairless abdominal skin and 1 cm3

liver as well as one brain hemisphere were removed. For longitudinal sampling ears
were clipped using a die cutter with a diameter of 3 mm (Natsume Seisakusho Co.
Ltd., Japan) at 24 and 30 months of age. For the 30 months biopsy the second ear
was clipped. All samples were immediately snap frozen and stored at −80 °C. All
animal procedures were approved by the local government (Thueringer Landesamt,
Bad Langensalza, Germany) and conformed to international guidelines on the
ethical use of animals.

Human samples. Whole blood was taken from healthy male volunteers aged from
24 to 29, 45 to 50, 60 to 65, and 75 to 80 years and stabilized in PAXgene Blood
RNA tubes. The same volunteers had a four mm punch biopsy performed above
the knee inside the leg. The study was approved by the institutional review board of
the Medical Faculty of the Friedrich-Schiller-University (registration number 3369-
02/12). Informed consent was obtained from all subjects.

All human and murine samples were homogenized in QIAzol Lysis Reagent
(Qiagen, Hilden, Germany) and 0.2 volumes chloroform were added. Following
phase separation, the aqueous phase was transferred into a fresh tube, then 0.16
volumes NaAc (2 M, pH 4.0) and 1.1 volumes isopropanol were added. The RNA
was precipitated by centrifugation and the pellet was washed with 75% ethanol.
Total RNA was re-suspended in water and stored at –80°C until use.

Human fibroblast cell cultures. Primary human fibroblasts MRC-5, WI-38, BJ
and IMR-90 were kept in groups obtained from ATCC (LGC Standards GmbH,
Wesel, Germany). HFF cells were kind gifts of T. Stamminger (University Erlangen,
Germany). All cell cultures were tested negative for mycoplasma contamination
using DNA staining. Cells were cultured as recommended by ATCC in Dulbeccos
modified Eagles low glucose medium (DMEM) with L-glutamine (PAA

Laboratories, Pasching, Austria), supplemented with 10% fetal bovine serum (FBS)
(PAA Laboratories). Cells were grown under normal air conditions in a 9.5% CO2

atmosphere at 37 °C. For sub-culturing, the remaining medium was discarded and
cells were washed in 1 x PBS (pH 7.4) (PAA Laboratories) and detached using
trypsin/EDTA (PAA Laboratories). Primary fibroblasts were sub-cultured in a 1:4
(=2 population doublings (PDs)) or 1:2 (=1 PD) ratio. For stock purposes, cryo-
conservation of the cell strains at various PDs were undertaken in cryo-conserving
medium (DMEM+10% FBS+5% DMSO). Cells were immediately frozen at −80 °C
and stored for two to three days. Afterwards, cells were transferred to liquid
nitrogen for long time storage. Re-freezing and re-thawing was not performed to
avoid premature senescence. One vial of each of the five different fibroblast cell
strains (MRC-5, HFF, BJ, WI-38 and IMR-90) was obtained and maintained in
culture from an early PD. On obtaining enough stock on confluent growth of the
fibroblasts in 75 cm2

flasks, cells were sub-cultured into three separate 75 cm2
flasks

(“triplicates”) and were passaged until they were senescent in culture.

Purification of total RNA. Total RNA was extracted as described before71. RNA
extraction for all samples followed an a priori established standardized protocol.
RNA quality and amount were determined using the Agilent Bioanalyzer 2100 with
the RNA 6000 Nano Kit (Agilent Technologies). RNA integrity numbers varied
between 5 and 10 depending on species and tissue. If RNA integrity numbers were
below that threshold, samples were not used.

RNA-seq. In the case of blood samples, additional depletion of globin mRNA was
applied using the GLOBINclearTM kit (Ambion, Thermo Fisher Scientific) fol-
lowing the manufacturer’s protocol. Total RNA/globin mRNA-depleted RNA was
introduced into either Illumina’s TruSeq RNA sample preparation kit or TruSeq
RNA sample preparation kit v2 following the manufacturer’s description. The
libraries were quality-checked and quantified using Agilent Bioanalyzer 2100 with
the Agilent DNA 7500 kit (Agilent Technologies) and sequenced using either a
HiSeq2000 or HiSeq2500 (Illumina) in high-output and single-end sequencing
mode with a read length of 50nt. Sequence information was extracted in FastQ
format using CASAVA v1.7/v1.8/v1.8.2 or bcl2fastq v1.8.3 or v1.8.4 (Illumina).
Sequencing resulted in around 40–60 million reads per sample. Information about
individual samples can be found in Supplementary Note 2 and Supplementary
Data 1, sheet “Sample overview”.

RNA-seq analysis. Read mapping against the respective species-specific reference
genome (D. rerio: Zv9.73, M. musculus: GRCm38.69, H. sapiens: GRCh37.66) was
performed using the Tophat splice alignment tool, version 2.0.672. N. furzeri data was
processed as described before73,74. Depending on species and tissue, 60–95% of reads
could be mapped uniquely to the corresponding reference genome. To assign
sequence reads to annotated transcripts, we processed the resulting BAM alignment
files with the HTSeq software package75, later with the featureCounts script75. For
both methods, we made use of species-specific GTF gene annotation files that were
downloaded from the Ensembl website76. Read counts per gene were further pro-
cessed using the R software suite: Read counts were normalized with respect to
individual transcript size using exon lengths provided by featureCounts and total
amount of all mappable reads (library size), resulting in RPKM values (reads per
kilobase of transcript per million reads mapped) for each gene. The counts and RPKM
values served as raw data for all subsequent analyses. Outliers were detected using
multi-dimensional scaling plots and not considered for further analyses (see Sup-
plementary Data 1). For each organism, genes that showed no detectable expression
(RPKM = 0) in one or more samples were excluded from down-stream analysis.

Derivation of process ontologies. To allow a functional comparison of gene
expression data across tissue and species, we mapped expression values to process
activity data based upon three different ontologies: Gene Ontology27, KEGG
Pathway,28 and a metabolism-based ontology. Genes for each species were asso-
ciated to processes using R packages biomaRt77 for Ensembl’s76 Gene Ontology
annotations and gage78 for KEGG Pathway. For the metabolism-based ontology,
we used the genome-scale human metabolic network, Recon 2.04, as a template29.
Genes were mapped to metabolic subsystems according to the gene-reaction
association of the model. For deriving metabolic functions, human genes were
mapped to their respective homologs in the other three species using Biomart
version 0.777.

For each ontology, processes were filtered such that only those processes
annotated with at least five genes with measured expression in each species and
tissue remained. The activity of a process in a sample was calculated as the sum of
the expression values of all genes belonging to that process. Please note that this
approach is equivalent to considering the average expression of all genes
constituting a process due to the subsequent normalization steps described in the
following. To render process activity for a specific ontology comparable across
samples, process activities were first quantile normalized across all samples.
Subsequently, the activity of each process was rank-normalized for each tissue in
each species separately and ranks were scaled to a minimum of zero and a
maximum of one. In total, we obtained process activity for 1563 processes for Gene
Ontology, for 135 processes for KEGG Pathway and for 66 processes for Human
Metabolic Pathways.
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Identification of significantly differentially regulated processes. To detect
processes that are differentially regulated with age, unbalanced type-II analysis of
variance (ANOVA) was applied as implement in the ‘car’79 package of R. The
outcome (dependent variable) was ‘process activity’ and apart from ‘age group’,
‘species’ (M. musculus, H. sapiens, D. rerio, and N. furzeri) as well as ‘tissue’ (blood,
brain, liver, and skin) were treated as fixed independent factors. In the initial
analysis, the factor ‘age group’ consisted of only two groups. From the five groups
(young, mature1, mature2, old1, old2, Supplementary Note 2) all individual pairs of
age groups were considered. After identification of the highest number of differ-
entially regulated processes between the youngest and the two oldest time points of
organismal ageing (Supplementary Fig. 2), the three age groups young, old1 and
old2 were considered as factors in the analysis. All interactions up to three-way
were included into the model. Fibroblast data were processed separately from the
remaining data to contrast organismal with cell culture ageing. Normality of
residuals was tested for each process using the Shapiro–Wilk test as implemented
in R. Homogeneity of variance was tested using the Levene test from the ‘car’
package. If any of the two tests yielded p ≤ 0.005 in the joint analysis across data
sets, the respective process was not further considered. We used a cutoff of 0.005
rather than 0.05 to reduce the rate of false negatives. Nevertheless, our results did
not change qualitatively, when a p-value cutoff of 0.05 was applied. For Gene
Ontology 900 out of 1563, for KEGG Pathways 74 out of 135 and for Human
Metabolic Pathways 43 out of 66 processes passed the model assumption tests. For
model reduction in ANOVA, we used backward selection with a p-value threshold
of 0.05. Interactions were iteratively reduced by starting with the highest order of
interaction. Main effects or lower order interactions were only removed from the
ANOVA model, if no higher order interaction in the model included this inter-
action or main effect. Model reduction continued until no influence with p > 0.05
remained or until the main effect ‘age group’ was removed. Reported FDR-
corrected p-values correspond to the p-value of the main effect ‘age group’. The
final p-values for the main effect ‘age group’ are provided in Supplementary Data 2
for each ontology and each process. Supplementary Data 1 contains processes with
an FDR-adjusted p ≤ 0.1. The foldchange of a process was determined by sub-
tracting the mean of the rank-normalized process activities of young samples from
the mean of old samples (both old age groups combined). We verified that the
ageing-regulation of identified processes was not influenced by obtaining samples
from several tissues of the same animal (Supplementary Note 8). ANOVA was also
performed as described above, but stratified for tissue (factors ‘age group’ and
‘species’) and stratified for species (factors ‘age group’ and ‘tissue’). Processes were
classified as part of the functional signature of ageing, if the following two con-
ditions were met: First, a process needed to be significantly differentially regulated
in the analysis of the unstratified data of all species combined. Second, the direction
of a significantly differentially regulated process had to be consistent in at least one
of the fish and one of the mammalian species. We confirmed that our approach
only returned ageing-regulated processes by repeating the entire procedure 100
times with randomly reassigned age labels where we observed only few cases of
significantly ageing-regulated processes (Supplementary Note 3). Moreover, we
tested whether the similarity in ageing-regulated processes between species could
be explained by a random overlap in significantly ageing-regulated processes
between species. We found that the similarity of ageing-associated process reg-
ulation is unlikely to have arisen by chance alone thereby confirming a strong
conservation of the functional signature of ageing (Supplementary Note 3).

We performed several sensitivity tests to assess the accuracy of the identified
ageing regulated processes. Thus, we repeated the analysis using an approach for
deriving process activity in which all genes were equally weighted. We determined
the frequency of significantly differentially regulated genes in differentially
regulated processes from the process-based analysis and assessed the effect of
inclusion of all age groups in the analysis. We found that differentially regulated
processes showed a high degree of similarity across these analyses (Supplementary
Note 8).

Comparison of ageing and disease signatures. Gene expression data for ageing-
associated diseases was obtained from various sources (Supplementary Note 2).
Only data with age-matched cases and controls was used unless indicated otherwise
(skin cancer, brain cancer, and leukemia). We determined differentially expressed
genes in our ageing data between the two old age groups and the young age group
as described in Supplementary Note 2. Previously reported differentially expressed
genes during ageing were obtained from the original works (Supplementary
Note 2). AMDA scores for a disease and an ageing data set were determined based
on the comparison of normalized foldchanges between cases and controls in the
disease data set between ageing-induced and repressed genes. Theoretically, the
AMDA score can attain values between −2 and +2, while we only observed a
maximal range between −0.34 and +0.52. For each AMDA score we determined the
significance of ageing-mediated disease alignment using a Wilcoxon rank-sum test
(Supplementary Note 8) and only considered them as significant if the FDR-
corrected p-value of the test was smaller than 0.05. For more information, see
Supplementary Note 8. We repeated the procedure 100 times after randomly
swapping ageing-induced and ageing-repressed genes in the ageing data sets. We
did not observe a single instance of significant ageing-mediated disease alignment
in the randomized ageing data sets (Supplementary Note 8).

Determination of disease alignment contribution scores. Crude disease align-
ment contribution (DAC) scores between a process and a disease category were
obtained by determining the shift in ageing-mediated disease alignment if genes of
that process were removed. After normalization of crude DAC scores (division by
number of comparisons and scaling to an absolute maximum of 1), they have a
theoretical range of −1 to +1, with −1 corresponding to the process that most
strongly contributes to the ageing-associated reversion of a disease signature and
+1 corresponding to the process with strongest disease alignment. For more details,
Supplementary Note 8.

R package for multi-species analysis. We implemented our approach of a
process-based analysis of gene expression data in the R package PRODEX
(PROcess-based Differential EXpression analysis, see code availability). This
package allows users to create the mapping of gene expression data onto process
activity information for Gene Ontology processes and KEGG Pathway. In addition,
PRODEX provides the basic functionality required for analyzing the generated
process activity data.

Genetic analyses. Reported risk alleles from published genome-wide association
studies were obtained from GWAS catalog57 (release e87 dated 4 January 2017)
containing a list of manually curated SNPs reported in genome-wide association
studies that meet a specific list of eligibility criteria (see https://www.ebi.ac.uk/
gwas/docs/methods). Risk alleles for different types of ageing-associated diseases
were obtained through matching reported disease traits with a list of keywords. On
the basis of this data, we determined sets of SNPs predisposing to the considered
disease categories: cancer, cardiovascular diseases, neurodegenerative diseases and
type 2 diabetes, the latter three also collectively considered as degenerative ageing
diseases. Through pairwise comparison of SNP sets, we identified shared risk SNPs.
Shared risk SNPs correspond either to identical risk SNPs between the two SNP
sets or two SNPs that are co-inherited through strong linkage disequilibrium based
on data from the 1000 genomes project9. On the basis of this information we
identified synergistic risk SNPs as those where the same allele was a risk allele in
both SNP sets and antagonistic risk SNPs as those where one allele at a genomic
position was a risk allele in the first SNP set (i.e., a risk SNP for the first disease)
and the alternative allele a risk allele in the other SNP set (i.e., a risk SNP for the
other disease). For more information, see Supplementary Note 8. Please note that
by using the GWAS catalog data, we combined data from a wide variety of human
cohorts (Supplementary Data 1). This might bias results compared to the utiliza-
tion of one single cohort with available genetic data covering all of the considered
diseases with sufficient case numbers at once. However, such a data set is not
available yet.

Code availability. Source code to reproduce the analysis reported in this paper as
well as the associated data is available at datadryad.org (doi:10.5061/dryad.4b5n5).

Data availability. All RNA-seq data generated in this study were uploaded to
NCBI’s Gene Expression Omnibus: Danio rerio (GSE74244), fibroblasts (GSE63577
/ GSE60883), Homo sapiens (GSE75337, GSE103232), Mus musculus (GSE75192,
GSE78130), and Nothobranchius furzeri (GSE52462/GSE66712). Further details
surrounding the accession numbers of the individual data sets are provided in
Supplementary Data 1, sheet “Sample Overview”.
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